JPS58181114A - Controller for running direction of unattended running vehicle - Google Patents

Controller for running direction of unattended running vehicle

Info

Publication number
JPS58181114A
JPS58181114A JP57065138A JP6513882A JPS58181114A JP S58181114 A JPS58181114 A JP S58181114A JP 57065138 A JP57065138 A JP 57065138A JP 6513882 A JP6513882 A JP 6513882A JP S58181114 A JPS58181114 A JP S58181114A
Authority
JP
Japan
Prior art keywords
torquer
signal
turning
unmanned vehicle
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57065138A
Other languages
Japanese (ja)
Inventor
Hisashi Kato
恒 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57065138A priority Critical patent/JPS58181114A/en
Publication of JPS58181114A publication Critical patent/JPS58181114A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Steering Controls (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To run an unattended running vehicle automatically with a high precision in a wide range, by using a rate integral gyro provided with a torquer and operating the rate integral gyro with a closed loop when the vehicle is turned and using directly the direction detecting output when it goes straight. CONSTITUTION:When the unattended running vehicle reaches a turning point, a closed loop for feedback to a torquer 18 is constituted by a switching signal Si2 from a central controller, and the signal passing through the torquer 18 is converted to an azimuth signal proportional to the angle of turning through an integration circuit 23, and turning is controlled on a basis of this signal until it coincides with a prescribed angle of turning. When straight running is controlled, a switch circuit 21 is used to open the closed loop by a switching signal Si1 from the central controller, and the connection to the torquer 18 is broken, and the output obtained by subjecting the output of a rate integral gyro 11 to amplification and modulation is used for the control of straight running as an output signal S0 directly.

Description

【発明の詳細な説明】 本発明は、工場内の荷物搬送用、又は自動走行機能を有
する省力化装置尋に用いて好適な無人走行車の走行方位
制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a running direction control device for an unmanned vehicle suitable for use in transporting cargo within a factory or as a labor-saving device having an automatic driving function.

無人走行車に走行距離検出手段例えば車輪回転数の検出
機構と、走行方位角検出手段例えばジャイロ装置を具備
せしめれば、走行距離情報と走行方位角情報を組み合わ
せることになり所望の走行経路の情報を得ることかでき
、誘導を線あるいは光学反射テープ等の特別なガイドウ
ェイを敷設するとと々く当該無人走行車を自動走行させ
ることができる。
If an unmanned vehicle is equipped with a traveling distance detecting means, such as a wheel rotation speed detection mechanism, and a traveling azimuth detecting means, such as a gyro device, the traveling distance information and the traveling azimuth information are combined, and information on a desired traveling route can be obtained. As soon as a special guideway such as a line or optical reflective tape is installed, the unmanned vehicle can automatically run.

ところで、上記走行方位角検出手段であるジャイロには
、二自由度のいわゆるフリージャイロ又は−自由度のレ
ートジャイロを積分処理する形式のものを用いることが
できるが、共に高精度な方位検出が困難なこと及び検出
範囲に制限がある点等が前記無人走行車の実用化に障害
となっていた。
By the way, the gyro used as the means for detecting the traveling azimuth angle can be a so-called free gyro with two degrees of freedom or a type that performs integral processing on a rate gyro with - degrees of freedom, but in both cases it is difficult to detect the azimuth with high precision. This and the fact that the detection range is limited have been obstacles to the practical use of unmanned vehicles.

本発明は、係る従来のものの欠点を除去するためになさ
れたもので、走行方位検出手段としてトルカを備えたレ
ート積分ジャイロを用い、無人走行車が旋回点に達した
時には制御回路によって上記レート積分ジャイロを閉ル
ープ動作させる一方、直進走行制御時には、上記閉ルー
プを開放してレート積分ジャイロの方位検出出力を直接
利用することとし、これらによって無人走行車の走行方
位を、高梢度かつ広範囲に検出し制御することができる
走行方位制御装置を提供せんとするものである。
The present invention was made in order to eliminate the drawbacks of the conventional ones, and uses a rate integrating gyro equipped with a torquer as a traveling direction detecting means, and when an unmanned vehicle reaches a turning point, a control circuit performs the rate integrating gyro. While the gyro operates in a closed loop, during straight-ahead driving control, the closed loop is opened and the azimuth detection output of the rate-integrating gyro is directly used.Thus, the azimuth of the unmanned vehicle can be detected with high precision and over a wide range. It is an object of the present invention to provide a traveling direction control device that can control the vehicle direction.

