JPS5818941A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5818941A
JPS5818941A JP11735681A JP11735681A JPS5818941A JP S5818941 A JPS5818941 A JP S5818941A JP 11735681 A JP11735681 A JP 11735681A JP 11735681 A JP11735681 A JP 11735681A JP S5818941 A JPS5818941 A JP S5818941A
Authority
JP
Japan
Prior art keywords
wiring
current capacity
width
metal
large current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11735681A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shimamura
島村 美博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11735681A priority Critical patent/JPS5818941A/en
Publication of JPS5818941A publication Critical patent/JPS5818941A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To easily increase wiring thickness and to reduce width to contrive the high integration of a device by a method wherein thick metal wiring is stacked on the metal wiring on a region having large current capacity and thin metal wiring is simultaneously provided on a region having small current capacity. CONSTITUTION:Al power wiring 8 having large current capacity is made on SiO2 5 on an Si substrate 4 and the whole surface is covered with the second Al 9. The Al 9 is etched and other signal wiring pattern 11 having small current capacity is also formed. The power wiring is piled Al 8 and 10 and thick and stroke width can be reduced as current capacity per unit width increases. The Al wiring 11 and the circumference of the power wiring are same and while maintaining the wiring 11 having small current capacity with a fine pattern as usual, only the wiring having large current capacity is formed with n times film thickness to form width as 1/n and chip size can be reduced.

Description

【発明の詳細な説明】 本発明は改良された半導体装置の製造方法に関する。[Detailed description of the invention] The present invention relates to an improved method of manufacturing a semiconductor device.

近年、集積回路(以下単にICと称する)技術の進歩は
著Mしいものがあり、一つのICチップに集積される素
子の数は4万におよび、10万素子を越えるICも現わ
れて来た。これらのICチ、プでは、ICt構成するト
ランジスタや各素子間の配線はファインバタン化が進み
、その寸法は数ミクロンの単位まで縮小されつつある。
In recent years, there have been remarkable advances in integrated circuit (hereinafter simply referred to as IC) technology, with the number of elements integrated on a single IC chip reaching 40,000, and ICs with over 100,000 elements appearing. . In these IC chips, the transistors constituting the IC and the wiring between each element are becoming finer, and their dimensions are being reduced to several microns.

しかし、IC千、プ内の配線には、信号を伝達するだけ
の信号配線と各素子に電力を供給するための配線の二種
類がある。前者の信号配線は微小電流しか流れないため
信号伝達速度のみが重要であり。
However, there are two types of wiring within an IC: signal wiring for simply transmitting signals and wiring for supplying power to each element. In the former type of signal wiring, only a small current flows, so only the signal transmission speed is important.

その幅は微細加工技術によ)決まる。しかし電力を供給
する丸めの配線5例えば電源配線、グランド配線等は、
電流容量が大であり、集積度が増すにつれて更に増える
傾向にある。An配線中の電流密度はICの信頼性上制
限されるため、電流容量の大きな配線は、太くする必要
がある。このため、信号配線が微細化されている事・を
考えると、電流容量の大きな配線の配線幅を縮小する事
は重要である。
Its width is determined by microfabrication technology. However, the round wiring 5 that supplies power, such as power wiring, ground wiring, etc.
The current capacity is large and tends to increase further as the degree of integration increases. Since the current density in the An wiring is limited due to the reliability of the IC, the wiring with a large current capacity needs to be thick. Therefore, considering the miniaturization of signal wiring, it is important to reduce the wiring width of wiring with large current capacity.

従来の半導体装置を図を用いて説明する。A conventional semiconductor device will be explained using figures.

第1図はICチ、プの一部を示し、1は素子の形成され
たチップであるが、AI配線以外のポリシリコン、拡散
層等は省略しである。第2図は。
FIG. 1 shows a part of an IC chip, and 1 is a chip on which elements are formed, but polysilicon, diffusion layers, etc. other than AI wiring are omitted. Figure 2 is.

第1図をA−にに沿って切断したときの拡大断面図であ
る。第1図において3は信号AJ配線でおり、電流はほ
とんど流れないため数ミクロン幅で充分である。2は電
源Aj配線のため電流容量が大きな配線であシ、電流に
よっては100ミクロン以上の配線幅を必要とすること
もある。
FIG. 2 is an enlarged sectional view taken along line A- in FIG. 1; In FIG. 1, 3 is the signal AJ wiring, and since almost no current flows, a width of several microns is sufficient. Reference numeral 2 is a power supply Aj wiring, which has a large current capacity, and may require a wiring width of 100 microns or more depending on the current.

第2図において4は半導体基板、5は8i0.膜であり
、6,7はそれぞれ第1図の2,3に対応する。
In FIG. 2, 4 is a semiconductor substrate, 5 is 8i0. 6 and 7 correspond to 2 and 3 in FIG. 1, respectively.

