JPS58179780A - Absorption type cold and hot water machine - Google Patents

Absorption type cold and hot water machine

Info

Publication number
JPS58179780A
JPS58179780A JP6413382A JP6413382A JPS58179780A JP S58179780 A JPS58179780 A JP S58179780A JP 6413382 A JP6413382 A JP 6413382A JP 6413382 A JP6413382 A JP 6413382A JP S58179780 A JPS58179780 A JP S58179780A
Authority
JP
Japan
Prior art keywords
hot water
water
load
condenser
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6413382A
Other languages
Japanese (ja)
Other versions
JPH0355752B2 (en
Inventor
牧野 茂
松田 龍彦
吉岡 哲治
幸田 肇郎
浩 向井
洋司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Osaka Gas Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Taikisha Ltd
Osaka Gas Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd, Osaka Gas Co Ltd, Takenaka Komuten Co Ltd filed Critical Taikisha Ltd
Priority to JP6413382A priority Critical patent/JPS58179780A/en
Publication of JPS58179780A publication Critical patent/JPS58179780A/en
Publication of JPH0355752B2 publication Critical patent/JPH0355752B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、吸収式冷温水機に関する。[Detailed description of the invention] The present invention relates to an absorption type water chiller/heater.

年間を通じて冷房負荷と暖房負荷と′25フ同時に要求
される建物の空調設備として、吸収式冷温水機を用いる
場合には、従来では吸収式冷凍機の暖房用温水機を用い
るいわゆる冷温水の同時取出し型吸収式冷温水機が用い
られている。しかしこの同時取出し型の吸収式冷温水機
では、熱回収を行なういわゆる一重二重複合型吸収式冷
凍機、すなわち温水器で凝縮した冷媒を凝縮器へ導く一
重効用部分と、冷媒蒸気によって低温再生器で中間濃度
液を加熱する二重効用部分とを組合せた吸収式冷凍機を
用いており、最大のI2を績係数すなわち高温再生器人
熱量に対する冷水熱量および温水熱量の比は、約1.4
程度である。また同時収出し型の吸収式冷凍機を用いて
熱回収を行なわない場合には、成績係数は約1程度であ
り、両方とも効率が劣る0次に負荷対応の面から考察す
ると、凝縮器で温水を加熱して収出すようにし九いわゆ
るダブル/(ンドル運転力式では、第1図で示すように
、高温再生機入熱11Q1および冷水負荷からの人熱量
Q2に対して、凝kl器の放熱量Q3および吸収器放f
bUQ 4力゛バランスしており、二重効用吸収式冷凍
機を用い次場合には、冷水負荷の約1/2を温水負性に
利1月できることになる。ところが従来のいわゆるダブ
ルバンドル運転方式だけでは、冬季に温水負荷が大きい
場合には充分対応することができない。筺たピートポン
プ運転方式においては、凝縮器の放熱量Q3および吸収
機の放熱量Q4がすべて温水に回収される。したがって
温水負荷は冷水@荷の約2倍を利用できることになる。
When an absorption chiller/heater is used as air conditioning equipment for a building that requires both cooling and heating loads at the same time throughout the year, it is conventional to use a heating water heater with an absorption chiller. A take-out absorption type water cooler/heater is used. However, this simultaneous extraction type absorption chiller/heater has a so-called single/double composite absorption chiller that performs heat recovery, that is, a single-effect part that guides the refrigerant condensed in the water heater to the condenser, and a low-temperature regeneration using refrigerant vapor. An absorption chiller is used in combination with a dual-effect part that heats an intermediate concentration liquid in a regenerator. 4
That's about it. Furthermore, when a simultaneous recovery type absorption chiller is used and no heat recovery is performed, the coefficient of performance is approximately 1. Considering the zero-order load response, which is less efficient in both cases, the condenser In the so-called double operating power system, as shown in Figure 1, the condenser's heat input 11Q1 and the amount of human heat Q2 from the cold water load are Heat radiation amount Q3 and absorber radiation f
bUQ 4 forces are balanced, and in the next case using a dual-effect absorption chiller, approximately 1/2 of the chilled water load can be used for hot water. However, the conventional so-called double-bundle operation method alone cannot adequately cope with large hot water loads in winter. In the peat pump operation method described above, the heat radiation amount Q3 of the condenser and the heat radiation amount Q4 of the absorber are all recovered into hot water. Therefore, the hot water load can be used approximately twice as much as the cold water @load.