以下、本発明を図示笑施例に基いて詳細に説明する。先
ず、第1図は無人走行車の一使用態様における走行経路
の説明図で、図において、(1)は無人走行車、EIt
、〜St4 は無人走行車(1)の走行目的地となるス
テーションを示し、例えば工場内であれば、工作及び組
立等のワークステーションに該当し、各ステーション間
を無人走行車(1)が荷物を積載して自動走行するよう
になされている。また、同図中81〜e8は無人走行車
(1)の走行経路の画線要素(以下パスと称する)を示
し、■、〜■4は無人走行車(1)の旋回点を表わす。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments. First, FIG. 1 is an explanatory diagram of a driving route in one usage mode of an unmanned vehicle. In the figure, (1) is an unmanned vehicle, EIt
, ~St4 indicates the station where the unmanned vehicle (1) travels. For example, if it is in a factory, it corresponds to a work station for machining and assembly, and the unmanned vehicle (1) moves cargo between each station. It is designed to be loaded with fuel and run automatically. Further, in the same figure, 81 to e8 indicate drawing line elements (hereinafter referred to as paths) of the driving route of the unmanned vehicle (1), and 2 and 4 indicate turning points of the unmanned vehicle (1).

第1図において、無人走行車(1)が例えばステーショ
ン8t、の出発点VsからステーションSt4の目標点
Vf iで走行せんとするときは、パスe1→e3→e
5→e8を通り、旋回点■4、v2  で所定の角度だ
け旋回するような一つの走行経路を想定することができ
る。係る走行経路の場合、パス上を走行する直線走行時
と旋回点での旋回時では、方位検出に要求されるダイナ
ミックレンジが大きく異々す、通常のジャイロ例えばフ
リージャイロを用いただけでは検出精度に問題があり、
本発明は係る事情に対応すべくなされたもので、後述す
る構成を備えている。
In FIG. 1, when the unmanned vehicle (1) wants to travel from the starting point Vs of station 8t to the target point Vf i of station St4, the path e1→e3→e
One traveling route can be assumed in which the vehicle passes through 5→e8 and turns by a predetermined angle at the turning point 4, v2. In the case of such a driving route, the dynamic range required for direction detection is greatly different when traveling in a straight line on a path and when turning at a turning point.If only a normal gyro, such as a free gyro, is used, the detection accuracy will be insufficient. There is a problem,
The present invention has been made in order to cope with such circumstances, and includes a configuration described below.

次に無人走行車(1)の構造について簡単に説明すると
、第2図は無人走行車(1)の平面概略図で、図におい
て、(2)は駆動車輪、(8)はキャスター輪であり、
駆動モータ(4)が上記駆動車輪(2)を駆動する一億
装置(7)に自動走行に必要な各稚悄゛報が格納される
ようになされている。また(8)、(9)は駆動モータ
の運転に要するバッテリとサーボアンプである。
Next, to briefly explain the structure of the unmanned vehicle (1), Figure 2 is a schematic plan view of the unmanned vehicle (1). In the figure, (2) is the drive wheel, and (8) is the caster wheel. ,
A device (7) through which a drive motor (4) drives the drive wheels (2) is configured to store various information necessary for automatic driving. Further, (8) and (9) are a battery and a servo amplifier required to operate the drive motor.

そして、本発明に係る走行方位制御装置(10)はレー
ト積分ジャイロα1)と制御回路(121とから成り無
人走行車(1)の中央部近傍に載置され中央制御装置(
6)に接続されている。
The traveling direction control device (10) according to the present invention includes a rate integrating gyro α1) and a control circuit (121), and is mounted near the center of the unmanned vehicle (1), and is mounted on a central control device (121).
6).

