JPS5817492B2 - Hokiyouyoushiyobutsu Oyobi Sonoshiyorihouhou - Google Patents

Hokiyouyoushiyobutsu Oyobi Sonoshiyorihouhou

Info

Publication number
JPS5817492B2
JPS5817492B2 JP50120755A JP12075575A JPS5817492B2 JP S5817492 B2 JPS5817492 B2 JP S5817492B2 JP 50120755 A JP50120755 A JP 50120755A JP 12075575 A JP12075575 A JP 12075575A JP S5817492 B2 JPS5817492 B2 JP S5817492B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
resin
reinforcing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50120755A
Other languages
Japanese (ja)
Other versions
JPS5245673A (en
Inventor
松田祥吾
森本正信
中山興志美
木田徳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP50120755A priority Critical patent/JPS5817492B2/en
Publication of JPS5245673A publication Critical patent/JPS5245673A/en
Publication of JPS5817492B2 publication Critical patent/JPS5817492B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】 本発明は芳香族系ポリアミド繊維及び炭素繊維などの高
強度、高弾性を有する補強用繊維とエポキン樹脂及び不
飽和ポリエステルなどの熱硬化性樹脂とを強固に接着せ
しめた繊維強化プラスチックを得るための処理された補
強用繊維とその処理方法に関するものである。
Detailed Description of the Invention The present invention provides a method of firmly bonding reinforcing fibers with high strength and high elasticity such as aromatic polyamide fibers and carbon fibers to thermosetting resins such as Epoquin resin and unsaturated polyester. The present invention relates to treated reinforcing fibers for obtaining fiber-reinforced plastics and a method for treating the same.

繊維強化プラスチックは、軽量で強度の優れた構造材料
として近年とみに注目され、色々な分野に利用されてい
る。
Fiber-reinforced plastics have attracted much attention in recent years as structural materials that are lightweight and have excellent strength, and are used in a variety of fields.

最も一般的にはカラス繊維と不飽和ポリエステル樹脂或
はガラス繊維とエポキン樹脂よりなる複合材が使用され
ている。
Most commonly, a composite material consisting of glass fiber and unsaturated polyester resin or glass fiber and Epoquine resin is used.

しかし前記複合材料では、用途によって強度や寸法安定
性などが必ずしも充分満足でない場合がある。
However, the strength, dimensional stability, etc. of the composite materials may not always be fully satisfactory depending on the use.

たとえは精密機器、高速運動体、航空機、宇宙用機器、
ゴルフソヤフトなどの分野では、より一層優れた機械的
性質が要求される。
Examples include precision equipment, high-speed moving objects, aircraft, space equipment,
In fields such as golf soyafts, even better mechanical properties are required.

このような事情から、軽量で優れた機械的性質が要求さ
れるような用途については、強度や寸法安定性を高める
ためにエポキン樹脂、不飽和ポリエステル樹脂が使用さ
れ、特にエポキン繊維は補強用繊維との接着性が優れて
いることで使用されて来た。
For these reasons, for applications that require light weight and excellent mechanical properties, Epokin resin and unsaturated polyester resin are used to increase strength and dimensional stability, and Epokin fiber is especially used as a reinforcing fiber. It has been used for its excellent adhesive properties.

また補強繊維についても、より高強度、高弾性率の素材
の開発が進められ、例えは芳香族系ポリアミド繊維及び
炭素繊維、硼素繊維などが実用化されつつある。
Further, as for reinforcing fibers, materials with higher strength and higher modulus of elasticity are being developed, and aromatic polyamide fibers, carbon fibers, boron fibers, and the like are being put into practical use.

しかるに、これらの新規複合材料を使用した場合におい
てもその性能はこれまで十分発揮できないうらみがあっ
た。
However, even when these new composite materials are used, there has been a problem that they have not been able to fully demonstrate their performance.

その大きな要因は、樹脂と補強用繊維の相互接着性が優
れないため、複合材料としての強度と耐久性が十分満足
出来るものではなかったことにある。
The main reason for this is that the mutual adhesion between the resin and the reinforcing fibers is not excellent, so the strength and durability of the composite material cannot be fully satisfied.

そのため補強用頃維材料に対し、各種の物理化学的表面
処理による接着性の向上が試みられて来たが、しかしな
おト分なものでなく、高度の信頼性を要する分野にはこ
れら複合材料の用途が制限されているのが実状である。
For this reason, attempts have been made to improve the adhesion of reinforcing fiber materials through various physicochemical surface treatments, but these are still insufficient, and these composite materials cannot be used in fields that require a high degree of reliability. The reality is that its uses are limited.

