JPS58187003A - Antenna using r-kr lens - Google Patents

Antenna using r-kr lens

Info

Publication number
JPS58187003A
JPS58187003A JP6962182A JP6962182A JPS58187003A JP S58187003 A JPS58187003 A JP S58187003A JP 6962182 A JP6962182 A JP 6962182A JP 6962182 A JP6962182 A JP 6962182A JP S58187003 A JPS58187003 A JP S58187003A
Authority
JP
Japan
Prior art keywords
lens
coupler
antenna
lenses
circulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6962182A
Other languages
Japanese (ja)
Other versions
JPH0328841B2 (en
Inventor
Yoshihiko Mikuni
三国 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP6962182A priority Critical patent/JPS58187003A/en
Publication of JPS58187003A publication Critical patent/JPS58187003A/en
Publication of JPH0328841B2 publication Critical patent/JPH0328841B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns

Abstract

PURPOSE:To prevent reflection due to mismatching, by using two lenses of printed board constitution. CONSTITUTION:Inputted electromagnetic waves from an antenna element 21 pass through a circulator 31 and is divided into two by a coupler 61. The waves divided into two pass through R-kR lenses 51, 52 respectively and added by a coupler 60 and received by a receiver 40. Since the two R-kR lenses 51, 52 are used and they are coupled and fed through couplers 61, 61, the antenna system is symmetrical in the construction, allowing to form a multi-beam in all directions. Since reflecting waves are canceled with each other, the back lobe is reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、R−AR形と呼ばれる電波レンズに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a radio wave lens called R-AR type.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

到来磁波の方向、周波数等を常に知ることの出来る探知
装置に−おいては全方位方向に受(Uビームラ並べたマ
ルチビームアンテナが用いられる。従来このような目的
に適したマルチビームアンテナがいくつか提案されてい
るが、その中に第1図に示すR−JRレンズと呼ばれる
1波レンズを用いたアンテナがある。
Detection equipment that can always know the direction, frequency, etc. of incoming magnetic waves uses a multi-beam antenna that receives signals in all directions (U-beam arrays). Among them, there is an antenna using a single-wave lens called the R-JR lens shown in FIG.

これは、レンズをプリント板で構成出来るためパトラ−
マトリクスによるマルチビームアンテナよシも構造が簡
易であるという利点をもっている。
This is because the lens can be constructed from a printed board.
A multi-beam antenna using a matrix also has the advantage of a simple structure.

またR−A凡しンズやロットマンレンズを用いたマルチ
ビームアンテナは給電系をプリント板で構成出来るとい
う利点を持っているものの全方向性ではないため複数の
アンテナを組合せて全方向性にしなければならなかった
。このようにR−JRレンズを用いたアンテナは全方向
性iルチビームアンテナとして最適なものであるとされ
ている。
Also, multi-beam antennas using R-A ordinary lenses or Rotman lenses have the advantage that the feed system can be configured with a printed board, but they are not omnidirectional, so multiple antennas must be combined to make them omnidirectional. did not become. The antenna using the R-JR lens is said to be optimal as an omnidirectional i-multibeam antenna.

ここで第2図を用いてR−aRレンズの動作を説明して
おく。
Here, the operation of the R-aR lens will be explained using FIG. 2.

第2図において1の方向から電波が到来したとする。こ
の電波はアンテナ素子21.22,23,24.25で
受信されそれぞれサーキュレータ31,32.33,3
4゜35ヲ通過してレンズ5に導かれる。ここで、1t
+ Is + Is  が全てのアンテナ素子につ′い
て等しいとすれば、上記のレンズ5に導かれた電波はサ
ーキュレータ30の端子50に焦点を結びサーキュレー
タ30ヲ通過して受信機40に導かれる。このように1
の方向から入射した譲渡は受信機40で受信されること
になる。また第2図から明らかなようにこのアンテナは
軸対称構造をしておシ全周にわたって受信機の数だけマ
ルチビームを形成することが出来る。To + in 
+ 1IIk全て厳密に等しくすることは出来ないがレ
ンズ5を構成する誘電体の比誘電率を6とし、レンズ5
の直径をd1アンテナ列の直径をDとするとき v’T d / Dキ2 とすれば実用上4 + ls + 1mは一定となるこ
とが知られている。
In FIG. 2, it is assumed that radio waves arrive from direction 1. These radio waves are received by antenna elements 21, 22, 23, 24, 25 and circulators 31, 32, 33, 3, respectively.
It passes through 4°35° and is guided to the lens 5. Here, 1t
If + Is + Is is equal for all antenna elements, the radio wave guided to the lens 5 is focused on the terminal 50 of the circulator 30, passes through the circulator 30, and is guided to the receiver 40. Like this 1
The transfer incident from the direction will be received by the receiver 40. Furthermore, as is clear from FIG. 2, this antenna has an axially symmetrical structure and can form multiple beams as many as the number of receivers over the entire circumference. To + in
+ 1IIkAlthough it is not possible to make them all strictly equal, the relative permittivity of the dielectric material composing the lens 5 is set to 6, and the lens 5
It is known that if the diameter of d1 is v'T d /Dki2 where D is the diameter of the antenna array, 4 + ls + 1 m is constant in practice.