ところがヒートポンプ運転方式では、通常の冷房サイク
ルにおける冷却水を温水としてたとえば40°CでII
X出すために、高温再生器への入熱量が制限される。そ
のため冷水側の最大能力がたとえば定格の40%程度に
制限され、したがってこのヒートポンプ)ii!転方式
では、夏季において冷水負荷が大きいときには充分に対
応することができない。
However, in the heat pump operation method, the cooling water in the normal cooling cycle is heated to 40°C, for example, II.
In order to output X, the amount of heat input to the high temperature regenerator is limited. Therefore, the maximum capacity on the cold water side is limited to, for example, about 40% of the rating, and therefore this heat pump) ii! The diversion system cannot adequately cope with the large cold water load in the summer.

本発明は上述の技術的課題を解決し、成績係数全回とす
るとともに、冷水負荷および鉱水負(Ifに対応して運
転状台を切換えることができるようにうKした吸収式冷
温水機を提供することを目的とする。
The present invention solves the above-mentioned technical problems, and provides an absorption type water chiller/heater that has a coefficient of performance for all times and is designed to be able to switch the operating state according to chilled water load and mineral water negative (If). The purpose is to provide.

以下、図面によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

WI2図は本発明の一実施例の系統図である。この吸収
式冷温水機にシいては、二重効用吸収式冷凍機1の蒸発
器2で冷却された冷水を冷房機3に与えかつ補助#縮型
5で加熱された温水を暖房機6に与えるいわゆるダブル
バンドル運転態様と、蒸発器2で冷却された冷水を冷房
機3に与えかり吸収器8および#縮器11で加熱された
温水を暖房機6に与えると一トボンブ運転台様とが、各
負荷の大きさに応じて切換えられる。。
Figure WI2 is a system diagram of one embodiment of the present invention. In this absorption chiller/heater, cold water cooled by the evaporator 2 of the double-effect absorption chiller 1 is supplied to the air conditioner 3, and hot water heated by the auxiliary compression type 5 is supplied to the heater 6. The so-called double-bundle operation mode, in which the cold water cooled by the evaporator 2 is fed to the air conditioner 3, and the hot water heated by the absorber 8 and #condenser 11 is fed to the heater 6, creates a one-bomber operation mode. , can be switched according to the size of each load. .

三直効用1及収式冷庫機1は、蒸発器2、吸収器8、高
温再生器9、低温4生器10.凝Jim!a!ll、補
助#ll1l器5、熱交換器12.13などから構成さ
れる。高温再生器9には、制御弁15を備える管路14
を介して念とえば都市ガスなどの燃料が供給され、その
燃焼熱が二重効用吸収式冷凍ll&10躯m熱源とされ
る。補助凝縮8i15は、凝縮器1lVc付設されてお
り、凝縮器ll内に連通される。
The three-direct effect type refrigerator 1 and the retractable type refrigerator 1 include an evaporator 2, an absorber 8, a high-temperature regenerator 9, and a low-temperature 4-generator 10. Jim Jim! a! ll, auxiliary #lll1l vessel 5, heat exchangers 12, 13, etc. The high temperature regenerator 9 has a conduit 14 equipped with a control valve 15.
For example, fuel such as city gas is supplied through the system, and its combustion heat is used as a heat source for the dual-effect absorption refrigeration system. The auxiliary condenser 8i15 is attached to the condenser 11Vc and communicated with the condenser ll.

