JPS58182829A - Dry etching device - Google Patents

Dry etching device

Info

Publication number
JPS58182829A
JPS58182829A JP6660182A JP6660182A JPS58182829A JP S58182829 A JPS58182829 A JP S58182829A JP 6660182 A JP6660182 A JP 6660182A JP 6660182 A JP6660182 A JP 6660182A JP S58182829 A JPS58182829 A JP S58182829A
Authority
JP
Japan
Prior art keywords
sample
cathode
support mechanism
etching
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6660182A
Other languages
Japanese (ja)
Inventor
Haruo Okano
晴雄 岡野
Takashi Yamazaki
隆 山崎
Yasuhiro Horiike
靖浩 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP6660182A priority Critical patent/JPS58182829A/en
Publication of JPS58182829A publication Critical patent/JPS58182829A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)

Abstract

PURPOSE:To effectively cool a sample supporting mechanism without reducing the power for supporting the sample and thus contrive to speed up etching without causing resist deterioration, by providing an elastic member of good thermal conductivity which is pressed and pinched by the supporting mechanism and a cathode at the time of contact-fixing the sample on the cathode by the supporting mechanism. CONSTITUTION:The sample 2 is mounted on an insulation film 31 of Mylar or Kapton, etc. on the water-cooled cathode 3. The elastic member 41 constituted of e.g. Si rubber is interposed between the sample supporting mechanism 14 constituted of alumite and the cathode 3 resulting in the mechanical adhesion between the sample 2 and the cathode 3, and simultaneously the supporting mechanism 14 is cooled by the elastic member 41 of good thermal conductivity. By this constitution, the problem of bending during etching and further resist deterioration is completely solved. For the elastic member 41, rubbers are most effective.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、マグネトロン放電?利用したドライエツチン
グ装置の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to magnetron discharge? This paper relates to improvements to the dry etching equipment used.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、集積回路は微細化の一途’kft−とり、最近で
tま最少寸法が1〜2〔μm〕 の超LSIも試作され
るに至っている。このような微細加工には、通常平行平
板型電極?有する反応容器内にCF、等の反応性ガスに
導入し、試料載置の電極に、例えば13.56 (MH
z )の高周波電力r印加することによりグロー放電?
生じせしめ、プラズマ中の正イオン?隘極(高周波電力
印加電極)面上に生じる陰極降下電圧VDCVCよって
加速して、このイオンを試料に垂直に入射させて該試料
ケ物理、化学反応に↓リエッチングする、所謂反応性イ
オンエツチング(ReBctive  IonEtch
ing ; RIE)が用いられているΩしかし、この
平行平板電極に↓るR I Eで)ま、グロー放電の非
常に低いイオン化効率(10−’〜10″″I)故に、
例えばCF”、+H2ガス紮用い7’j810!のエツ
チング速度)ま高々300〜400 (X/min )
テあり、1〔μm〕 厚のS10□倉エツチングするの
に40分以−Lもの時間?要し、′Il産性の上で極め
て不都合であるΩこのfcめ、エツチング速度の高速化
が望まれている。
In recent years, integrated circuits have become increasingly finer, and very large scale integrated circuits with a minimum dimension of 1 to 2 μm have recently been prototyped. Parallel plate type electrodes are usually used for such microfabrication. A reactive gas such as CF, etc. is introduced into a reaction vessel containing 13.56 (MH
Glow discharge by applying high frequency power r of z)?
Positive ions in plasma? The ions are accelerated by the cathode drop voltage VDCVC generated on the surface of the pole (electrode for applying high-frequency power), and are incident perpendicularly to the sample, causing physical and chemical reactions to etch the sample, so-called reactive ion etching ( ReBctive IonEtch
However, due to the very low ionization efficiency (10-'~10''I) of the glow discharge,
For example, etching speed of CF'', +H2 gas using 7'j810!) or at most 300-400 (X/min)
It took more than 40 minutes to etch a 1 [μm] thick S10□kura. Therefore, it is desired to increase the etching speed because Ω is extremely disadvantageous in terms of Il productivity.

