JPS58175260A - Chemical conversion of pastey lead storage battery - Google Patents

Chemical conversion of pastey lead storage battery

Info

Publication number
JPS58175260A
JPS58175260A JP57057519A JP5751982A JPS58175260A JP S58175260 A JPS58175260 A JP S58175260A JP 57057519 A JP57057519 A JP 57057519A JP 5751982 A JP5751982 A JP 5751982A JP S58175260 A JPS58175260 A JP S58175260A
Authority
JP
Japan
Prior art keywords
plate
immersed
sulfuric acid
dilute sulfuric
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57057519A
Other languages
Japanese (ja)
Inventor
Naoto Hoshihara
直人 星原
Keiichi Watanabe
啓一 渡辺
Hiroyuki Jinbo
裕行 神保
Katsuhiro Takahashi
勝弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57057519A priority Critical patent/JPS58175260A/en
Priority to EP83900973A priority patent/EP0105379B1/en
Priority to PCT/JP1983/000097 priority patent/WO1983003714A1/en
Priority to US06/563,418 priority patent/US4475990A/en
Priority to DE8383900973T priority patent/DE3374156D1/en
Publication of JPS58175260A publication Critical patent/JPS58175260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance greatly the cycle life characteristic of a plate by maintaining the rapid electric-discharge and regulate the early reduction in capacity of the plate by converting chemically only the lower part of the plate in an aqueous weakly acidic, neutral-salt or alkaline solution, and adding dilute sulfuric acid after that. CONSTITUTION:In a chemical conversion process carried out by feeding current to a plate after pouring dilute sulfuric acid used as an electrolyte after the plate is inserted in the container, before adding dilute sulfuric acid, below 10% of the theoretical capacity of electricity is fed by adding an aqueous solution with an acidified degree of over pH 3 until a part of the plate is immersed, and thereafter the usual chemical conversion with added dilute sulfuric acid is carried out. Although there is an active part in the upper part of the plate, differently from such a conversion that is carried out by feeding current after the whole of a plate is immersed in an aqueous neutral-salt or alkaline solution, the rapid electric-discharge characteristic naturally decreases as the part of the plate immersed in the solution is increased, and the slow electric-discharge life tends to deteriorate as the part immersed in the solution is decreased. Therefore, it is preferred that 1/5-3/4 of the plate is immersed in the solution. In addition, in order to prevent any marked reduction of the slow electric-discharge capacity although depending upon the depth of immersion, it is preferred that the quantity of electricity fed to the plate in the preliminary chemical conversion is suppressed to around 0.01-10% of the theoretical capacity of the plate.

Description

【発明の詳細な説明】 本発明は、ペースト式鉛蓄電池の化成法に関するもので
あり、とくに急放電特性を維持し、寿命特性の向上をは
かることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming paste-type lead-acid batteries, and particularly aims to maintain rapid discharge characteristics and improve life characteristics.

ペースト式鉛蓄電池は利用率が高く、しかも比較的安価
に製造できる特徴を持っており、鉛蓄電池の中でも最も
多く用いられている。このペースト式電池は自動車工業
の発展と深いかかわりを持ってきた歴史的背景から、起
動特性、つまり急放電特性の向上に力が注がれ、寿命も
比較的浅い充放電サイクルに改善の目が向けられてきた
。しかし、昨今電池の用途は多様となり、また自動車用
としても緩放電で深い放電を求める機器も付加されてく
ると、緩放電寿命特性と急放電特性の両立もまた重要な
課題になづてきたのである。しかし、これら両特性を追
求するアプローチには、例えば多孔度、α−Pb02/
β−pbo、、の比率などと寿命。
Paste type lead-acid batteries have a high utilization rate and can be manufactured at relatively low cost, and are the most commonly used among lead-acid batteries. Historically, paste-type batteries have had a deep connection with the development of the automobile industry, so efforts have been focused on improving the startup characteristics, or rapid discharge characteristics, and efforts have been focused on improving the charge-discharge cycle, which has a relatively short lifespan. It's been directed at me. However, in recent years, the uses of batteries have become more diverse, and with the addition of devices that require slow discharge and deep discharge for automobiles, achieving both slow discharge life characteristics and rapid discharge characteristics has become an important issue. It is. However, approaches that pursue both of these properties include, for example, porosity, α-Pb02/
β-pbo, ratio etc. and lifespan.

利用率や急放電特性との関係が良く知られており、仲々
満足のゆく結果が得られにくい。
The relationship between utilization rate and rapid discharge characteristics is well known, and it is difficult to obtain satisfactory results.