R−aRレンズは以上説明したように全方向にマルチビ
ームを形成することの出来るアンテナであるがバックロ
ープが高くな夛やずいという欠点をもっている。その理
由は、第2図において11の方向から入射した電波がア
ンテナ20で受信されサーキュレータ30t−通過しレ
ンズ5の端子50からレンズ5内に伝播される際に端子
50に不整合があると反射波がサーキュレータ30を介
して受信440 K受信されるからである。すなわち、
本来1から入射し九電波のみを受信する受信機40に、
後方の11から入射する電波が受信されることになり、
バックローブが高くなるのである。この欠点を除去する
 □には端子50での不整合を小さくすれば良い。その
ためレンズ5を第1図に示すようにプリント板で構成し
たときし/ズ5とサーキュレータの間を3角形の整合部
分で接続し、極力不整合が生じないように工夫されてい
る。しかしなお不整合は避けられず実験によれば最悪−
10dB程度の反射が観測されている。
As explained above, the R-aR lens is an antenna that can form multi-beams in all directions, but it has the disadvantage of a high back rope and a large number of beams. The reason for this is that when the radio waves incident from the direction 11 in FIG. This is because 440 K waves are received via the circulator 30. That is,
The receiver 40, which originally receives only 9 radio waves entering from 1,
The radio waves coming from the rear 11 will be received,
The back lobe becomes higher. To eliminate this drawback, the mismatch at the terminal 50 can be reduced. For this reason, when the lens 5 is constructed of a printed board as shown in FIG. 1, the lens 5 and the circulator are connected by a triangular matching portion to avoid mismatching as much as possible. However, inconsistency is still unavoidable, and according to experiments, it is the worst.
A reflection of about 10 dB has been observed.

〔発明の目的〕[Purpose of the invention]

本発明は、立起欠点に鑑みてなされたもので、不整合に
よる反射が生じないアンテナを提供することを目的とす
る。
The present invention was made in view of the upright defect, and an object of the present invention is to provide an antenna that does not cause reflection due to mismatch.

〔発明の概要〕[Summary of the invention]

本発明はレンズ5が比較的安価なプリント板構成である
ことに着目し、レンズを2枚用いることによって立起不
整合による反射を除去するものである。
The present invention focuses on the fact that the lens 5 has a relatively inexpensive printed board structure, and uses two lenses to eliminate reflections due to vertical misalignment.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の一構成例を示す。但しアンテナ列、レ
ンズとアンテナ素子との間の結線は一部を示し他は省略
しである。図示されるようにアンテナ素子21からの入
力電波はサーキュレータ31t−通過し3dBカプラ6
1により2分される。2分された電波はそれぞれレンズ
51及び52を通過し3dBカプラ60により加え合さ
れ受信機4oにより受信される。即ち本発明の構成は従
来例のレンズ、を2枚にし3dBカプラによって2枚の
レンズをそれぞれ給電、結合している構造になっており
電気的には従来例と同じく軸対称構造になっているため
、全方向にマルチビームを構成することが出来る。この
アンテナ系が所期の特性を有するための条件の1例は である。
FIG. 3 shows an example of the configuration of the present invention. However, some of the antenna arrays, the connections between the lenses and the antenna elements are shown, and the others are omitted. As shown in the figure, the input radio wave from the antenna element 21 passes through the circulator 31t and passes through the 3dB coupler 6.
It is divided into two by 1. The two divided radio waves pass through lenses 51 and 52, are combined by a 3 dB coupler 60, and are received by a receiver 4o. In other words, the structure of the present invention is such that the conventional lens is made into two lenses, and the two lenses are fed and coupled by a 3 dB coupler, and electrically, it has an axially symmetrical structure like the conventional example. Therefore, multi-beams can be constructed in all directions. An example of the conditions for this antenna system to have desired characteristics is as follows.