これに対し本発明者A!tま、高周波電力印加の陰極下
に永久磁石からなる磁場発生手段ヶ設け、高周波電力に
ふる電界と直交する磁界を形成して電子?(電界)×(
磁界)方向にドリフト運動させ、かつこの電子軌道ケ閉
回路とすることにエリ、電子とガス分子との衝突解離?
促進して放電効率ケ向−ヒさせたマグネトロン放電利用
の)ドライエツチング装置r開発した(特願155 1
7382.1号)。
In contrast, the inventor A! A magnetic field generating means made of a permanent magnet is provided under the cathode to which high-frequency power is applied, and a magnetic field that is orthogonal to the electric field exerted by the high-frequency power is formed to generate electrons. (electric field)×(
Is it possible to cause the electrons to drift in the direction of the magnetic field, and to make this electron orbit a closed circuit?Is it possible to dissociate the electrons by collision with gas molecules?
Developed a dry etching device (utilizing magnetron discharge) which accelerated discharge efficiency and increased discharge efficiency (Patent Application No. 155 1).
7382.1).

第1図1よ−1−記マグネトロン放1!會利用したドラ
イエツチング装置fk示す概略構成図である○図中1は
接地された真空容器であり、この真空容器1tま試料2
會載置した陰極3により、永久磁石4からなる磁場発生
手段およびその駆動系5.6が収められている高真空の
領域と、試料2が置かれているエツチング領域とに分離
されている。高真空領域は前記磁石4による放電ケ防止
するため、排気口7ケ介して、例えば拡散ポンプ系にエ
リI X l O’−’(Torr)  以下゛に排気
されており、エツチング室との真空的連結は電磁弁8に
より駆動される仕切弁9により行われ、実際のエツチン
グ時に)まこの仕切弁9は閉じらね、エツチング室は排
気口10’i介して、例えばメカニカルブースタ十ロー
タリポンプ系により排気される。また、放電はN−8間
隙上のマグネトロン放電11と周辺のグロー放電12と
からなり、エツチングは前記永久磁石4の1方向走査(
この例でtま、駆動モータ13による支持棒6の回転運
動が歯車5にエリ直線運動へ移ることにより紙面垂直方
向へ動くものとする)に追随したマグネトqン放電11
1jt試料2上で走−青しながら行われ、均一性の良い
エツチングが達成されゐ。さらに、エツチング中試料2
は、機械的支持機構14により陰極3へ密着させられ、
水冷機構15にエリ冷却され、これにより試料2の温度
−1,,1が防止されるQまた、エツチング終了時には
試料2は前記機械的支持機構14にガイドされた麦な、
速やかに陰極3を離れ、逆に次にエツチングされる試料
1ま同様にして陰極3にレットされる0なお、図中16
は高周波vL源、17はマツチングボックス、1Bは0
リングシールr示し、ま次19.〜,22はそれぞれ弗
素樹脂等からなる絶縁物を示している0 第2図はこの装置にエリC1(Fsk用いてS10゜?
エツチングしたときのエツチング速度、Vd。
Figure 1 1-1- Magnetron release 1! This is a schematic configuration diagram showing the dry etching apparatus fk used in the meeting. ○In the figure, 1 is a grounded vacuum vessel, and this vacuum vessel 1 ton is used for sample 2.
A cathode 3 placed in the chamber separates the area into a high vacuum area in which a magnetic field generating means consisting of a permanent magnet 4 and its drive system 5.6 are housed, and an etching area in which the sample 2 is placed. In order to prevent the discharge caused by the magnet 4, the high vacuum region is evacuated to, for example, a diffusion pump system through seven exhaust ports to a temperature of less than IXlO'-' (Torr). The connection is made by a gate valve 9 driven by a solenoid valve 8; during actual etching, the gate valve 9 is not closed, and the etching chamber is connected via an exhaust port 10'i to, for example, a mechanical booster or a rotary pump system. Exhausted by. Further, the discharge consists of a magnetron discharge 11 on the N-8 gap and a glow discharge 12 in the periphery, and etching is performed by scanning the permanent magnet 4 in one direction (
In this example, it is assumed that the rotational movement of the support rod 6 by the drive motor 13 causes the gear 5 to move in a direction perpendicular to the plane of the paper as a result of the linear movement of the gear 5).
Etching was performed on sample 2 while scanning, and etching with good uniformity was achieved. Furthermore, sample 2 during etching
is brought into close contact with the cathode 3 by a mechanical support mechanism 14,
The sample 2 is cooled down by the water cooling mechanism 15, thereby preventing the sample 2 from reaching a temperature of -1, 1. Also, at the end of etching, the sample 2 is guided by the mechanical support mechanism 14.
It quickly leaves the cathode 3, and conversely, the sample 1 to be etched next is also let into the cathode 3 in the same way.
is a high frequency vL source, 17 is a matching box, 1B is 0
Ring seal r shown, next 19. ~, 22 indicate insulators made of fluororesin, etc.0 Figure 2 shows this device using Eri C1 (Fsk and S10°?
Etching speed when etching, Vd.