本発明は、これらの問題点を効果的に改善する1つの手
段を与えるものであって、具体的には。
The present invention provides one means for effectively improving these problems, specifically.

硫酸ナトリウム、硫酸リチウムなどの中性水溶液または
水酸化ナトリウム、水酸化カリウムなどのアルカリ性水
溶液を極板の下部の一部が浸る程度にした状態で理論容
量の10%以下の電気量を通電し、その後希硫酸中で化
成することを特徴とする。
A neutral aqueous solution such as sodium sulfate or lithium sulfate or an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is applied to a state where a portion of the lower part of the electrode plate is immersed, and an amount of electricity of 10% or less of the theoretical capacity is applied. It is characterized in that it is then chemically formed in dilute sulfuric acid.

これら技術に関連して、本発明者らは、とくにPb−C
a−anなどいわゆる鉛・カルシウム系合金で起とシ易
い傾向にある緩放電での早期容量劣化現象を抑制するた
めに、中性や弱アルカリ性の電解液中で短時間の化成処
理を加゛える工程、または短時間上記中性やアルカリ性
“溶液に浸漬する工程を通常の希硫酸中の化成に先立っ
て実施するととを提案した。上記技術では、中性やアル
カリ水溶液中での浸漬条件は、少なくとも極板の肩が上
記水溶液中に埋没していることを想定している。これに
対し本発明では、極板が全没するのではなく、下の一部
分が浸る程度に浸漬されている点が重要である。つまり
前者では、極板全体に亘り、中性やアルカリ性浴中で未
化成板(鉛粉、硫酸、水を主成分とするペーストを塗着
し乾燥して得られた極板)がまず格子近傍から酸化され
、比較的反応性に乏しいが格子合金と結合性の良いα−
Pb02を格子と活物質の界面に優先して形成し、それ
から後に沖合いに反応性に富むβ−Pb02 を希硫酸
中でゆっくり形成しようとの考え方であり、従来の自動
車用のようにほんのたまにしか深い放電が起こらない用
途では、その中性またはアルカリ性溶液中での通電量を
ある程度制限することで実用上問題がない条件を見出す
ことができた。         )これに対し、後者
つまシ本発明では、このような界面の問題が解決するこ
とによシ、次に顕在化してくる原因が活物質そのものの
軟化、脱落であり、これはとくに長期サイクル中に電池
内の液の上下の濃度差や温度差が直接、間接に影響し、
下部に劣化が集中する傾向に着目し、板面内、とりわけ
上部に利用率の異なる活物質を偏在させようとするもの
である。つib、ここでは、弱酸性。
In relation to these techniques, the present inventors have particularly focused on Pb-C
In order to suppress the early capacity deterioration phenomenon caused by slow discharge, which tends to occur with so-called lead-calcium alloys such as A-AN, a short-time chemical conversion treatment is performed in a neutral or weakly alkaline electrolyte. The authors proposed that the above-mentioned process of immersion in a neutral or alkaline aqueous solution for a short period of time should be carried out prior to chemical formation in normal dilute sulfuric acid. It is assumed that at least the shoulder of the electrode plate is submerged in the aqueous solution.In contrast, in the present invention, the electrode plate is not completely immersed, but is immersed to the extent that a portion of the bottom is submerged. In other words, in the former case, the entire electrode plate is coated with an untreated plate (a paste made mainly of lead powder, sulfuric acid, and water) and dried in a neutral or alkaline bath. The plate) is first oxidized from the vicinity of the lattice, and the α-
The idea is to preferentially form Pb02 at the interface between the lattice and the active material, and then slowly form highly reactive β-Pb02 offshore in dilute sulfuric acid. For applications where deep discharge does not occur, we were able to find conditions that pose no practical problems by limiting the amount of current applied in the neutral or alkaline solution to a certain extent. ) On the other hand, in the latter case, in the present invention, by solving such an interface problem, the next cause that becomes apparent is the softening and falling off of the active material itself, and this is especially true during long-term cycles. The difference in concentration and temperature between the top and bottom of the liquid in the battery has a direct and indirect effect on the
Focusing on the tendency for deterioration to concentrate in the lower part, the aim is to unevenly distribute active materials with different utilization rates within the board surface, especially in the upper part. ib, here, weakly acidic.