斜上のような駆動系を無人走行車(]、)の走行方向に
対して左右対称に独立して具備せしめれば、例えば第1
図における旋回点v1、v2で駆動車輪(2)を等曽遊
回転せしめることにより位置を駆動することなく方位の
み変えるPIT請定点旋回が可能となり狭少な場所での
走行や走行制御に有利な手段となる。尚、一般の円弧状
軌跡を描く旋回方法であっても本発明の利用を妨けるも
のではない。
For example, if a diagonally upward drive system is provided independently and symmetrically with respect to the traveling direction of the unmanned vehicle (),
By rotating the drive wheels (2) equilaterally at the turning points v1 and v2 in the figure, it is possible to perform PIT turning, which changes only the direction without driving the position, which is an advantageous means for traveling in narrow spaces and controlling traveling. becomes. Incidentally, even if the turning method draws a general arcuate trajectory, the present invention can be utilized.

しかして第3図は本発明の一構成費素であるレート積分
ジャイロ(11)の原理を説明する図で、図においてず
IB)はロータ、04)は固定ジンバル、05)は可動
ジンバル、(16)は粘性ダンピング機構、またA、は
けロータ(1B)の回転軸に一致するスピン軸、A2は
入力軸、A3は出力軸であって出力軸Aうには出力角θ
を検出するピックオフ(17)と出力軸A3を′1気的
に駆動できるトルカ(18)とが係合されている。そし
て、入力軸A2回りに入力角ψが作用すると、粘 5− 性ダンピング機構06)の働きにより入力角ψに比例し
た出力角θが出力細則りに生じピンクオフ(tv)#1
これを検出するようになっている。
FIG. 3 is a diagram explaining the principle of the rate-integrating gyro (11), which is one component of the present invention. In the figure, 04) is the rotor, 04) is the fixed gimbal, 05) is the movable gimbal, ( 16) is a viscous damping mechanism, A is a spin shaft that coincides with the rotation axis of the brush rotor (1B), A2 is an input shaft, A3 is an output shaft, and the output shaft A has an output angle θ.
A pickoff (17) that detects the output shaft A3 is engaged with a torquer (18) that can drive the output shaft A3 in an instant. Then, when the input angle ψ acts around the input shaft A2, an output angle θ proportional to the input angle ψ is generated by the action of the viscosity damping mechanism 06) according to the output rules.
It is designed to detect this.

ところで一般にレート積分ジャイロでは精度よく検出で
きる入力角ψの範囲は±5.6歴程度に制限される。そ
のため、ピックオフ(1rりからの信号をトルカ(18
)にフィードバックし、出力軸A、に出力角θに応じた
逆回転を与えれば、入力角ψが大きくなってもレート積
分ジャイロは再平衡しようとするので、事実上許容入力
角範囲は無限化することができる。この場合、ピックオ
フ07)からの信号は入力角速度に比例した世になる。
By the way, in general, the range of input angle ψ that can be detected with high accuracy in a rate integrating gyro is limited to approximately ±5.6 history. Therefore, the signal from the pickoff (1r) is transferred to ToruCa (18
) and give reverse rotation to the output shaft A according to the output angle θ, the rate-integrating gyro will try to re-balance even if the input angle ψ becomes large, so the allowable input angle range will effectively become infinite. can do. In this case, the signal from pickoff 07) will be proportional to the input angular velocity.

以上のよう々事項に基いて、本発明の走行方位制御装置
は第4図に示すように構成されている。
Based on the above matters, the running direction control device of the present invention is constructed as shown in FIG. 4.