?試料表面上の磁場の強さに対して示し九図である。5
tO2のエツチング速度はVdQの急激な減少にも拘ら
ず磁場の増加とともに大きくなり、特に200(G)近
辺で、@1.に速くなることが判明L fc−oなお、
CHFB<7)圧力に: 0.05 Torr、 rf
 電力密度?r 1.6 w、”CIAとした0次に、
イオン化効率?試料表面への入射イオン電流rこ置き換
え、通常のRIEに比較してどの程度イオン電流が増加
したことになるのか倉見積ってみる0イオン電流の値倉
rf  電力@度、VdC工りおおよその値?算出して
みると、1000CG〕 の磁場がある時イオン電流密
度tまrf  電力密度1.6 (W/ctA ) 。
? Figure 9 shows the strength of the magnetic field on the sample surface. 5
The etching rate of tO2 increases with increasing magnetic field despite the rapid decrease of VdQ, especially around 200 (G) @1. It turns out that L fc-o becomes faster.
CHFB<7) to pressure: 0.05 Torr, rf
Power density? r 1.6 w, “0th order as CIA,
Ionization efficiency? Let's estimate how much the ion current increases compared to normal RIE by replacing the incident ion current r on the sample surface.The value of 0 ion current.The approximate value of rf, power @ degree, VdC processing. ? When calculated, when there is a magnetic field of 1000 CG], the ion current density tmarf power density is 1.6 (W/ctA).

Vdc=200(V)として1 ×10”(lono/
cnt−sec)となる。一方、磁場がない時にはVd
C= 17oo(v)としてイオン電流密度)まI X
 1016(lona/c4−sec)であるから、エ
ツチング速度として)ま約10倍相度増加が見込まれる
こと任なる0実際、磁場が1000(G)  の時のプ
ラズマ静止状態でのエツチング速度tま〜3〔μrnA
nin〕であるので、磁場【用いることしより放電のイ
オン化効率r上げ、試料への入射イオン電流ケ多く引出
すことに↓り高速のエツチングが達成されたことになる
。一方、このイオン電流の増加−まエツチング中の試料
の温度上昇ヶもたらす最大原因であり、実際試料ケ陰極
に載置しただけでエツチングを行うと温度−に列による
レジストの劣化が著しく実用化の大きな障壁となるもの
であるが、例えば静電チャック手段或い)ま前記第1図
に示した様な機楯的手段により試料2と水冷された陰極
3との熱的接触?充分とることにより、上述のレジスト
の劣化もなく正常にエツチングされる。
1 × 10” (lono/
cnt-sec). On the other hand, when there is no magnetic field, Vd
Ion current density as C = 17oo(v)) or IX
1016 (lona/c4-sec), so it is expected that the etching rate will increase by a factor of about 10. In fact, the etching rate up to t when the magnetic field is 1000 (G) in a static plasma state. ~3 [μrnA
nin], therefore, by using a magnetic field, the ionization efficiency of the discharge is increased, and a large amount of ion current incident on the sample is drawn out, thereby achieving high-speed etching. On the other hand, this increase in ion current is the biggest cause of the rise in temperature of the sample during etching, and in fact, if the sample is simply placed on the cathode and then etched, the resist deteriorates significantly due to temperature changes, making it difficult to put it into practical use. Although this poses a major barrier, thermal contact between the sample 2 and the water-cooled cathode 3 by, for example, electrostatic chuck means or mechanical means as shown in FIG. By taking a sufficient amount of etching, the etching can be performed normally without the above-mentioned deterioration of the resist.