中性、アルカリ性での通電で生成するα−PbO2の多
い酸化層を単に格子界面でなく、ある程度活物層に及ぼ
すことによって、軟化・脱落に強い層にする。また、そ
の量は通電電気量によって制御され、偏在位置は電池の
構造上、一般には底部から直接液中に浸漬される深さで
優先的に決定される。
By applying an oxide layer containing a large amount of α-PbO2, which is generated by energization in neutral or alkaline conditions, to some extent on the active layer rather than simply on the lattice interface, the layer is made resistant to softening and falling off. Further, the amount thereof is controlled by the amount of electricity supplied, and the uneven distribution position is generally preferentially determined by the depth of direct immersion into the liquid from the bottom due to the structure of the battery.

ここで幸運なことに、見掛は上浸漬されていない上部へ
の液のキャピラリーアクションは通電時に、先にのべた
格子界面へのα−Pb02の優先的生成に必要な中性や
アルカリ性などの予備的化成液の供給を許し、さらには
、浸漬部とのイオン導電経路のインピーダンスの差は大
であるので、上下同時に通電していても、上部は界面中
心、下部は多孔体全体へα−PbO2を分布していくこ
とになる。
Fortunately, the capillary action of the liquid to the upper part, which is not immersed in the upper part, is due to the neutrality or alkalinity necessary for the preferential production of α-Pb02 at the lattice interface mentioned above. This allows the preliminary chemical solution to be supplied, and since there is a large impedance difference between the ion conduction path and the immersed part, even if the upper and lower sides are energized at the same time, α- PbO2 will be distributed.

上記の処理の上、従来の希硫酸中での化成を行えば、急
放電に寄与率の高い上部は活性なβ−Pb02、劣化の
起こり易い下部は軟化に強いα−Pb02 を多く分布
し、しかも全体が早期劣化を抑制された格子界面構造を
有することになる。
If the above treatment is followed by conventional chemical formation in dilute sulfuric acid, active β-Pb02 will be distributed in the upper part, which has a high contribution rate to sudden discharge, and α-Pb02, which is resistant to softening, will be distributed in the lower part where deterioration is likely to occur. Moreover, the entire structure has a lattice interface structure that suppresses early deterioration.

ここですでに明らかなように1本発明は、極板を中性塩
やアルカリ性水溶液に100%没して通電するものとは
異なり、上部に活性部を有しているのであるが、極板の
液中への浸漬部が大となると当然急放電特性が低下し、
また浸漬部が減少すると緩放電寿命が劣化する傾向にあ
る。このこと。
As is already clear here, the present invention differs from those in which the electrode plate is immersed 100% in a neutral salt or alkaline aqueous solution to conduct electricity, in that the electrode plate has an active part on the upper part. Naturally, as the part immersed in the liquid becomes larger, the rapid discharge characteristics will deteriorate.
Furthermore, as the immersion area decreases, the slow discharge life tends to deteriorate. this thing.

から好ましくは極板は175〜3/4が浸漬されるのが
良い。
Therefore, preferably 175 to 3/4 of the electrode plate is immersed.

また浸漬深さにもよるが、予備化成での通電量は極板理
論容量の0.01〜10%程度に抑制した方が緩放電容
量が著しく低下しなくて良い。通電時間は長くても寿命
には良いが、緩放電:容量の初期値の低下を抑制するに
は1時間以内に留めるのが良い。
Also, although it depends on the immersion depth, it is better to suppress the amount of current during preliminary formation to about 0.01 to 10% of the theoretical capacity of the electrode plate, so that the gradual discharge capacity does not decrease significantly. Although a long energization time is good for the lifespan, it is better to keep it to one hour or less in order to suppress slow discharge: a decrease in the initial value of the capacity.

中性塩やアルカリ性の水溶液濃度は、中性塩では0.1
〜10重量%で効果は得られるが、好ましくは0.5〜
5重量%で安定した特性が得られる。
The concentration of neutral salts and alkaline aqueous solutions is 0.1 for neutral salts.
Effects can be obtained at ~10% by weight, but preferably 0.5~10% by weight.
Stable properties can be obtained at 5% by weight.

アルカリでは、0.01〜10重量%と、α−PbO2
゜を形成するに必要な濃度は低い領域に拡大されるが、
実質的には0.02〜1重量%程度で安定した効果が得
られる。
For alkali, 0.01 to 10% by weight and α-PbO2
Although the concentration required to form ゜ is expanded to a lower region,
Substantially, stable effects can be obtained at about 0.02 to 1% by weight.