したがって新規な高強度高弾性繊維と樹脂との接着性を
更に向上することによって、繊維強化複合材料の強度、
耐久性が飛躍的に向上するならば、新しい用途への適用
が可能となる。
Therefore, by further improving the adhesion between the new high-strength, high-modulus fibers and the resin, the strength of fiber-reinforced composite materials can be improved.
If durability improves dramatically, it will become possible to apply it to new uses.

本発明者らは、エポキシ樹脂、不飽和ポリエステル樹脂
と高強度高弾性の補強用繊維材料との接着性の向上につ
いて鋭意研究を進めて来た結果、補強用繊維の処理方法
として、グリシジル基をもつビニル化合物とエポキシ樹
脂用アミン系硬化剤との混合物で、該繊維をあらかじめ
処理することによって、繊維と樹脂の接着性を飛躍的に
向上せしめ得ることを究明し、種々改良を重ねた結果本
発明を完成し、所期の目的を達成するに至った。
The present inventors have conducted extensive research into improving the adhesion between epoxy resins, unsaturated polyester resins, and high-strength, high-elastic reinforcing fiber materials. We discovered that by pre-treating the fibers with a mixture of a vinyl compound and an amine curing agent for epoxy resins, we could dramatically improve the adhesion between the fibers and the resin, and after making various improvements, we made this book. The invention was completed and the intended purpose achieved.

すなわち本発明は、芳香族系ポリアミド繊維、炭素繊維
など、エポキシ樹脂、不飽和ポリエステル樹脂との結合
力の必ずしも高くない高強度高弾性繊維に、グリシジル
基をもつビニル化合物モノマー20−80重量%(以下
特記しない限り係は重量百分率を示す。
That is, the present invention uses 20-80% by weight of a vinyl compound monomer having a glycidyl group ( In the following, unless otherwise specified, weight percentages are indicated.

)とエポキシ樹脂用アミン系硬化剤との混合物をあらか
じめ繊維重量の0.1〜2.5係、好ましくは0.3〜
2.0%付着せしめ100乃至300℃の温度で1〜3
0分熱処理を施して固着せしめて、マl−IJクス樹脂
との親和性を向上せしめたものである。
) and an amine curing agent for epoxy resin in advance at a rate of 0.1 to 2.5, preferably 0.3 to 2.5, of the fiber weight.
2.0% adhesion and 1 to 3 at a temperature of 100 to 300℃
It is heat-treated for 0 minutes to fix it and improve its affinity with the MAR-IJ resin.

本発明にいうグリシジル基をもつビニル化合牧とは、グ
リシジルメタアクリレート、グリンジルアクリレート、
アリルグリンジルエーテルでありエポキシ樹脂用アミン
系硬化剤とは、エチレンジアミン、ジエチレントリアミ
ン、ジエチルアミノプロピルアミンのような脂肪族アミ
ン、ポリアミンとグリンジル化合物、エチレンオキ7ド
、プロピレンオキシドとアクリルニトリルとの反応生成
物である分離アミンアダクト、各種ポリアミド、メタフ
ェニレンジアミン、ジアミノジフェニルメタン、ジアミ
ノジフェニルスルホン、キンリレンジアミンなどの芳香
族アミン、ジンアンジアミドメンクンジアミン、ピリジ
ン、ピペリジン、アミノエチルピペラジン、イミダゾー
ル、トリエチルアミン、ベンジルジメチルアミン、ジメ
チルアミノメチルフェノール、トリメチルアミノメチル
フェノールの如き複合アミン化合物、三弗化はう素モノ
エチルアミンなどのアミン化合物である。
The vinyl compounds having a glycidyl group as used in the present invention include glycidyl methacrylate, grindyl acrylate,
Allyl grindyl ether, an amine curing agent for epoxy resins, is a reaction product of aliphatic amines such as ethylene diamine, diethylene triamine, and diethylaminopropyl amine, polyamines, grindyl compounds, ethylene oxide, propylene oxide, and acrylonitrile. There are isolated amine adducts, various polyamides, aromatic amines such as meta-phenylene diamine, diaminodiphenylmethane, diaminodiphenylsulfone, quinrylene diamine, dianediamide mencundiamine, pyridine, piperidine, aminoethylpiperazine, imidazole, triethylamine, benzyldimethylamine , dimethylaminomethylphenol, trimethylaminomethylphenol, and trifluoroboronomonoethylamine.