冷水循環回路4において、各冷房機3の入口は冷水供給
ヘッダ16に共通に接続され、各冷房機3の出口は、冷
水戻りヘッダ17に共通に接続される。冷水戻ゆヘッダ
17と蒸発IIz内VC設けら7″したコイル18の一
端部とけ、ポンプ19を備える管路20によって連結さ
れており、コイル1Bの雌端部と冷水供給ヘッダ16と
は管WI21によって連結される。このような冷水循環
回路4においてフィル18で冷却された冷水は、冷水供
給ヘッダ16から各冷誇機3に供給されて放冷し、放/
16後の水はポンプ19によってコイル18に循環して
冷却される。
In the chilled water circulation circuit 4, the inlets of the air conditioners 3 are commonly connected to the chilled water supply header 16, and the outlets of the air conditioners 3 are commonly connected to the chilled water return header 17. One end of the cold water return header 17 and the 7" coil 18 provided with the VC in the evaporator IIz are connected by a pipe line 20 equipped with a pump 19, and the female end of the coil 1B and the cold water supply header 16 are connected to the pipe WI21. In such a cold water circulation circuit 4, the cold water cooled by the fill 18 is supplied from the cold water supply header 16 to each cold water machine 3, where it is cooled and then released/discharged.
The water after 16 is circulated to the coil 18 by a pump 19 and cooled.

温水循環回路7において、各暖房機6の入口は昌水供給
ヘッダ22に共通に接続される。また各暖房機6の出口
は温水戻りヘッダ23に共通に接続される。温水)戸り
ヘッダ23および補助#M器5内に設けられたコイル2
4の一端部は、ダンプ25$)−よび(1)換弁411
に頓に備える管路26で連^・iされ、コイル24の雌
端部は管W127を介して温水供給ヘッダ22に接続さ
れる。この渥永循環回路7においては、コイル24で加
熱された温水が1水供給ヘツダ22から各暖房機6に供
給されて放熱し、放熱後の水は温水戻りヘッダ23から
ポンプ25によってコイル24に循環される。
In the hot water circulation circuit 7, the inlets of the heaters 6 are commonly connected to the water supply header 22. Further, the outlet of each heater 6 is commonly connected to a hot water return header 23. Hot water) Coil 2 installed in the door header 23 and auxiliary #M device 5
One end of 4 is a dumper 25$) and (1) switching valve 411.
The coils 24 are connected by a pipe line 26, and the female end of the coil 24 is connected to the hot water supply header 22 via a pipe W127. In this Atsunaga circulation circuit 7, the hot water heated by the coil 24 is supplied from the water supply header 22 to each heater 6 and radiates the heat, and the water after radiating the heat is sent from the hot water return header 23 to the coil 24 by the pump 25. It is circulated.

吸収@Bおよび#縮型−5内には、それぞれコイル28
.29が設けられており、これらのコイル28.29!
15は管路30で相互に連結さnる。またコイル29は
切換弁44(+−備える電路31を介して冷却塔32に
連結され、冷却塔32とコイル28とはポンプ33およ
び切換弁45を順に備える管路34を介して相互に連結
される。このようにして冷却塔32で冷却された冷却水
が吸収器8および#&i器11を経て冷却塔32に戻る
冷水循環回路35が構成される。
There are coils 28 in absorption@B and #reduced type-5, respectively.
.. 29 are provided and these coils 28.29!
15 are interconnected by a conduit 30. Further, the coil 29 is connected to the cooling tower 32 via an electric line 31 provided with a switching valve 44 (+-), and the cooling tower 32 and the coil 28 are interconnected via a pipe line 34 provided with a pump 33 and a switching valve 45 in this order. In this way, a cold water circulation circuit 35 is constructed in which the cooling water cooled in the cooling tower 32 returns to the cooling tower 32 via the absorber 8 and the #&i device 11.

冷水循環回路 ならびに管路31Vcνけるコイル29お工び切換弁4
4闇を連結してバイパス管路37が設けられており、こ
のバイパス管路37と管路31と)接続点1’[はバイ
パス制御弁38が設けられる。
Cold water circulation circuit and pipe line 31Vcν coil 29 installation switching valve 4
A bypass conduit 37 is provided connecting the four lines, and a bypass control valve 38 is provided at the connection point 1' between the bypass conduit 37 and the conduit 31.