以上のように、極板下部のみを弱酸性生性塩あるいはア
ルカリ性水溶液中で化成し、その後希硫酸を添加するこ
とにより、急放電特性を維持して、早期容量低下を制御
し、サイクル寿命特性の大幅な向上を図ることができる
As described above, by chemically forming only the lower part of the electrode plate in a weakly acidic salt or alkaline aqueous solution, and then adding dilute sulfuric acid, rapid discharge characteristics can be maintained, early capacity loss can be controlled, and cycle life characteristics can be improved. Significant improvements can be made.

以下に実施例により本発明の構成と効果について示す。The structure and effects of the present invention will be described below with reference to Examples.

鉛−カルシウム系合金のエクスパンドを10×10cr
nの大きさに切って支持体とし、これにペーストを塗着
して極板をつくった。この極板を用いて正極6枚、負極
6枚の電池を構成した。この電池にNa2804の20
 q/Q水溶液ムとNaOH(7) 5g/ Q水溶液
Bを極板全面が浸漬するように入れたもの(ム1  、
 B1’)および極板の374(ム2 、 B2 )。
Expand lead-calcium alloy to 10x10cr
A support was prepared by cutting it into pieces of n size, and a paste was applied to the support to make an electrode plate. Using this electrode plate, a battery with six positive electrodes and six negative electrodes was constructed. This battery contains 20% of Na2804.
q/Q aqueous solution M and NaOH (7) 5g/Q aqueous solution B was added so that the entire surface of the electrode plate was immersed (M1,
B1') and 374 of the polar plate (Mu2, B2).

極板の172(ム3.B3)、極板の174(ム4゜B
a)がそれぞれ浸漬するように入れたものについて、1
oムの電流で2分間充電方向に通電した。
172 (mu 3.B3) of the electrode plate, 174 (mu 4゜B) of the electrode plate
For each item a) is soaked in, 1
The current was applied in the charging direction for 2 minutes at a current of 100 Ω.

その後硫醸比重が1.20になるように調整した希硫酸
を液量が75Qccになるように追加し、引き続き1o
ムで5o時間通電して化成した。また比較例として、最
初から比重1.20の希硫酸を加えて化成した電池Cを
つくった。
After that, add dilute sulfuric acid adjusted to have a sulfur brewing specific gravity of 1.20 so that the liquid volume becomes 75Qcc, and continue to add 1o
The chemical formation was carried out by applying current for 5 hours in a vacuum chamber. As a comparative example, a battery C was prepared which was formed by adding dilute sulfuric acid with a specific gravity of 1.20 from the beginning.

以上の電池を用い、−15℃で160ムの放電をした。Using the above battery, it was discharged for 160 μm at -15°C.

第1図は1.OVになるまでの持続時間を示す。図から
明らかなように、本発明の電池ム3゜B3.ム4.B4
は化成処理をしないCと同じ特性を示した。ム2.B2
は若干悪いが、全面化成処理したム1.B1よりも優れ
ている。またN a2 SO4水溶液ムとNaOH水溶
液Bを比べると若干ムの方が良い。これはアルカリ性水
溶液の方が働きが強く、したがって活物質への影響が強
いためと考えられる。
Figure 1 shows 1. It shows the duration until OV. As is clear from the figure, the battery group 3°B3. of the present invention. M4. B4
showed the same characteristics as C without chemical conversion treatment. Mu2. B2
1. is slightly worse, but the whole surface is chemically treated. Better than B1. Also, when comparing Na2 SO4 aqueous solution M and NaOH aqueous solution B, M is slightly better. This is thought to be because the alkaline aqueous solution has a stronger effect and therefore has a stronger influence on the active material.

つぎに、上記した9種類の電池を新しくつくり、20ム
で1時間放電、6ムで6時間充電のJIS寿命試験をし
、初期容量の40%未満になったサイクルを寿命とした
。第2図にその結果を示す。
Next, the nine types of batteries described above were newly made and subjected to a JIS life test of discharging at 20 m for 1 hour and charging at 6 m for 6 hours, and the cycle in which the battery became less than 40% of the initial capacity was defined as the life. Figure 2 shows the results.

図から明らかなように1本発明のム2.B2.ム3゜B
3.ム4.B4が最も優れており、つぎに全面を化成処
理したム1.B1であった。化成処理をしなかったCは
8oサイクルで寿命になった。電池Cは支持体と活物質
の界面の絶縁化による早期容量劣化と同様の原因で寿命
になったために、サイクル特性が悪かったと思われる。
As is clear from the figure, 1. the method of the present invention; 2. B2. M3゜B
3. M4. B4 was the best, followed by Mu1., which had its entire surface chemically treated. It was B1. C without chemical conversion treatment reached the end of its life after 8o cycles. It is thought that Battery C had poor cycle characteristics because it reached the end of its life due to the same cause as early capacity deterioration due to insulation at the interface between the support and the active material.