即ち、シー1−積分ジャイロ01)が入力角ψを検知す
るとこのレート積分ジャイロ(11)内のピックオン(
17)から入力角ψに比例した信号が出力されるからこ
れをまず増巾変調回路(21υに導く上記ピックオフ(
17)は通常マイクロシン、又はシンクロ等の又流電圧
出力のものを用いるので増巾変調回路(財))は増l」
作 6− 用をなすと共に、父流周波数に同期した新開サンプルホ
ールド回路を形成すれば、容易に交流直流変換を行左い
得る。変換後の信号はスイッチ回路(21)に導かれ、
該スイッチ回路(21)では中央制御装置(6)からの
切換信号を受けて次段のトルカ駆動回路(転)1へ増巾
変調回路(20)からの(i号を接続するか又は直接出
力信号とするかを選択する。トルカ駆動回路(22)は
入力される直Km圧信号を直流電流に変換してトルカ(
靭に送出する役割を果たす。
That is, when the sea 1 - integrating gyro 01) detects the input angle ψ, the pick-on (
Since a signal proportional to the input angle ψ is output from 17), this is first passed through the above pickoff (
17) usually uses a microsynchronizer or a synchro that outputs a current voltage, so the amplitude modulation circuit (Incorporated) is required to increase the amplitude.
If a newly developed sample-and-hold circuit that is functional and synchronized with the father current frequency is formed, AC/DC conversion can be easily performed. The converted signal is guided to a switch circuit (21),
The switch circuit (21) receives a switching signal from the central controller (6) and connects (i) from the amplifying modulation circuit (20) to the next-stage torquer drive circuit (transfer) 1 or outputs it directly. The torquer drive circuit (22) converts the input DC Km pressure signal into a DC current and outputs the torquer (
It plays the role of sending out strong signals.

しかして上述のピックオフ+17)からトルカ(佃に至
る閉ループは、レート積分ジャイロα1)の検出する入
力角ψに対して、第6図における出力軸A、の4回転方
向を戻すように即ち平衡するように極性関係が予め規定
されるもので、この閉ループ系によって結局レート積分
ジャイロ01)は入力角ψの角速度に比例した信号を出
力することとなり、該信号をトルカ(18)を経て積分
回路(転))に導き所定の積分を行なえば再び入力角ψ
に比例した出力信号を得ることができ、かつ入力角ψの
制限範囲は全くないことになる。尚、上記増巾変調回路
(4))、スイッチ回路(21)等は、一体となって第
2図の制御回路(瑣を構成しているものである。
Therefore, the closed loop from the above-mentioned pickoff +17) to the torquer (Tsukuda) is balanced so that the four-rotation direction of the output shaft A in Fig. 6 is returned to the input angle ψ detected by the rate integrating gyro α1). The polarity relationship is predefined as shown in FIG. If we perform the prescribed integration, the input angle ψ
It is possible to obtain an output signal proportional to , and there is no limited range of the input angle ψ. The amplification modulation circuit (4), the switch circuit (21), etc. together constitute the control circuit (4) in FIG.

以上のような構成に基づき本発明の走行方位制御装置は
次のように作用する。第1図を参照して説明すると、無
人走行車(1)がステーションSt、からステーション
8t4ヘバスe1→e2→e5→e8ヲ経て走行する場
合、先ず、最初のパスe、を走行する間は、中央制婢装
fit (6)からの切換信号81.によってレート積
分ジャイロ0ηからの出力は、増巾変調回路(社)及び
スイッチ回路(21)を経て、直接出力信号S。とガっ
て中央制御装置(6)に入力され、以後の直進走行制御
に供される。次に無人走行車(1)が旋回点■1 に達
すると、中央制御装w(6)から切換信号812を送出
して増巾変調回路(2o)とトルカ駆動回路(2))を
接続状態にする。これによって前述した閉ループ系が構
成されることになり無人走行車(1)の旋回に応じた角
速信号が積分回路■)に送られるから、係る信号を積分
した角度信号は無人走行車(1)の旋回角度に比例し、
これを出力信号として中央制御装置(6)に戻し、予め
記憶装!(γ)に記憶された基準と々る旋回角度と一致
するまで旋回動作を行ガえばよいことになる。次のパス
e3や旋回点v2等では、前述と同様の動作を行なえば
よい。
Based on the above configuration, the traveling direction control device of the present invention operates as follows. To explain with reference to FIG. 1, when an unmanned vehicle (1) travels from station St to station 8t4 via bus e1→e2→e5→e8, first, while traveling on the first path e, Switching signal 81 from central control fitting (6). The output from the rate-integrating gyro 0η passes through the amplification modulation circuit and the switch circuit (21), and then directly becomes the output signal S. The information is then input to the central control device (6) and used for subsequent straight-ahead travel control. Next, when the unmanned vehicle (1) reaches the turning point ■1, the central control unit w (6) sends out a switching signal 812 to connect the amplifying modulation circuit (2o) and the torquer drive circuit (2). Make it. As a result, the above-mentioned closed-loop system is configured, and the angular velocity signal corresponding to the turning of the unmanned vehicle (1) is sent to the integrating circuit (■), so the angle signal obtained by integrating this signal is ) is proportional to the turning angle of
This is returned to the central control unit (6) as an output signal and stored in advance! It is only necessary to perform the turning operation until the turning angle matches the reference turning angle stored in (γ). At the next path e3, turning point v2, etc., operations similar to those described above may be performed.