C1,ε、:比誘電率、  λ:使用波長、dl、d、
:レンズ直径。
C1, ε,: relative dielectric constant, λ: wavelength used, dl, d,
: Lens diameter.

本発明のこの実施例の動作を第4図を参照して説明する
。第4図は、第3図から主要な部分を抜き出し、簡略化
して示したものである。
The operation of this embodiment of the invention will be described with reference to FIG. FIG. 4 shows the main parts extracted from FIG. 3 in a simplified manner.

アンテナ素子21より入射した電波はサーキュレータ3
1に=通過し3dBカプラ61で2分される。61の出
力においてレンズ51へ入射する電波の方がし/ズ52
へ入射する電波よシも90°位相が遅れているものとす
る(条件I)。2分された電波はレンズ51及びレンズ
52′fr:通過する間に条件の(1) Kよシ位相差
が異なりレンズの出力端501,502においては50
1の出力の方が502の出力よりも90°位相が進む。
The radio waves incident from the antenna element 21 are sent to the circulator 3
1 = passes through and is divided into two by the 3 dB coupler 61. At the output of 61, the radio waves incident on the lens 51 are
It is also assumed that the phase of the radio waves incident on the signal is delayed by 90 degrees (Condition I). The divided radio waves pass through the lens 51 and the lens 52'fr: (1) The phase difference is different from K and the phase difference is 50 at the output ends 501 and 502 of the lens.
The output of 1 leads the output of 502 by 90° in phase.

したがって501と502の出力を3dBカブフロ0で
加え合せるとその出力はサーキュレータ30の方に現れ
無反射終端70の端子には現れない。したがって無損失
でサーキュレータ30を介して受信機40に導かれるこ
とになる。一方アンテナ素子20から入射した電波はレ
ンズ0端子501.502で反射されるが3dBカプラ
60の出力端と501,502までの電気長は等しい(
条件■)のため、反射波は無反射終端70に現れ、受信
機40にtま現れない。
Therefore, when the outputs of 501 and 502 are added together at 3 dB Cubflow 0, the output appears toward the circulator 30 and does not appear at the terminal of the non-reflection termination 70. Therefore, it is guided to the receiver 40 via the circulator 30 without loss. On the other hand, the radio waves incident from the antenna element 20 are reflected by the lens 0 terminals 501 and 502, but the electrical lengths from the output end of the 3 dB coupler 60 to 501 and 502 are equal (
Due to condition (2), the reflected wave appears at the non-reflection termination 70 and does not appear at the receiver 40 until t.

以との説明によシ従来バックローブの高かったF’L−
Anレンズを用いたアンテナを改良しパックロープ全像
くすることが出来ることが分ったが、このままでは前方
に鋭いビームを形成することが出来ない。前方に鋭いビ
ームを形成するためには第2図においてA!! + l
s + 16が前方のアンテナ素子群に対しほぼ一定で
なければならなかった。そのためにはv’T d ’:
s 2 Dである必要があると述べた。
According to the following explanation, F'L-, which had a high back lobe in the past,
It has been found that an antenna using an An lens can be improved to provide a full image of the pack rope, but it is not possible to form a sharp forward beam as is. In order to form a sharp beam forward, press A! in Figure 2. ! +l
s + 16 had to be approximately constant for the front group of antenna elements. For that purpose v'T d':
He said it needs to be s 2 D.

本発明による第3図の構成ではこの関係はどのように変
形されるかを考察する。
Consider how this relationship is modified in the configuration of FIG. 3 according to the present invention.

第2図においてAssは全ての素について一定であるか
ら!、+7.を一定とすればよい。このことはl、  
    !。
In Figure 2, Ass is constant for all elements! , +7. may be kept constant. This is l,
! .