温水循環回路7において、管路26におけるポンプ25
および切換弁41聞Vcri、切換弁48を備える管路
39の一端部が接続され、この管路39の他端部は、冷
却水循環回路35における管路34の切換弁45よりも
下流側すなわちコイル28寄りに接続される。また・冷
却水循環回路35における管路31のバイパス制御弁3
8および切換弁44聞には切換弁43を備える管路40
の一端部が接続され、管路40の他端部は湿水循環回路
7における管路27の途中に接続される。
In the hot water circulation circuit 7, the pump 25 in the pipe line 26
One end of a pipe 39 having a switching valve 48 is connected to the switching valve 41 and Vcri, and the other end of the pipe 39 is connected to the downstream side of the switching valve 45 of the pipe 34 in the cooling water circulation circuit 35, that is, the coil It is connected closer to 28. Also, the bypass control valve 3 of the pipe line 31 in the cooling water circulation circuit 35
A pipe line 40 equipped with a switching valve 43 between the switching valve 8 and the switching valve 44.
One end of the pipe line 40 is connected, and the other end of the pipe line 40 is connected to the middle of the pipe line 27 in the wet water circulation circuit 7.

高温再生器9からの高温蒸気を導出する管路53の途中
における高温再生器9よりも上方VcF′i、分岐管5
4を介して温水熱交換器46が接続される。この温水熱
交換器46の底部はドレン制御弁47を備える排出管5
5を介して高温再生器9に接続される。ま之温水循環回
路7における管路27の途中には温度検出器48が設け
られており、この温It検出I#48による温度検出値
は温度調節器49Vc与えられる。この温度調節器49
は、前記温度検出(直が予め設゛ごした値となるように
ドレン−J御弁47の開度を制御する。
VcF'i above the high temperature regenerator 9 in the middle of the pipe line 53 leading out high temperature steam from the high temperature regenerator 9, branch pipe 5
A hot water heat exchanger 46 is connected via 4. The bottom of this hot water heat exchanger 46 has a discharge pipe 5 equipped with a drain control valve 47.
5 to a high temperature regenerator 9. A temperature detector 48 is provided in the middle of the pipe line 27 in the hot water circulation circuit 7, and the temperature detected by this temperature It detection I#48 is given to the temperature controller 49Vc. This temperature regulator 49
controls the opening degree of the drain J control valve 47 so that the temperature detection value becomes a preset value.

冷却水(ll環回路35におけるバイパス制御弁38よ
りも下流側には、切換弁50が設けられる。
A switching valve 50 is provided downstream of the bypass control valve 38 in the cooling water loop 35.

この切換弁50の上流側には、切換弁521kU11す
る管路56t−介して温水熱交換器46におけるコイル
46mの一端部が接続される。コイル46mの他端Sは
切換弁51を備え。る管路57を介して切換弁50の下
流側に接続される。
One end of the coil 46m in the hot water heat exchanger 46 is connected to the upstream side of the switching valve 50 through a pipe 56t passing through the switching valve 521kU11. The other end S of the coil 46m is equipped with a switching valve 51. The switching valve 50 is connected to the downstream side of the switching valve 50 via a conduit 57.

このように構成された吸収式冷温水機において、第3図
の破線で示すような負荷の変動がある場合の運転態様に
ついて説明する。先ずこのような負荷の変動時において
、温水負荷が比較的低い範囲すなわち左下がりのNIL
で示す範囲人では、ダブルバンドル運転が行なわれる。
In the absorption type water chiller/heater configured as described above, the operation mode when there is a load fluctuation as shown by the broken line in FIG. 3 will be described. First of all, when the load fluctuates like this, the range where the hot water load is relatively low, that is, the NIL of the downward slope to the left.
Double bundle operation is performed in the range shown by .