このことは寿命後の極板を観察すると、外見上は極板に
異常がないことからも推察される。なお、化成処理をし
た電池は、活物質の軟化脱落による短絡などが原因で寿
命となった。
This can be inferred from the fact that when observing the electrode plate after its life, there is no apparent abnormality in the electrode plate. In addition, batteries that underwent chemical conversion treatment reached the end of their lifespan due to short circuits caused by softening and falling off of the active material.

また1本発明の極板の下部を化成した電池が全面を予備
化成した電池ム1.B1 よりも寿命特性が優れている
のは、支持体界面が極板全体に強化されているのは、上
記したように同じであるが、活物質への影響が異なって
いるためと考えられる。
In addition, 1. A battery in which the lower part of the electrode plate of the present invention is chemically formed is a battery in which the entire surface is preformed. The reason why the life characteristics are superior to B1 is thought to be that although the support interface is strengthened throughout the electrode plate as described above, the effect on the active material is different.

すなわち、JIS寿命試験のように、一定電気量を放電
する場合、本発明の電池では、極板上部は活性なβ−P
b02であり、下部はα−PbO2が活物質中に含まれ
ているため、優先的に上部が反応すると思われる。した
がって、寿命に弱い極板下部は反応が緩和され、劣化が
抑制される。一方、全面を化成処理した電池では、極板
の全面に比較的不活性なα−PbO2が活物質中に散在
しており、一定電気量放電すると全面が同様に反応し、
比較的不活性なα−PbO2も充放電の繰り返しで徐々
に活性なβ−PbO2へかわると考えられる。したがっ
て、極板下部がとぐに温存されるわけではなく、極板下
部の軟化脱落が本発明の下部のみを化成処理したものに
比べると早く起こり寿命になると考えられる。
That is, when discharging a constant amount of electricity as in the JIS life test, in the battery of the present invention, the upper part of the electrode plate contains active β-P.
b02, and since α-PbO2 is contained in the active material in the lower part, it is thought that the upper part reacts preferentially. Therefore, the reaction in the lower part of the electrode plate, which is vulnerable to life expectancy, is alleviated and deterioration is suppressed. On the other hand, in a battery that has undergone chemical conversion treatment on the entire surface, relatively inert α-PbO2 is scattered in the active material over the entire surface of the electrode plate, and when a certain amount of electricity is discharged, the entire surface reacts in the same way.
It is thought that relatively inactive α-PbO2 gradually changes to active β-PbO2 through repeated charging and discharging. Therefore, the lower part of the electrode plate is not immediately preserved, and it is thought that the lower part of the electrode plate softens and falls off earlier than in the case of the present invention in which only the lower part is subjected to chemical conversion treatment, resulting in the end of its life.

一方、実施例では1/4まで浸漬した例について述べた
が、浸漬量は1/6までは寿命の向上に十分効果がある
。1/6より少なくなるとその効果は激減し好ましくな
い。
On the other hand, in the example, an example was described in which the product was immersed up to 1/4, but the immersion amount up to 1/6 is sufficiently effective in improving the life. If it is less than 1/6, the effect will be drastically reduced, which is not preferable.

なお上記実施例では、容量劣化に欠点を持つ鉛−カルシ
ウム系合金のエクスパンドを支持体に用いたが、従来か
ら一般によく用いられている鉛−アンチモン系合金の鋳
造格子を支持体に用いてもJIS寿命特性の向上に効果
があることが確認された。
In the above example, an expanded lead-calcium alloy, which has a drawback in capacity deterioration, was used as the support, but it is also possible to use a commonly used cast grid of lead-antimony alloy as the support. It was confirmed that it is effective in improving JIS life characteristics.