の位相項が一定を意味している。これより0が小さいと
して JT’ d :2 D が得られたものである。同様な考え方を第4図について
適用すれば ・・・・・・ (1) の位相項を一定とすれば良いことになる。そこでJ、d
H+v′T?d 、 == 2dtとおき として(1)式を変形すると となる。立式の位相項を一定とすれば良いからd′た2
D すなわち V”t d+ + v’もd、=4D となり条件■が得られる。このように条件■は前方に鋭
いビームを形成する条件になっている。
This means that the phase term of is constant. Assuming that 0 is smaller than this, JT' d :2 D is obtained. If we apply the same idea to Fig. 4, it will be sufficient to keep the phase term in (1) constant. So J, d
H+v′T? Equation (1) is transformed by assuming that d, == 2dt. It suffices to keep the phase term of the equation constant, so d′ta2
D, that is, V"t d+ + v' also becomes d, = 4D, and condition (2) is obtained. In this way, condition (2) forms a sharp beam forward.

以と述べ九ように第3図の構成のアンテナにおいて条件
(■)(璽) (III) (IV)を満足すれば第2
図で示す従来形では得られなかった低バツクロープ形の
全方向性マルチビームアンテナが得られることになる。
As stated above, if the antenna with the configuration shown in Figure 3 satisfies the conditions (■), (III), and (IV), the second
A low-backdrop omnidirectional multi-beam antenna, which cannot be obtained with the conventional type shown in the figure, can be obtained.

以上の実施例においては3dBカグラに90’カグラを
用いた例について説明したが第5図に示すように180
°カプラを用いても同様の効果が得られる。
In the above embodiment, an example in which a 90' kagura was used as a 3 dB kagura was explained, but as shown in FIG.
A similar effect can be obtained by using a ° coupler.

この場合にはカブ2出力端からレンズ端子間の電気長に
は使用波長の%の差が必要である。またレンズ51とレ
ンズ52の直径d、 、 d、の間にはV′r1d4 
+ v”1 d2 ’::4 Dの条件のみ必要である
In this case, the electrical length between the output end of the turnip 2 and the lens terminal requires a difference of % of the wavelength used. In addition, there is V'r1d4 between the diameters d, , d of the lenses 51 and 52.
+v"1 d2'::4 Only the condition D is necessary.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、バックロープが低い全方P[tのマル
チビームアンテナが得られる。
According to the present invention, it is possible to obtain a multi-beam antenna with all directions P[t having a low back rope.

【図面の簡単な説明】[Brief explanation of drawings]

3図は本発明の一構成例を示す図、第4図は本発明の動
作を説明する図、第5図は本発明の他の実施例を示す図
である。
3 is a diagram showing a configuration example of the present invention, FIG. 4 is a diagram explaining the operation of the present invention, and FIG. 5 is a diagram showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 直径D9円形アンテナアレーと、このアンテナアレーを
構成するアンテナ素子に接続され九サーキュレータと、
このサーキュレータに接続された受信機と、前記サーキ
ュレータに接続された3dBカプラと、比誘電率ε!、
直径d1の第1の1l−aRレンズと、比誘電率ε7、
直径d!の第2のR−aRレンズとを有し、前記3dB
カツラの出力端の1つと第1のR,−JRレンズの端子
間および前記3dBカプラの他の出力端と第2のR−A
Rレンズの端子間をカプラが90°カブ2の場合には等
長の線路で、カプラが1800カプラの場合には使用波
長の4分の1の箒を持つ線路で結び、前記3dBカプラ
の入力端と分離された端子には無反射P:端を接続し、
前記レンズの定数を V嶋d+ + v” x d2:4 Dなる寸法に選定
し、且つカプラが90°カグラの場合にはIv”−@ 
d Hsr’g dl lがほぼ使用波長の2分の1の
奇数倍となる寸法に選定したことを特徴とするR、−A
Rレンズを用いたアンテナ。
[Claims] A circular antenna array with a diameter of D9, and nine circulators connected to antenna elements constituting this antenna array;
A receiver connected to this circulator, a 3 dB coupler connected to the circulator, and a relative dielectric constant ε! ,
a first 1l-aR lens with a diameter d1 and a relative dielectric constant ε7,
Diameter d! and a second R-aR lens of 3 dB.
between one of the output ends of the wig and the terminals of the first R, -JR lens, and between the other output end of the 3dB coupler and the second R-A
If the coupler is a 90° turnip 2, connect the terminals of the R lens with a line of equal length, or if the coupler is an 1800 coupler, connect the terminals of the R lens with a line with a length of 1/4 of the wavelength used, and connect the input of the 3 dB coupler. Non-reflective P: Connect the end to the terminal separated from the end,
When the constant of the lens is selected to be V d+ + v" x d2:4D, and the coupler is a 90° angle, Iv"-@
R, -A characterized in that the dimensions are selected such that d Hsr'g dl l is approximately an odd multiple of half the wavelength used.
Antenna using R lens.
JP6962182A 1982-04-27 1982-04-27 Antenna using r-kr lens Granted JPS58187003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6962182A JPS58187003A (en) 1982-04-27 1982-04-27 Antenna using r-kr lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6962182A JPS58187003A (en) 1982-04-27 1982-04-27 Antenna using r-kr lens