このダブルパンドル運転時には、切換弁42,43,5
1,52を閉弁し、切換弁41,44,45.50t−
開弁する。したがって、補助段III器5で加熱された
鉱水は温水循環回路7t−介して暖N機6に供給され、
゛蒸発!12で冷却された冷水は冷水循環回路4tl−
介して冷房機3に供給される。なか、暖房機6の負荷が
比較的低いときには、バイパス制御弁38はバイパス管
路37を閉じるように制御される。そのため冷却水ti
環回路35において、冷却水の大+1i分が#縮型11
内のコイル29を流通する。また上述とに逆KlflR
機6の負荷が大となったときには、バイパス制御弁38
T/′iバイパス管路37を開<フチ向に制御さtLろ
。七fLKよって冷却水循環回路35Vc訃ける冷却水
の大部分は凝縮器11をバイパスするので、凝縮器11
における凝縮slは、補助凝縮器5において温水の加熱
に用いられる。
During this double pandle operation, the switching valves 42, 43, 5
Close valves 1 and 52, and switch valves 41, 44, 45.50t-
Open the valve. Therefore, the mineral water heated in the auxiliary stage III unit 5 is supplied to the warm-N unit 6 via the hot water circulation circuit 7t.
Evaporation! The cold water cooled in step 12 is passed through the cold water circulation circuit 4tl-
It is supplied to the air conditioner 3 through the air conditioner. Among these, when the load on the heater 6 is relatively low, the bypass control valve 38 is controlled to close the bypass pipe line 37. Therefore, cooling water ti
In the ring circuit 35, the large + 1i portion of the cooling water is #condensed type 11
The current flows through the coil 29 inside. Also, contrary to the above, KlflR
When the load on the machine 6 becomes large, the bypass control valve 38
T/'i Bypass line 37 is opened and controlled in the border direction. Most of the cooling water that flows through the cooling water circulation circuit 35Vc due to 7fLK bypasses the condenser 11, so the condenser 11
The condensed sl in is used for heating hot water in the auxiliary condenser 5.

t83図において冷水負荷が比較的低いときKは、右丁
が″りの斜線で示す範囲B内でヒートポンプ運転が行な
わ几る。このヒートポンプ運転時においては、切換弁4
1,44.45,51.52は閉弁され、切換弁42.
43.50が開弁される。
In Figure t83, when the chilled water load is relatively low, the heat pump operation is performed within the range B indicated by the diagonal line on the right side.During this heat pump operation, the switching valve 4
1, 44, 45, and 51.52 are closed, and the switching valves 42.
43.50 is opened.

またそれとともにポンプ33の運転が停止される。At the same time, the operation of the pump 33 is stopped.

このようにすると、冷房機3には上述のダブルパンビル
運転態様時と同様に、蒸発器2で冷却された冷却水が供
給される。ま九暖FF4a6には吸収器8および凝<m
411で加熱された温水が供給される。すなわち暖房機
6で放熱した後の温水は、ポンプ25、管路39を経て
吸収機8のコイル28νよび凝縮器11のコイル29を
流通して加熱され、管路40および管路27を経て暖房
機6に供給される。この際バイパス制御弁38は、バイ
パス管路37を閉じる方向に制御されている。
In this way, the cooling water cooled by the evaporator 2 is supplied to the air conditioner 3 in the same manner as in the double panville operation mode described above. Makuntan FF4a6 has an absorber 8 and a condenser
Hot water heated at 411 is supplied. That is, the hot water after radiating heat in the heater 6 passes through the pump 25 and the pipe line 39, flows through the coil 28ν of the absorber 8 and the coil 29 of the condenser 11, is heated, and is heated via the pipe line 40 and the pipe line 27. It is supplied to machine 6. At this time, the bypass control valve 38 is controlled in a direction to close the bypass line 37.