しかし、静電チャック手段はその構造が複雑であり、か
っ〜1 (KV)程度の高電圧r印加するためデバイス
への損傷対策も必要となる等未解決の問題が多い。一方
、前記第1図に示した機械的手段による方法)よ、非常
に簡便である反面、以下に説明する様に信頼性および再
現性に乏しいのが現状である。
However, the electrostatic chuck means has a complicated structure and has many unresolved problems, such as the need to take measures against damage to the device since it applies a high voltage r of about 1 KV. On the other hand, although the method using mechanical means shown in FIG. 1 is very simple, it currently lacks reliability and reproducibility as explained below.

第3図1よ前記第1図における試料支持部r拡大し声で
示す断面図である。陰極3上のマイラ等の絶縁膜31と
機械的な試料支持機構14との間には、試料2?陰極3
へ均一な力で押さえ付けるために間隙32が存在する。
FIG. 3 is an enlarged cross-sectional view of the sample support portion r in FIG. 1, shown in FIG. The sample 2? Cathode 3
A gap 32 exists in order to press down with uniform force.

すなわち、この間隙部分32は冷却されておらず、この
ま筐エツチング?行うと第4図に示しfc様に、試料支
持機構14の温度上昇による熱歪の^めに支持機構14
が次第に湾曲し、従って試料支持機能?果たさなくなる
。また、この湾曲の進行)ま前記間隙部分32へのプラ
ズマの回り込み33により極めて速く、瞬時的に生じる
ことが判明した。以上説明した間隙の程度は、試料2の
厚さにより犬きく左右され湾曲までの時間や程度も様々
である。しかし、前述した様に、試料2を均一な力で陰
極3に押さえ付けるという機能?考えると、前記間隙3
2の存在奪ま避けることができないものである。
In other words, this gap portion 32 is not cooled and the casing is etched right now. When this is done, as shown in FIG.
is gradually curved and therefore the sample support function? It will not be fulfilled. Furthermore, it has been found that this progression of curvature occurs extremely quickly and instantaneously due to the wraparound 33 of the plasma into the gap portion 32. The degree of the gap explained above is greatly influenced by the thickness of the sample 2, and the time and degree of bending also vary. However, as mentioned above, the function of pressing sample 2 against cathode 3 with uniform force? Considering, the gap 3
It is something that cannot be avoided because the existence of 2 is taken away.

〔発明の目的〕[Purpose of the invention]

本発明の目的)よ、試料支持機構VCより試料?支持す
る力?おとすことなく試料支持機構?効果的tこ冷却す
ることができ、レジスト劣化等?招くことなく、エツチ
ングの高速化tは7Jλり得るドライエツチング装置ケ
提供することにある。
(objective of the present invention), sample from sample support mechanism VC? Power to support? Sample support mechanism without slowing down? Can it be effectively cooled and resist deterioration etc.? The object of the present invention is to provide a dry etching apparatus that can perform etching at a speed of 7 Jλ without causing problems.