Publications (2)

Publication Number Publication Date
JPS58187003A true JPS58187003A (en) 1983-11-01
JPH0328841B2 JPH0328841B2 (en) 1991-04-22

Family

ID=13408122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6962182A Granted JPS58187003A (en) 1982-04-27 1982-04-27 Antenna using r-kr lens

Country Status (1)

Country Link
JP (1) JPS58187003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495258A (en) * 1994-09-01 1996-02-27 Nicholas L. Muhlhauser Multiple beam antenna system for simultaneously receiving multiple satellite signals
US6087999A (en) * 1994-09-01 2000-07-11 E*Star, Inc. Reflector based dielectric lens antenna system
US6107897A (en) * 1998-01-08 2000-08-22 E*Star, Inc. Orthogonal mode junction (OMJ) for use in antenna system
US6181293B1 (en) * 1998-01-08 2001-01-30 E*Star, Inc. Reflector based dielectric lens antenna system including bifocal lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495258A (en) * 1994-09-01 1996-02-27 Nicholas L. Muhlhauser Multiple beam antenna system for simultaneously receiving multiple satellite signals
US5831582A (en) * 1994-09-01 1998-11-03 Easterisk Star, Inc. Multiple beam antenna system for simultaneously receiving multiple satellite signals
US6087999A (en) * 1994-09-01 2000-07-11 E*Star, Inc. Reflector based dielectric lens antenna system
US6198449B1 (en) 1994-09-01 2001-03-06 E*Star, Inc. Multiple beam antenna system for simultaneously receiving multiple satellite signals
US6107897A (en) * 1998-01-08 2000-08-22 E*Star, Inc. Orthogonal mode junction (OMJ) for use in antenna system
US6181293B1 (en) * 1998-01-08 2001-01-30 E*Star, Inc. Reflector based dielectric lens antenna system including bifocal lens

Also Published As

Publication number Publication date
JPH0328841B2 (en) 1991-04-22

Similar Documents

Publication Publication Date Title
US4258366A (en) Multifrequency broadband polarized horn antenna
CA1260609A (en) Wide bandwidth multiband feed system with polarization diversity
US3392395A (en) Monopulse antenna system providing independent control in a plurality of modes of operation
US4047128A (en) System filter for double frequency utilization
JP2728282B2 (en) Equal power amplifier system for active phase array antenna and method of arranging the same
US4482897A (en) Multibeam segmented reflector antennas
US3803624A (en) Monopulse radar antenna array feed network
US4121220A (en) Flat radar antenna employing circular array of slotted waveguides
US3308468A (en) Monopulse antenna system providing independent control in a plurality of modes of operation
JPS6059801A (en) Transmission or reception system with waveguide antenna output and such antenna output
US3916417A (en) Multifunction array antenna system
US4080605A (en) Multi-beam radio frequency array antenna
US4983987A (en) Antenna
US4630059A (en) Four-port network coupling arrangement for microwave antennas employing monopulse tracking
US4509055A (en) Blockage-free space fed antenna
US3144647A (en) Diversity system
AU601114B2 (en) Angle diversity signal separator using mode conversion
JPS58187003A (en) Antenna using r-kr lens
CA1063235A (en) Endfire-type phased array antenna
GB796915A (en) Improvements in or relating to aerial systems
US4691205A (en) Beam forming network for circularly polarized shaped beam antenna system
GB2191044A (en) Antenna arrangement
US4176322A (en) Radio frequency lens
US4639731A (en) Monopulse feeder for transmitting and receiving radar signals within two mutually separated frequency bands
US3990078A (en) Image element antenna array for a monopulse tracking system for a missile