またN−β(アミノエチル)γ−アミノプロピルメチル
ジメトキンンラン、N−β(アミノエチル)γ−アミノ
プロピルトリメトキンンランなどのアミン系プランカッ
プリング剤も有効である。
Also effective are amine-based plan coupling agents such as N-β(aminoethyl)γ-aminopropylmethyldimethquinane and N-β(aminoethyl)γ-aminopropyltrimethoxylene.

又本発明にいう芳香族系ポリアミド繊維とは結合単位の
15モル係以上がアミド結合である芳香族ポリアミド繊
維であり、炭素繊維とはポリアクリルニl−IJル繊維
、セルロース繊維など有機繊維を炭化内至鉱鉛化した炭
素含有量80%以上を有する炭素化繊維であるが、本発
明は何ら芳香族系ポリアミド繊維と炭素繊維とに限定さ
れるものではなく、ガラス繊維、硼素繊維など、一般の
補強用繊維についても有効である。
In addition, the aromatic polyamide fiber referred to in the present invention refers to an aromatic polyamide fiber in which 15 or more moles of bonding units are amide bonds, and carbon fiber refers to organic fibers such as polyacrylnyl-IJ fibers and cellulose fibers. Although the carbonized fiber has a leaded carbon content of 80% or more, the present invention is not limited to aromatic polyamide fibers and carbon fibers, and may include glass fibers, boron fibers, etc. It is also effective for general reinforcing fibers.

更に本発明にいうエポキシ樹脂とは、分子内に2個以上
のエポキシ基を含むいわゆるエポキシ樹脂であり、更に
これらのエポキシ樹脂にフェノール系樹脂、ポリアミド
系樹脂、脂肪酸誘導体などを加えて変性したいわゆる変
性エポキシ樹脂をも含む。
Furthermore, the epoxy resin referred to in the present invention refers to so-called epoxy resins containing two or more epoxy groups in the molecule, and furthermore, so-called epoxy resins that are modified by adding phenolic resins, polyamide resins, fatty acid derivatives, etc. to these epoxy resins. Also includes modified epoxy resins.

又不飽和ポリエステル樹脂とは多塩基酸と多価アルコー
ルとの縮合反応によって得られるアルキッド樹脂を架橋
剤であるスチレン、アクリル酸エステルに溶解させた樹
脂であり、油脂、脂肪酸、フェノール樹脂などで変性し
た変性樹脂をも含む。
In addition, unsaturated polyester resin is a resin obtained by dissolving alkyd resin obtained by the condensation reaction of polybasic acid and polyhydric alcohol in styrene and acrylic acid ester as crosslinking agents, and it can be modified with oil, fat, fatty acid, phenol resin, etc. It also includes modified resins.

上述した各種グリシジル基を有するビニル化合物のモノ
マーとエポキシ樹脂用硬化剤の高弾性繊維への含浸の形
態としては、水溶液、乳化分散液、有機溶液の何れとし
てもよく、又処理の方法として浸漬、塗布、噴霧例れの
方法で処理してもよいが、処理後自然乾燥、乾熱処理、
高温熱処理などにより、取扱い可能な状態になるまで乾
燥することが好ましい。
The form of impregnation of the above-mentioned various glycidyl group-containing vinyl compound monomers and the curing agent for epoxy resin into the high elastic fibers into the high elastic fibers may be any of an aqueous solution, an emulsified dispersion, and an organic solution. Treatment may be done by coating or spraying, but natural drying, dry heat treatment,
It is preferable to dry it by high-temperature heat treatment or the like until it becomes a handleable state.

この場合繊維に含浸せしめる処理剤の付着量は、繊維重
量に対し0.1〜2.5%の範囲内が有効であり、更に
通常では0.3〜1.5%が好ましい範囲である。
In this case, the amount of the treatment agent impregnated into the fibers is effectively within the range of 0.1 to 2.5%, and more preferably 0.3 to 1.5% based on the weight of the fibers.

この含有量がo、 1%以下では樹脂と繊維の接着効果
は十分発現せず、逆に2.5%以上になれば接着力は必
ずしも優れず実質的ではない。
If the content is less than 1%, the adhesion effect between the resin and the fibers will not be sufficiently exhibited, and on the other hand, if it is more than 2.5%, the adhesive strength will not necessarily be excellent and will not be substantial.

次に乾燥の温度の最適範囲としては、100〜300℃
の温度で、処理時間として1〜30分間が最も好ましく
一般的である。
Next, the optimal range of drying temperature is 100 to 300℃.
The most preferred and common treatment time is 1 to 30 minutes at a temperature of .