〔発明の概要〕[Summary of the invention]

本発明は、高周波電力が印加されると共にその表面に試
料が載置される陰極お↓び該陰極の表面に対向配置され
た陽極ケ備えた真空容器と、この真空容器内に反応ガス
を導入する手段と、十記隙極の裏面に設けられ閉ループ
状の磁極間隙に↓り上記陰極の表面上に磁場を印加する
マグネットと、このマグネット紮上記高周波電力に↓る
電界方向と直交する方向に走査する手段と、−h記マグ
ネットが配置された空間ケ上記試料が配置される空間か
ら遮蔽する手段と、上記試料r支持し咳試料ケ上記陰極
の表面に押し付は該陰極表面に密着せしめる試料支持機
構と葡具備し、前記各電極間に放電プラズマ?生成する
と共にマグネトロン放電?生起して前記試料iエツチン
グするドライエツチング装置において、前記陰極或いは
支持機構の少なくとも一方に被着され、前記支持機構に
よる試料の陰極への密着固定時に支持機構と陰極とで押
圧挾持される良熱伝導性の弾性部材【設けたものである
The present invention consists of a vacuum vessel equipped with a cathode to which high-frequency power is applied and a sample placed on the surface of the cathode, and an anode placed opposite to the surface of the cathode, and a reaction gas introduced into the vacuum vessel. a magnet provided on the back surface of the ten-gap pole for applying a magnetic field onto the surface of the cathode through the closed-loop magnetic pole gap; means for scanning; - means for shielding the space in which the magnet is placed from the space in which the sample is placed; and means for supporting the sample and pressing the cough sample against the surface of the cathode so as to bring it into close contact with the surface of the cathode. Equipped with a sample support mechanism and a device, and a discharge plasma between each of the electrodes. Magnetron discharge along with generation? In a dry etching apparatus for etching the sample, a good heat source is applied to at least one of the cathode or the support mechanism, and is pressed and clamped between the support mechanism and the cathode when the support mechanism tightly fixes the sample to the cathode. A conductive elastic member [provided].

〔発明の効果〕〔Effect of the invention〕

本発明によれば、良熱伝導性の弾性部材4ノいたことに
エリ、試料ケ陰極表面に十分大きな力で押し刊けること
ができ、さらに弾性部材?介して試料支持機構葡効果的
に冷却することができるoしたがって、レジストの劣化
等會招くことなく、高速エツチング葡行うことができる
According to the present invention, it is possible to press the sample against the cathode surface with a sufficiently large force by using four elastic members with good thermal conductivity, and furthermore, the elastic member can be pressed against the surface of the cathode with a sufficiently large force. The sample support mechanism can be effectively cooled through the sample support mechanism. Therefore, high-speed etching can be performed without causing deterioration of the resist.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の一実施例の要部構成會示す断面図であ
る。なお、前記第3図と同一部分にIt同同一符号打付
て、その詳しい説明は省略する。試料21ま、水冷され
た陰極3上のマイラセ力フロトン等の絶縁膜3ノ上に載
置されている。
FIG. 5 is a sectional view showing the main structure of an embodiment of the present invention. It should be noted that the same parts as in FIG. 3 are given the same reference numerals as those in FIG. A sample 21 is placed on an insulating film 3 made of mylacetic fluoroton or the like on a water-cooled cathode 3.

さらに、アルマイト等から構成された試料支持機構14
と陰極3との間には、例えば、シリコンラバからなる弾
性部材4ノが介在され、試料2と陰極3とが機械的に密
着されると同時に、良熱伝導性の弾性部材4ノに↓す、
前記支持機構14も冷却されるものとなっている。
Furthermore, a sample support mechanism 14 made of alumite or the like
An elastic member 4 made of, for example, silicone rubber is interposed between and the cathode 3, so that the sample 2 and the cathode 3 are mechanically bonded, and at the same time, the elastic member 4 with good thermal conductivity is vinegar,
The support mechanism 14 is also cooled.