また、ヒートポンプ運転時において、第3図の一点鎖線
で示すような負荷変動があり、範囲Bの上方の範囲Cと
なった場合に″は、切換弁41,44.45.50V′
i閉弁され、切換弁42,43゜51.52が開弁され
る。こうすると、凝縮器11で加熱さf−1,た漏水は
、温水熱交換器46でさらに加熱されて温水供給ヘッダ
22に送られる。したがって、冷水負荷が比較的低くし
かも温水負荷が比較的高い場合、すなわち範囲Cの負荷
変動に対応することができる。なお、温水熱交換器46
においては、湿度調節器49によって制御されるドレン
制御弁47の開度に応じて、温水熱交換ム46vc流入
する高温蒸気量が変化するので、温水の加熱蝋が変化し
、−tVLKよって温水供袷ヘソダ22に送ら几る温水
温度が設定温度に保たれる。
Furthermore, when the heat pump is in operation, there is a load fluctuation as shown by the dashed line in FIG.
The valve i is closed, and the switching valves 42, 43, 51, and 52 are opened. In this way, the leaked water heated f-1 in the condenser 11 is further heated in the hot water heat exchanger 46 and sent to the hot water supply header 22. Therefore, when the cold water load is relatively low and the hot water load is relatively high, it is possible to cope with load fluctuations in range C. In addition, the hot water heat exchanger 46
In this case, the amount of high-temperature steam flowing into the hot water heat exchanger 46vc changes depending on the opening degree of the drain control valve 47 controlled by the humidity regulator 49, so the heating wax of hot water changes, and the hot water supply is controlled by -tVLK. The temperature of the hot water sent to the bottom sleeve 22 is maintained at the set temperature.

なオ範囲Aにおけるダブルバンドル運転態様時において
は、高温再生45に供給される燃料は冷水負荷に応じて
制御され、湿水負荷の変動に対してtj1バイパス制御
弁38を制御することによって対処する。また範囲Bで
示すヒートポンプ運転時Vこおいて、冷水質荷と温水負
荷とは2点鎖線で示すバランス線l上でバランスするが
、冷水負荷がバランス線lよりも低いときVCは、冷水
負荷側に模擬負荷による熱を与えてバランスさせること
により、バランス線!よりも上方における温水主ル11
#範囲に対しすることができる。なお、このときrま1
4!fI輻再生49における燃焼量は温水負荷に応じて
制御される。さらに湿水負荷がバランスII/工りも低
いときには、温水負荷側で模擬負荷によって放熱させる
ことにより、バランス線!よりもF乃の冷水主制御範囲
に対応することができ、このときの高−再生器9V′c
νける燃焼量は冷水負荷にしして′Ml碑、!れる。
In the double bundle operation mode in range A, the fuel supplied to the high temperature regeneration 45 is controlled according to the cold water load, and fluctuations in the wet water load are dealt with by controlling the tj1 bypass control valve 38. . Also, when the heat pump is operating in range B, the cold water quality load and the hot water load are balanced on the balance line l shown by the two-dot chain line, but when the chilled water load is lower than the balance line l, the chilled water load is By applying heat due to a simulated load to the side and balancing it, the balance line! Hot water main line 11 above
#Can be for a range. In addition, at this time rma1
4! The amount of combustion in fI radiation regeneration 49 is controlled according to the hot water load. Furthermore, when the wet water load is low in Balance II/Equation, heat is radiated by a simulated load on the hot water load side, so that the balance line! It can correspond to the cold water main control range of Fno, and at this time the high-regenerator 9V'c
The amount of combustion to be calculated is calculated by cold water load. It will be done.

このようVζダブルバンドル運運転急止、と−トポンプ
運転態様とを切換えることにより、本件吸収式冷温水機
では、ダブルバンドルJE時Kfl鰻大の成績係数を1
.8程度とすることができ、と−トポンプ運転時には成
績係数を3程度とすることができる。
By switching between the sudden stop of the Vζ double-bundle operation and the two-pump operation in this way, the absorption type water chiller/heater can reduce the coefficient of performance of Kfl Unagi when double bundle JE to 1.
.. The coefficient of performance can be set to about 8, and the coefficient of performance can be set to about 3 when the toto pump is operated.