Al膜厚を大きくすれば、同一のAI配線幅でも電流容
量の増加が可能であるが、アルミバタン6.7は同一の
工程で形成されるため、7の膜厚も大きくなり、サイド
エツチング等の関係で、ファインバタン化が困難になっ
てしまう、このため最近のICチップでは、電源配線や
グランド配線に用いるA!配線幅が他の配線と比して著
しく太くなっている。これは、ICチ、ブの縮小を阻害
し1歩留り低下の一原因をなしている。
By increasing the Al film thickness, it is possible to increase the current capacity with the same AI wiring width, but since aluminum battens 6 and 7 are formed in the same process, the film thickness of 7 also increases, resulting in side etching, etc. Because of this, it is difficult to make a fine batten.For this reason, recent IC chips use A! The wiring width is significantly thicker than other wirings. This hinders the reduction of the IC chip and is one of the causes of a decrease in yield.

本発明はかかる従来技術の欠点を改善し、微細な信号配
線には何ら影響を与えることなく、電流容量の大きな配
線の幅を縮小することのできる半導体装置の製造方法を
提供するものである。
The present invention improves the drawbacks of the prior art and provides a method for manufacturing a semiconductor device that can reduce the width of wiring with large current capacity without affecting fine signal wiring.

本発明は、必要な菓子の形成された半導体基板上の電流
容量の大きな配線を形成すべき領域に第一の金属配線を
形成する工程と、前記第一の金属配線上を含む前記基板
全面に新たに金属被膜を形成する工程と、前記第一の金
属配線上の前記金属被膜をホトエツチングなどの方法で
バタン化して厚さの厚い金属配線を形成すると共に、同
時に電流容量の小さな配線を形成すべき領域の前記金属
被膜をバタン化して前記金属配線よりも厚さの薄い第二
の金属配St−形成する工程を含むことを特徴とする半
導体装置の製造方法である。
The present invention includes a step of forming a first metal wiring in a region where a wiring with a large current capacity is to be formed on a semiconductor substrate on which a necessary confectionery is formed, and a step of forming a first metal wiring on the entire surface of the substrate including on the first metal wiring. A process of forming a new metal film, and forming a thick metal wiring by converting the metal film on the first metal wiring by a method such as photoetching, and at the same time forming a wiring with a small current capacity. This method of manufacturing a semiconductor device is characterized in that it includes a step of forming a second metal interconnection layer thinner than the metal interconnection layer by converting the metal coating layer in the desired region.

本発明によれば、電流容量の大きな配線の厚さを容易に
厚くすることができ、該配線の幅を小さくできるので、
半導体装置の高集積化、いいかえれば半導体装ツブの小
形化を図ることができる。
According to the present invention, the thickness of the wiring having a large current capacity can be easily increased, and the width of the wiring can be reduced.
It is possible to achieve higher integration of semiconductor devices, or in other words, to reduce the size of semiconductor chips.

本発明を実施例により説明する。第3図〜第5図は本発
明の一実施例を示すものである。
The present invention will be explained by examples. 3 to 5 show an embodiment of the present invention.

第3図は半導体基板4t−被覆するSin、膜5上に、
電流答量大である電源配線を第一のAI配線パタン8に
よりて形成したものである。
FIG. 3 shows a semiconductor substrate 4t-covering a Sin film 5,
A power supply wiring having a large current response is formed using the first AI wiring pattern 8.

第4図は、#記第−のkl配線8の表面に接触する状態
でウェハースの全面に第二のA!膜9t−形成する工程
でめる。
FIG. 4 shows a second A! The film 9t is formed in the process of forming the film.

第5図はAj配線8の全表面を一定のマージンを持って
A!膜9で覆うように該AI膜9を工。
In FIG. 5, the entire surface of the Aj wiring 8 is connected to A! with a certain margin. The AI film 9 is machined so as to cover it with the film 9.

チップすると共に、電流容量の小さい他の信号配線バタ
ン11に一形成する工程である。
This is a step of forming a chip on another signal wiring button 11 having a small current capacity.

この場合、電源配線は8と10の両方のAj膜が重ねら
れているため、他の配線11に比べて厚くすることがで
き、例えばA!膜8と10が同じ厚さだとすれば該電源
配線は2倍の膜厚を持つ。
In this case, since both the Aj films 8 and 10 are stacked on the power supply wiring, it can be made thicker than the other wiring 11. For example, A! If films 8 and 10 have the same thickness, the power supply wiring has twice the film thickness.

従りて、単位配線幅畠シの電流容量も2倍となるため、
配線幅を従来のほぼl/2に縮小できる。また他のAj
配線11及び電源配線の周辺部の膜厚は従来と同一であ
るため、サイドエツチングによる配線幅の減少、配線切
れ等は生じない。即ち、を維持し九t′!、電流容量の
大きな配線のみの膜厚を2倍(もちろん任意の倍数n倍
にすることもできる)にすることで、この配線幅は1/
2 (又は1/n)になり、それだけチップサイズを縮
小できる。
Therefore, the current capacity of the unit wiring width is also doubled, so
The wiring width can be reduced to approximately 1/2 of the conventional width. Also other Aj
Since the film thicknesses of the peripheral portions of the wiring 11 and the power supply wiring are the same as in the prior art, there is no reduction in the wiring width or wire breakage due to side etching. That is, maintain 9t'! By doubling the film thickness of only the wiring with large current capacity (of course, it can also be increased by an arbitrary multiple of n), the width of this wiring can be reduced by 1/
2 (or 1/n), and the chip size can be reduced by that much.