以上のように、本発明はサイクル寿命特性の大幅な向上
をはかるとともに、比較的簡単な操作で急放電特性を維
持して早期容量劣化を抑制するものである。
As described above, the present invention significantly improves cycle life characteristics, maintains rapid discharge characteristics with relatively simple operations, and suppresses early capacity deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は化成条件の異なる電池の急放電時の放電持続時
間の比較を示し、第2図はサイクル寿命特性の比較を示
す。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
図 第 2rI!J
FIG. 1 shows a comparison of discharge duration during rapid discharge of batteries with different formation conditions, and FIG. 2 shows a comparison of cycle life characteristics. Name of agent: Patent attorney Toshio Nakao and 1 other person11
Figure 2rI! J

Claims (1)

【特許請求の範囲】 (1)極板を電槽に挿入し、これに電解液である希硫酸
を加えて通電する化成工程において、希硫酸を添加する
前にpH3以上6水溶液を極板の一部が浸されるまで加
えて、理論容量の10%以下の電気量を通電したのち、
希硫酸を加えた通常の化成をすることを特徴としたペー
スト式鉛蓄電池の化成方法。 (2)水溶液が硫酸塩の中性水溶液である特許請求の範
囲第1項記載のペースト式鉛蓄電池の化成方法。 (3)水溶液がアルカリ性水溶液である特許請求の範囲
第1項記載のペースト式鉛蓄電池の化成方法。 G4)  水溶液への極板の浸漬割合が176〜3/4
である特許請求の範囲第1〜3項のいずれかに記載のペ
ースト式鉛蓄電池の化成方法。 (6)中性唯水溶液の濃度が0.1〜10重量%である
特許請求の範囲第2項記載のペースト式鉛蓄電池の化成
方法。 (@ アルカリ性水溶液の濃度が0.01〜10重量%
である特許請求の範囲第3項記載のペースト式鉛蓄電池
の化成方法。
[Claims] (1) In the chemical formation process in which an electrode plate is inserted into a battery container, dilute sulfuric acid as an electrolyte is added thereto, and electricity is applied, an aqueous solution with a pH of 3 or more 6 is applied to the electrode plate before adding dilute sulfuric acid. After adding electricity until it is partially immersed and applying an amount of electricity less than 10% of the theoretical capacity,
A method for forming a paste-type lead-acid battery, which is characterized by ordinary chemical formation with the addition of dilute sulfuric acid. (2) The method for chemically forming a paste type lead-acid battery according to claim 1, wherein the aqueous solution is a neutral aqueous solution of sulfate. (3) The method for forming a paste type lead-acid battery according to claim 1, wherein the aqueous solution is an alkaline aqueous solution. G4) The immersion ratio of the electrode plate in the aqueous solution is 176 to 3/4
A method for chemically forming a paste type lead-acid battery according to any one of claims 1 to 3. (6) The method for chemically forming a paste type lead-acid battery according to claim 2, wherein the concentration of the neutral aqueous solution is 0.1 to 10% by weight. (@ The concentration of alkaline aqueous solution is 0.01 to 10% by weight
A method for forming a paste type lead-acid battery according to claim 3.
JP57057519A 1982-04-06 1982-04-06 Chemical conversion of pastey lead storage battery Pending JPS58175260A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57057519A JPS58175260A (en) 1982-04-06 1982-04-06 Chemical conversion of pastey lead storage battery
EP83900973A EP0105379B1 (en) 1982-04-06 1983-03-29 Method of forming lead storage battery
PCT/JP1983/000097 WO1983003714A1 (en) 1982-04-06 1983-03-29 Method of forming lead storage battery
US06/563,418 US4475990A (en) 1982-04-06 1983-03-29 Method of forming lead storage batteries
DE8383900973T DE3374156D1 (en) 1982-04-06 1983-03-29 Method of forming lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057519A JPS58175260A (en) 1982-04-06 1982-04-06 Chemical conversion of pastey lead storage battery

Publications (1)

Publication Number Publication Date
JPS58175260A true JPS58175260A (en) 1983-10-14

Family

ID=13057979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057519A Pending JPS58175260A (en) 1982-04-06 1982-04-06 Chemical conversion of pastey lead storage battery

Country Status (1)

Country Link
JP (1) JPS58175260A (en)

Similar Documents

Publication Publication Date Title
US6193871B1 (en) Process of forming a nickel electrode
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPH02112165A (en) Alkaline storage battery
JPS58175260A (en) Chemical conversion of pastey lead storage battery
JPS6353669B2 (en)
US4475990A (en) Method of forming lead storage batteries
JPS6216506B2 (en)
JPH1145719A (en) Lead-acid battery
JPH0410181B2 (en)
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH0259587B2 (en)
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPS58175261A (en) Chemical conversion of pastey lead storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JPH09237632A (en) Plate for lead acid battery and manufacture thereof
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JPS6136347B2 (en)
JPS61142668A (en) Manufacture of lead storage battery
JPH06140030A (en) Sealed lead-acid battery
JPH0253908B2 (en)
JPH0259586B2 (en)
JPH04345756A (en) Manufacture of lead storage battery electrode