本発明の他の実施例として、ム水循暢回路7における管
路27の途中を縣水熱交換器46に接続し、ダブルバン
ドル運転時においても、補助凝縮器5で加熱された温水
を温水熱交換器46でさらに加熱するようにしてもよい
。そうすれば、第4図で示すように、範囲Aに加えて、
温水負荷の比較的高い範囲りにも対応することができる
As another embodiment of the present invention, the middle of the pipe line 27 in the water circulation circuit 7 is connected to the water heat exchanger 46, and even during double bundle operation, the hot water heated by the auxiliary condenser 5 can be used as hot water. The heat exchanger 46 may be used for further heating. Then, as shown in Figure 4, in addition to range A,
It can also handle relatively high hot water loads.

なお、漏水熱交換446は省略さnでもよい。Note that the water leakage heat exchange 446 may be omitted.

上述のごとく本発明によれば、冷水負荷訃よび湿水負荷
の質化に対応して補助凝縮器で加熱され九湿水t−温水
負荷に与える運転台様と、吸収器および凝縮器で加熱さ
れた銘水を温水負荷に与える運転台様と1にすJ換える
ようにしたので、成績係数を同上させることができ、か
つ各負荷の変1gIJVc充分に対応した運転を達1戊
することができる。
As described above, according to the present invention, in response to improving the quality of cold water load and wet water load, wet water is heated by the auxiliary condenser and supplied to the hot water load, and heated by the absorber and condenser. Since the famous water that was given to the hot water load is changed to 1 for the operator's cab, the coefficient of performance can be increased to the same level, and the operation that fully corresponds to the change of 1gIJVc for each load can be achieved. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Vi汲収式冷温水模における熱収支を示す図、第
2図に本発明の一実施例の系統図、第3図および第4図
n * 4irと運転範囲との関係を示すグラフである
。 l・・・二重効用吸収式冷凍機、2・・・蒸発器、3・
・・冷男機、5・・・補助凝縮器、6・・・暖房機、8
・・・吸収器、9・・11再生器、lO・・・姪ム再生
器、11・・・#紬器、39.40・・・管路、41,
42,43゜44.45,50,51.52・・・切換
弁、46・・・輻水熊交換器 代理人   弁理士 西教圭一部 第1図 第3図 冷水gas(o7.)   100
Fig. 1 is a diagram showing the heat balance in a Vi pumping type cold/hot water model, Fig. 2 is a system diagram of an embodiment of the present invention, and Figs. 3 and 4 are graphs showing the relationship between n*4ir and the operating range. It is. l...double effect absorption refrigerator, 2...evaporator, 3.
...Cold man unit, 5...Auxiliary condenser, 6...Heater, 8
...Absorber, 9...11 Regenerator, lO...Niemu regenerator, 11...#Pongee, 39.40...Pipeline, 41,
42,43゜44.45,50,51.52...Switching valve, 46...Radiant water exchanger agent Patent attorney Kei Nishi Part 1 Figure 3 Cold water gas (o7.) 100

Claims (1)

【特許請求の範囲】 tl+吸収式冷凍機の蒸発器で冷却された冷水を冷水負
荷に与えかつ凝縮器に付設された補助凝Jli器で加熱
された温水を温水器Mに与える運転台様、ならびに前記
蒸発器で冷却された冷水を冷水負荷VC与えかつ吸収器
および前記凝縮器で加熱された温水を温水負荷KFj−
える運転台様が、切換え自在に構成されたことを特徴と
する吸収式冷温水機。 +21 gfJ記吸収式冷凍機の再生器には再生器から
の高温蒸気が導か几る温水熱交換器が付設され、前記凝
#I器あるいは補助#縮器で加熱された温水を温水負荷
に導く管路の途中には、前記温水負荷とlIJ記凝縮器
あるいは補助凝縮器との間に前記温水熱交換器を切換自
在に介在させる手段が設けられることを特徴とする特許
請求の範囲第1項記載の吸収式冷温水機。
[Claims] A driver who supplies cold water cooled by the evaporator of a TL+ absorption chiller to a chilled water load and supplies hot water heated by an auxiliary condenser attached to a condenser to a water heater M; The cold water cooled by the evaporator is given a cold water load VC, and the hot water heated by the absorber and the condenser is given a hot water load KFj-.
This is an absorption type water chiller/heater that features a switchable driver's cab. +21 gfJ The regenerator of the absorption chiller is equipped with a hot water heat exchanger to which high-temperature steam from the regenerator is guided, and the hot water heated by the condenser #I or auxiliary #condenser is guided to the hot water load. Claim 1, characterized in that means is provided in the middle of the pipe line for switchingably interposing the hot water heat exchanger between the hot water load and the IJ condenser or the auxiliary condenser. The absorption type water chiller/heater mentioned above.
JP6413382A 1982-04-16 1982-04-16 Absorption type cold and hot water machine Granted JPS58179780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6413382A JPS58179780A (en) 1982-04-16 1982-04-16 Absorption type cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6413382A JPS58179780A (en) 1982-04-16 1982-04-16 Absorption type cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS58179780A true JPS58179780A (en) 1983-10-21
JPH0355752B2 JPH0355752B2 (en) 1991-08-26