このような構成であれば、前記した様なエツチング中の
湾曲、ひいてはレジスト劣化の問題は完全に解決される
。前記弾性部材41とじては、ゴム系のものが最も効果
的である。例えばシリコンラバヶ使用し、M6図に示す
如く銅線部分の面積全体に、この弾性部拐41’f貼り
付けた時の熱抵抗R忙!′l算し′Cみると、以下の様
になる。シリコンラバの熱伝導率 P ; 0.043 CVJ/crd、 ℃〕、厚’j
’ t : 0.05 (傭) *面積S;520〔c
7A〕とすると R二t/PS =:= 0.0023 C℃/W) となり、仮に1.(KW)のrf  電力を印加しても
温度−L昇が2〔℃〕 と極めて良好に冷却されること
になる0従って、試料支持機構14が湾曲することなく
、試料2の支持が行われる。ゴム系の弾・曲物が優れて
いる理由は、その伸縮の弾性率が極めて小さいことにあ
り、従って前記熱3図で示した間隙32内に挿入し、機
械的におさえ込むことによって、この間隙32?完全に
なくシ、かつ試料2と陰極3との熱的コンタクトを実現
させることになる。また、本実施例によれば、支持機4
%14が充分冷却されているために、該支持機構14の
上にマイ2等の絶縁膜ケ貼りつけることも可能となり、
エツチング中における支持機構14からの金属汚染を防
止することもできる。
With this structure, the problems of curvature during etching and resist deterioration as described above can be completely solved. As for the elastic member 41, a rubber-based material is most effective. For example, when using silicone rubber and pasting this elastic part 41'f over the entire area of the copper wire part as shown in Figure M6, the thermal resistance is R! When we calculate 'l' and look at 'C, we get the following. Thermal conductivity P of silicon rubber; 0.043 CVJ/crd, °C], thickness 'j
't: 0.05 (rental) *Area S; 520 [c
7A], then R2t/PS =:= 0.0023 C°C/W), and if 1. Even if RF power of (KW) is applied, the temperature -L rises by 2 [°C], resulting in extremely good cooling. Therefore, the sample 2 is supported without the sample support mechanism 14 being bent. . The reason why rubber bullets and curved objects are excellent is that their elastic modulus of expansion and contraction is extremely small. Gap 32? This results in complete thermal contact between the sample 2 and the cathode 3. Further, according to this embodiment, the support machine 4
% 14 is sufficiently cooled, it is also possible to paste an insulating film such as My 2 on the support mechanism 14,
It is also possible to prevent metal contamination from the support mechanism 14 during etching.