又処理時間を短縮するために乾燥温度を上昇することも
差・支えないが、通常500℃以下であれは極めて短時
間の高温加熱を行ってもよい。
It is also acceptable to raise the drying temperature to shorten the processing time, but heating at a high temperature of 500° C. or less may be performed for an extremely short period of time.

グリシジル基をもつビニール化合物モノマーとエポキシ
樹脂用アミン系硬化剤との混合物が、繊維とエポキシ樹
脂や不飽和エステル樹脂との接着性を向上せしめる理由
については未だに明確ではないが、これらグリンジル基
含有ビニル化合物とアミン系硬化剤はエポキン樹脂や不
飽和ポリエステル樹脂と反応性を有し、両者の反応によ
り硬化が起るものと考えられるが、その際繊維表面に極
めて均一なかつ高密度の硬化反応が起り、樹脂と繊維の
間でいわゆるゝくさび効果“を生じるものと考えられる
Although it is still not clear why a mixture of vinyl compound monomers containing glycidyl groups and amine curing agents for epoxy resins improves the adhesion between fibers and epoxy resins or unsaturated ester resins, these glycidyl group-containing vinyls The compound and amine curing agent are reactive with Epoquin resin and unsaturated polyester resin, and curing is thought to occur through the reaction between the two, but at this time, an extremely uniform and dense curing reaction occurs on the fiber surface. It is thought that this causes a so-called "wedge effect" between the resin and the fibers.

したがって樹脂と補強用繊維との間で結合がより完全に
行われ、極めて欠陥部分の少ない強固な結合状態となり
、繊維と樹脂間の接着力が増大するものと考えられる。
Therefore, it is considered that the bonding between the resin and the reinforcing fibers is more complete, resulting in a strong bonding state with extremely few defective parts, and the adhesive strength between the fibers and the resin increases.

このような欠陥部分の少ない強固な結合状態は、とくに
芳香族系ポリアミド、炭素繊維など元来樹脂との結合力
が大きくない補強用繊維に対して特に接着力の向上効果
が顕著である。
Such a strong bonding state with few defective parts has a remarkable effect of improving adhesive strength, especially for reinforcing fibers such as aromatic polyamides and carbon fibers, which originally do not have a strong bonding strength with resins.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 1 高強度高弾性繊維のポIJ−P−フェニレンテレフタル
アミドのフィラメント1500デニールの糸をアクリル
グリフジルエーテル50部とへキサメチレンテトラミン
50部の水溶液中に浸種処理し、180℃で3分間乾燥
した。
Example 1 A filament of 1,500 denier of polyIJ-P-phenylene terephthalamide, a high-strength, high-elastic fiber, was soaked in an aqueous solution of 50 parts of acrylic glyphzyl ether and 50 parts of hexamethylenetetramine, and then heated at 180°C for 3 minutes. Dry.

この時の繊維に対する付着量を0.6係±0.1係にな
るように調節した。
At this time, the amount of adhesion to the fibers was adjusted to be 0.6 ratio ± 0.1 ratio.

この処理繊維を下記組成の夫々の樹脂液(1)エポキン
樹脂 エピコート828(ンエル化学製)100部三弗化はう
素モノエチルアミン 5部(2)不飽和ポリエステ
ル樹脂 ポリ7−ル3308(武田薬品製)100部ナイパーB
O(B本油脂製) 2部に含浸させ、繊維を一方
向に揃えた状態で熱プレスにより硬化させた。
The treated fibers were mixed with each resin solution having the following composition (1) Epoquin resin Epicoat 828 (manufactured by Neru Chemical) 100 parts borofluoromonoethylamine trifluoride 5 parts (2) unsaturated polyester resin Poly7-L 3308 (Takeda Pharmaceutical Co., Ltd.) ) 100 copies Kniper B
Two parts of O (manufactured by B Honyaku) were impregnated and cured by hot pressing with the fibers aligned in one direction.

この場合硬化条件として(1)エポキン樹脂 150℃×1時間プレス硬化 170℃×1時間アフターキュア (2)不飽和ポリエステル樹脂 130°C×1時間プレス硬化 を採用した。In this case, the curing conditions are (1) Epoquine resin Press hardening at 150℃ for 1 hour After cure at 170℃ for 1 hour (2) Unsaturated polyester resin Press hardening at 130°C for 1 hour It was adopted.