以上のように本発明によれば、無人走行車が旋回点に達
した時に、前記レート8分ジャイロの出力信号を増巾変
調回路とスイッチ回路及びトルカ駆動回路を経て前記レ
ート積分ジャイロの具備するトルカにフィードバックす
る閉ループを構成して前記トルカを酢た信号を積分回路
を介して旋回直進走行制御時には前記スイッチ回路によ
って前記閉ループを開放して前記トルカへの接続を遮断
し、前記増巾変調回路の出力を直接方位角信号とする制
御回路を備えたので、無人走行車の直進又は旋回走行の
状態に適合した方位検出信号を得ることができるから、
走行方位検出において高い8/N比と、広いダイナミッ
クレンジを確保することが容易となり、その結果無人走
行車(1)を高精度かつ広範囲に自動走行せしめること
ができるという効9− 米がめる。
As described above, according to the present invention, when the unmanned vehicle reaches a turning point, the output signal of the rate 8 minute gyro is provided to the rate integrating gyro via the amplification modulation circuit, the switch circuit, and the torquer drive circuit. A closed loop is configured to feed back to the torquer, and the signal generated by the torquer is passed through an integrating circuit to control turning and straight running, when the switch circuit opens the closed loop to cut off the connection to the torquer, and the amplifying modulation circuit Since it is equipped with a control circuit that directly converts the output of the azimuth signal into an azimuth signal, it is possible to obtain an azimuth detection signal that is suitable for the straight-ahead or turning driving state of the unmanned vehicle.
It is easy to ensure a high 8/N ratio and a wide dynamic range in detecting the driving direction, and as a result, the unmanned vehicle (1) can be driven automatically over a wide range with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無人走行車の一使用態様における走行経路の説
明図、第2図は無人走行車の構成を示す平面概略図、第
6図はレート積分ジャイロの原理を説明する説明図、第
4図は本発明の一実施例による走行方位制御装置を示す
構成図である。 (1)・・・無人走行車、叫・・・走行方位制御装置、
(11)・[有]・L’−)8分ジャイロ、 (18J
・・・トルカ、(社)・・・増巾変調回路、(21)・
・・スイッチ回路、(2))−・・トルカ駆動回路、−
)・・・積分回路面、図中、同一符号は同−又は相当部
分を示す。 代理人 葛 野 信 − −10− 第1図 第2図 第3図 第4図
FIG. 1 is an explanatory diagram of a travel route in one usage mode of an unmanned vehicle, FIG. 2 is a schematic plan view showing the configuration of an unmanned vehicle, FIG. 6 is an explanatory diagram explaining the principle of a rate-integrating gyro, and FIG. The figure is a configuration diagram showing a traveling direction control device according to an embodiment of the present invention. (1)...Unmanned vehicle, shout...driving direction control device,
(11)・[Yes]・L'-)8 minute gyro, (18J
...Toruca, Inc....Width modulation circuit, (21).
・・Switch circuit, (2)) −・・Toruka drive circuit, −
)...Integrator circuit surface, the same reference numerals in the figures indicate the same or equivalent parts. Agent Shin Kuzuno - -10- Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] レート積分ジャイロを走行方位検出手段とし走行経路の
情報を得、自動走行する無人走行車に於いて、該無人走
行車が旋回点に達した時に、前記レート積分ジャイロの
出力信号を増巾変調回路とスイッチ回路及びトルカ駆動
回路を経て前記レート積分ジャイロの具備するトルカに
フィードバックする閉ループを構成して前記トルカを経
た信号で旋回制御すると共に、直進走行制御時には前記
スイッチ回路によって前記閉ループを開放して前記トル
カへの接続を遮断し、前記増巾変調回路の出力を直接方
位角信号とする制御回路を備えたことを特徴とする無人
走行車の走行方位制御装置。
In an unmanned vehicle that uses a rate-integrating gyro as a traveling direction detection means to obtain information on the traveling route, and when the unmanned vehicle reaches a turning point, the output signal of the rate-integrating gyro is amplified by an amplification modulation circuit. A closed loop is formed which feeds back to the torquer included in the rate integrating gyro via a switch circuit and a torquer drive circuit, and turning is controlled by the signal passed through the torquer, and the closed loop is opened by the switch circuit during straight running control. A running azimuth control device for an unmanned vehicle, comprising a control circuit that cuts off connection to the torquer and directly uses the output of the amplification modulation circuit as an azimuth signal.
JP57065138A 1982-04-16 1982-04-16 Controller for running direction of unattended running vehicle Pending JPS58181114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065138A JPS58181114A (en) 1982-04-16 1982-04-16 Controller for running direction of unattended running vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065138A JPS58181114A (en) 1982-04-16 1982-04-16 Controller for running direction of unattended running vehicle