なお、本発明は上述t7た実施例に限定されるもq〕で
はなく、その要旨?逸脱しない範囲で、種々変形して実
施することができる。例えば、前記弾性部材41として
はシリコンラバにISU ルものではなく、良熱伝導性
で弾性のあるものであればよい。また、弾性部材41の
被着部位は第7図(a) VC示す如く試料支持機構1
4上に限るもので11なく、同図(b)に示す如く陰極
3上(詳しくは絶縁膜31上)であっても工い。さらに
、弾性部材4ノは陰極3上の全面に被着されたものであ
ってもよい。
Note that the present invention is not limited to the above-mentioned embodiments, but is limited to the gist thereof. Various modifications can be made without departing from the scope. For example, the elastic member 41 is not limited to silicone rubber, but may be any material that has good thermal conductivity and elasticity. In addition, the elastic member 41 is attached to the sample support mechanism 1 as shown in FIG. 7(a) VC.
The process is not limited to 4 and 11, but may be applied to the cathode 3 (specifically, the insulating film 31) as shown in FIG. 4(b). Furthermore, the elastic member 4 may be applied to the entire surface of the cathode 3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1まマグネトロン放電會利用したドライエツチン
グ装置を示す概略構成図、第2図乃至起1図はそれぞれ
上記装置の作用ヶ説明するためのもので第2図はSIO
□ケエッチングしたときのエツチング速度お↓びVdc
と試料表面上の磁界との関係ケ示す特性図、餓3図お工
び第4図は試料支持機構部の要部構成葡示す断面図、第
5因1ま本発明の一実施例の要部構成ケ示す断面図、第
6図は」−記実施例の作用ケ説明する尺めの図、第7図
(a) r (b)は変形例ケ説明する友めの断面図で
ある。 J・・・^空容器、2・・・試料、3・・・陰極、4・
・・永久磁石、5・・・歯車、6・・・支持棒、7.1
0・・・排気[−1,8・・電磁弁、9・・・仕切弁、
1)・・・マグネトロン放電、12・°・グロー放電、
13・・・モータ、14・・・試料支持機構、15・・
・水冷機構、16・・・高周波wL源、ノア・・・マツ
チングボックス、1B・・・Oリングシール、19〜2
2・・・絶縁物、31・・・絶に膜、32・・・間隙、
4ノ・・・弾性部材。
Fig. 1 is a schematic configuration diagram showing a dry etching apparatus using a magnetron discharge chamber, and Fig. 2 to Fig. 1 are for explaining the operation of the above-mentioned apparatus.
□Etching speed and Vdc when etching
Figure 4 is a cross-sectional view showing the main parts of the sample support mechanism, and the fifth factor 1 is the main points of an embodiment of the present invention. 6 is a sectional view showing the structure of the parts, FIG. 6 is a scaled view illustrating the operation of the embodiment, and FIGS. 7(a) and 7(b) are sectional views illustrating a modified example. J...^ Empty container, 2... Sample, 3... Cathode, 4...
...Permanent magnet, 5...Gear, 6...Support rod, 7.1
0... Exhaust [-1, 8... Solenoid valve, 9... Gate valve,
1)...Magnetron discharge, 12° glow discharge,
13...Motor, 14...Sample support mechanism, 15...
・Water cooling mechanism, 16...High frequency wL source, Noah...Matching box, 1B...O ring seal, 19-2
2...Insulator, 31...Absolutely film, 32...Gap,
4. Elastic member.

Claims (1)

【特許請求の範囲】[Claims] 高周波電力が印加されると共にその表面に試料が載置さ
れる陰極お:び該陰極の表面に対向配置され九陽極を備
えt真空容器と、この真空容器内に反応ガス?導入する
手段と、上記陰極の裏面に設けられ閉ループ状の磁極間
隙により上記陰極の表面上に磁場?印加するマグネット
と、このマグネット?上記高周波電力による電界方向と
直交する方向に走査する手段と、上記マグネットが配置
され皮空間?上記試料が配置される空間から遮蔽する手
段と、上記試料?支持し該試料?上記陰極の表面に押し
付は該陰極表面に密着せしめる試料支持機構と?具備し
、前記各電極間に放電プラズマ?生成すると共にマグネ
トロン放電?生起して前記試料?エツチングするドライ
エツチング装置において、前記陰極酸いは支持機構の少
なくとも一方に被着され、前記支持機構による試料の陰
極への密着固定時に支持機構と陰極とで押圧挾持される
良熱伝導性の弾性部材葡設けてなること?特徴とするド
ライエツチング装置。
A vacuum vessel is provided with a cathode to which a high frequency power is applied and a sample is placed on the surface thereof, and nine anodes disposed opposite to the surface of the cathode, and a reactant gas inside the vacuum vessel. A magnetic field is generated on the surface of the cathode by a closed loop magnetic pole gap provided on the back surface of the cathode. The magnet to be applied and this magnet? Means for scanning in a direction perpendicular to the direction of the electric field generated by the high-frequency power, and a skin space in which the magnet is arranged? Means for shielding the sample from the space in which it is placed, and the sample? Support the sample? Is the sample support mechanism that presses against the surface of the cathode and brings it into close contact with the surface of the cathode? Equipped with discharge plasma between each electrode? Magnetron discharge along with generation? Said sample occurring? In a dry etching apparatus for etching, an elastic material having good thermal conductivity is applied to at least one of the cathode acid or the support mechanism, and is pressed and clamped between the support mechanism and the cathode when the support mechanism tightly fixes the sample to the cathode. Is it possible to set up a component? Dry etching equipment with special features.
JP6660182A 1982-04-21 1982-04-21 Dry etching device Pending JPS58182829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6660182A JPS58182829A (en) 1982-04-21 1982-04-21 Dry etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6660182A JPS58182829A (en) 1982-04-21 1982-04-21 Dry etching device