以上のように本発明によれば、電流容量の大きな配線の
幅を非常に小さくすることができ、半導体装置を高集積
化又はチップを小形化する上できわめて大きな効果があ
る。
As described above, according to the present invention, the width of a wiring having a large current capacity can be made extremely small, which is extremely effective in increasing the degree of integration of a semiconductor device or downsizing a chip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のICチ、プ上のAj配線の一部を示す概
略平面図、第2図は第1図をA−4で切断した場合の概
略断面図、第3図、第4図及び第゛5図は本発明の一実
施例を工程順説明するための概略断面図である。 尚、図において、1・・・・・・ICチップの一部、2
゜3.6〜11・・・・・・klパタン%4・・・・・
・半導体基板、5・・・・・・Sin、膜である。 半1z 峯Z口゛ 11 “ を 峯チ図 峯り目
Figure 1 is a schematic plan view showing part of the Aj wiring on a conventional IC chip, Figure 2 is a schematic cross-sectional view when Figure 1 is cut along A-4, Figures 3 and 4. FIG. 5 is a schematic sectional view for explaining the process order of an embodiment of the present invention. In the figure, 1...a part of the IC chip, 2
゜3.6~11...kl pattern%4...
- Semiconductor substrate, 5...Sin, film. Half 1z Mine Z mouth ゛11

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の配線領域に第一の金属配線を形成する工
程と、前記第一の金属配線上を含む前記基板全面に金属
被膜を形成する工程と、前記第一の金属配線上の前記金
属被膜をバタン化して厚膜の金属配線を形成すると同時
に別の領域の前記金属被膜をバタン化して前記金属配線
よりも薄膜の第二の金属配線を形成する工程を含むこと
を特徴とする半導体装置の製造方法。
forming a first metal wiring in a wiring area on a semiconductor substrate; forming a metal coating over the entire surface of the substrate including on the first metal wiring; and forming the metal coating on the first metal wiring. A semiconductor device characterized by comprising the step of: forming a thick metal wiring by battening the metal film, and simultaneously battening the metal film in another region to form a second metal wiring thinner than the metal wiring. Production method.
JP11735681A 1981-07-27 1981-07-27 Manufacture of semiconductor device Pending JPS5818941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11735681A JPS5818941A (en) 1981-07-27 1981-07-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11735681A JPS5818941A (en) 1981-07-27 1981-07-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5818941A true JPS5818941A (en) 1983-02-03

Family

ID=14709653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11735681A Pending JPS5818941A (en) 1981-07-27 1981-07-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5818941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436049A (en) * 1987-07-31 1989-02-07 Toshiba Corp Semiconductor integrated circuit and manufacture thereof
JPH0198637A (en) * 1987-10-09 1989-04-17 Polyplastics Co Surface treatment of liquid crystal polyester resin molding
US5111276A (en) * 1985-03-19 1992-05-05 National Semiconductor Corp. Thick bus metallization interconnect structure to reduce bus area

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111276A (en) * 1985-03-19 1992-05-05 National Semiconductor Corp. Thick bus metallization interconnect structure to reduce bus area
JPS6436049A (en) * 1987-07-31 1989-02-07 Toshiba Corp Semiconductor integrated circuit and manufacture thereof
JPH0198637A (en) * 1987-10-09 1989-04-17 Polyplastics Co Surface treatment of liquid crystal polyester resin molding

Similar Documents

Publication Publication Date Title
US5731222A (en) Externally connected thin electronic circuit having recessed bonding pads
JPH09321229A (en) Semiconductor device and its manufacture
JPS5818941A (en) Manufacture of semiconductor device
JP2692099B2 (en) Master slice type integrated circuit
JP3206243B2 (en) Bonding pad and method of forming the same
EP0418777B1 (en) Wafer scale semiconductor device
JPH06150031A (en) Cpu module
JP3067135B2 (en) Method for manufacturing semiconductor device
JPH02170434A (en) Semiconductor integrated circuit device provided with bump electrode
JPH05198527A (en) Semiconductor device and its manufacture
JPS5840843A (en) Semiconductor device
JP3075858B2 (en) Semiconductor integrated circuit device
JPS62136857A (en) Manufacture of semiconductor device
JPS6074658A (en) Semiconductor ic device
JPS5828863A (en) Integrated circuit device
JPH03265140A (en) Semiconductor device and manufacture thereof
JPH0945724A (en) Semiconductor device
JPH05343408A (en) Tab semiconductor chip
JPH11186269A (en) Semiconductor integrated circuit and manufacture thereof
JP2538245Y2 (en) Semiconductor device
JPS63252445A (en) Manufacture of semiconductor device
JPS5921043A (en) Manufacture of semiconductor device
JPH02113566A (en) Semiconductor integrated circuit
JPS6177354A (en) Semiconductor device
JPS62234350A (en) Manufacture of semiconductor device