Family

ID=13249264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6413382A Granted JPS58179780A (en) 1982-04-16 1982-04-16 Absorption type cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS58179780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101356A (en) * 1988-10-11 1990-04-13 Ebara Corp Cooling and heating device with absorptive type cold-hot water machine
JPH02213663A (en) * 1989-02-15 1990-08-24 Tokyo Gas Co Ltd Absorption type gas cooling and heating system
JPH0547762U (en) * 1991-11-19 1993-06-25 矢崎総業株式会社 Absorption chiller / heater
JPH11108494A (en) * 1997-09-30 1999-04-23 Pado:Kk Heat utilizing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243486U (en) * 1975-09-22 1977-03-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243486U (en) * 1975-09-22 1977-03-28

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101356A (en) * 1988-10-11 1990-04-13 Ebara Corp Cooling and heating device with absorptive type cold-hot water machine
JP2607134B2 (en) * 1988-10-11 1997-05-07 株式会社荏原製作所 Cooling and heating system with absorption chiller / heater
JPH02213663A (en) * 1989-02-15 1990-08-24 Tokyo Gas Co Ltd Absorption type gas cooling and heating system
JPH0547762U (en) * 1991-11-19 1993-06-25 矢崎総業株式会社 Absorption chiller / heater
JPH11108494A (en) * 1997-09-30 1999-04-23 Pado:Kk Heat utilizing system

Also Published As

Publication number Publication date
JPH0355752B2 (en) 1991-08-26

Similar Documents

Publication Publication Date Title
JP5768155B2 (en) Heating and cooling device
KR101236603B1 (en) Cascade type heat pump system and control method thereof
KR101845300B1 (en) Fusion energy system of geothermal, solar and water heat energy
US3303873A (en) Heating and cooling system
US4589262A (en) Absorption type air conditioning system
KR102032090B1 (en) Themo-hygrostat
JPS58179780A (en) Absorption type cold and hot water machine
JP3319662B2 (en) Heat storage type cooling / heating device and control method thereof
JPH09243110A (en) Air conditioner
CN221023194U (en) Thermal management system and vehicle
JPH03244946A (en) Cooling/heating dehumidifying system
JPH0737078Y2 (en) Air conditioning equipment
JPS6018734Y2 (en) Solar heating and cooling equipment
JPH0221499B2 (en)
JPH0257835A (en) Cooling and heating apparatus
JPH0626731A (en) Cooler, heater and hot water supplying device
JPH02225924A (en) Heat storage type air conditioning system used for floor heating as well
JPS60155843A (en) Air conditioning control device by heat accumulation in water distributing pipe
JPS5912843B2 (en) Heat recovery equipment in power generation equipment
JPS624847Y2 (en)
KR20200101821A (en) Themo-hygrostat
JPH04268173A (en) Cooling, heating and hot water feeding device
JPH0744917Y2 (en) Absorption chiller / heater device
JP2691423B2 (en) Engine driven heat pump air conditioner
JPS6059489B2 (en) Air conditioning method using computer generated heat