Publications (1)

Publication Number Publication Date
JPS58182829A true JPS58182829A (en) 1983-10-25

Family

ID=13320595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6660182A Pending JPS58182829A (en) 1982-04-21 1982-04-21 Dry etching device

Country Status (1)

Country Link
JP (1) JPS58182829A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332932A (en) * 1986-03-28 1988-02-12 Toshiba Corp Dry etching
JPS63237530A (en) * 1987-03-26 1988-10-04 Toshiba Corp Dry etching
US4931135A (en) * 1987-12-25 1990-06-05 Tokyo Electron Limited Etching method and etching apparatus
DE4115627C1 (en) * 1991-05-14 1992-07-02 Webasto Ag Fahrzeugtechnik, 8035 Stockdorf, De Slipstream deflector for car roof - is longitudinally slidable on sun roof cover such that it is brought into active position on cover opening
JPH04356921A (en) * 1991-06-03 1992-12-10 Fujitsu Ltd Wafer holding disk in dry etching apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332932A (en) * 1986-03-28 1988-02-12 Toshiba Corp Dry etching
JPS63237530A (en) * 1987-03-26 1988-10-04 Toshiba Corp Dry etching
US4931135A (en) * 1987-12-25 1990-06-05 Tokyo Electron Limited Etching method and etching apparatus
DE4115627C1 (en) * 1991-05-14 1992-07-02 Webasto Ag Fahrzeugtechnik, 8035 Stockdorf, De Slipstream deflector for car roof - is longitudinally slidable on sun roof cover such that it is brought into active position on cover opening
JPH04356921A (en) * 1991-06-03 1992-12-10 Fujitsu Ltd Wafer holding disk in dry etching apparatus

Similar Documents

Publication Publication Date Title
US4431473A (en) RIE Apparatus utilizing a shielded magnetron to enhance etching
US5255153A (en) Electrostatic chuck and plasma apparatus equipped therewith
EP0346131A2 (en) Dry etching apparatus
US4999320A (en) Method for suppressing ionization avalanches in a helium wafer cooling assembly
JPS58182829A (en) Dry etching device
JPS62235484A (en) Thin film device
JPH08319588A (en) Plasma etching device
JPS5812346B2 (en) plasma etching equipment
JPH0518908B2 (en)
JPS5848421A (en) Dry etching device
JPH0457091B2 (en)
JPH0578171B2 (en)
JPH0473288B2 (en)
JP3077144B2 (en) Sample holding device
JPS5913327A (en) Dry etching device
JPS6276627A (en) Dry etching device
JPH05144773A (en) Plasma etching apparatus
JPH09321030A (en) Microwave plasma treatment apparatus
JPS5853832A (en) Plasma etching device
JPH01183123A (en) Plasma etching device
JP2990838B2 (en) Dry etching equipment
JPS63237529A (en) Dry etching device
JPH0530301B2 (en)
JPS6342707B2 (en)
JP2606551B2 (en) Neutral beam etching equipment