Publications (1)

Publication Number Publication Date
JPS58181114A true JPS58181114A (en) 1983-10-22

Family

ID=13278221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065138A Pending JPS58181114A (en) 1982-04-16 1982-04-16 Controller for running direction of unattended running vehicle

Country Status (1)

Country Link
JP (1) JPS58181114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122714A (en) * 1984-11-20 1986-06-10 Mitsui Eng & Shipbuild Co Ltd Method for correcting traveling track of railless crane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122714A (en) * 1984-11-20 1986-06-10 Mitsui Eng & Shipbuild Co Ltd Method for correcting traveling track of railless crane

Similar Documents

Publication Publication Date Title
US5329449A (en) Vehicle control system for multi-branching track
GB1440672A (en) Transport vehicles and transport systems utilising such vehicles
GB1514101A (en) Electronic tracking control for vehicles with hydrostatic transmissions
JPS58181114A (en) Controller for running direction of unattended running vehicle
JP2759134B2 (en) Automatic guidance method for guided vehicles
KR100198023B1 (en) Steering angle control apparatus of a manless car
KR0160302B1 (en) Control system for unmanned carrier vehicle
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP2001318718A (en) Railless automatic carrier and control method for automatic carrier
JPH0334087B2 (en)
JPH01195511A (en) Speed control circuit for unmanned guide type cart
JPS62186304A (en) Induced steering device for unmanned carrier truck
JPS6265109A (en) Steering control method for unmanned carrier
JPS62226205A (en) Drive guiding device for unmanned carrier
JPH0353643B2 (en)
JPS62164116A (en) Carrier
KR100198024B1 (en) Speed control apparatus of a manless car
JPH0512803Y2 (en)
GB892969A (en) High-accuracy gyroscopic apparatus
JPH0348307A (en) Device for steering magnetic guidance unmanned carrier vehicle
JPH0212411A (en) Steering device for magnetic induction type unmanned carrier
JPH031685B2 (en)
JPH06259134A (en) Steering device for automated guided vehicle
JPS6231411A (en) Controller for unmanned carrier
JPH09145393A (en) Position detector for unattended autonomous traveling carrier