このようにして得られた成形物(繊維含有率60係)よ
り長さ20mm、巾6鳳厚さ3朋の試験片を作成し、ン
ヨートビーム三点曲げ法によりスパン間距離13m7r
L1 クロスヘッド速度1.0mm/分にて層間剪断
弾度を測定した。
A test piece with a length of 20 mm, a width of 6 mm and a thickness of 3 mm was prepared from the molded product obtained in this way (fiber content: 60 mm), and a span distance of 13 m, 7 mm was made using the three-point beam bending method.
L1 Interlaminar shear modulus was measured at a crosshead speed of 1.0 mm/min.

一方比較のため処理剤を含浸させない未処理フィラメン
トを使用して同様に成形し、試験片を作成し測定を行っ
た結果を第1表に示す。
On the other hand, for comparison, an untreated filament not impregnated with a treatment agent was molded in the same manner, a test piece was prepared, and measurements were conducted. The results are shown in Table 1.

第1表より明かなる如く、未処理のものに比し、あらか
じめ処理剤で硬化処理を行った成形品は明かに優れた剪
断強度を示している。
As is clear from Table 1, the molded products pre-cured with a treatment agent exhibit clearly superior shear strength compared to the untreated molded products.

実施例 2 実施例1と同じポリーP−フェニレンテレフタルアミド
1500デニール糸ならびにポリアクリロニトリル繊維
のトウを250℃で繊維のもつ配向性が保持されるよう
に緊張を与えなから耐炎化した後1200℃で熱処理し
炭素化して得られた炭素繊維(平均繊維直径85μ、単
糸数2700、引張強度240 kg/mm、引張弾性
率20,000kg/7n17t)のそれぞれを実施例
1と全く同一の条件で処理した後成形加工(但し繊維含
有含は前者60%、後者65%)を行った。
Example 2 The same poly P-phenylene terephthalamide 1500 denier yarn and polyacrylonitrile fiber tow as in Example 1 were made flameproof at 250°C without applying tension so as to maintain the orientation of the fibers, and then heated at 1200°C. Each of the carbon fibers obtained by heat treatment and carbonization (average fiber diameter 85μ, number of single yarns 2700, tensile strength 240 kg/mm, tensile modulus 20,000 kg/7n17t) was treated under exactly the same conditions as in Example 1. Post-molding processing (however, the fiber content was 60% for the former and 65% for the latter).

これらの成形物から実施例1と同じ試験片を採取し同様
に層間剪断強度を測定した結果を第2表に示す。
The same test pieces as in Example 1 were taken from these molded products and the interlaminar shear strength was measured in the same manner. The results are shown in Table 2.

第2表より明らかなる如く、繊維を前処理したものは未
処理の成形品に比し、優れた剪断強度を示している。
As is clear from Table 2, the pretreated fibers exhibit superior shear strength compared to the untreated molded products.

実施例 3 クリシジル基含有ビニル化合物七ツマ−としてアリルグ
リンジルエーテルを使用し、エポキン樹脂用アミン系硬
化剤の種類を変え且つその混合割合をエボキン当量とア
ミン当量が同一になるように調整した溶液に、実施例1
と同様にポリ−P −フェニレンテレツクルアミド繊維
1500デニール系を浸漬し、その付着量を05%にな
る如く調節し、熱処理后夫々エボキン樹脂並びに不飽和
ポリエステル樹脂との成形品を作成した。
Example 3 A solution in which allyl grindyl ether was used as the chrycidyl group-containing vinyl compound 7mer, the type of amine curing agent for Epoquin resin was changed, and the mixing ratio was adjusted so that the Evoquin equivalent and the amine equivalent were the same. In, Example 1
Similarly, 1500 denier poly-P-phenylene telescope fibers were dipped, the adhesion amount was adjusted to 0.5%, and after heat treatment molded products were made with Evokin resin and unsaturated polyester resin.

(繊維含量60±2%)これらの成形品より実施例1と
同様に試験片を作成し剪断強度を測定した結果を第3表
に示す。
(Fiber content: 60±2%) Test pieces were prepared from these molded articles in the same manner as in Example 1, and the shear strength was measured. Table 3 shows the results.

第3表から明かなように未処理品Aに比し処理品B、
C,Dは大+iJな剪断強度の向上が認められた。
As is clear from Table 3, compared to untreated product A, treated product B,
In C and D, a large+iJ improvement in shear strength was observed.

実施例 4 実施例1及び2と同様に、ポIJ−P−フエニレンテレ
フクルアミド繊維並びに炭素繊維についてアリルグリフ
ジルエーテル50部とへキサメチレンテトラミン50部
の水溶液に浸漬して、付着量を繊維重量の01〜25%
になるように調節し、得られたものを実施例1と同じ条
件で処理を行いエポキン樹脂との成形品を作成した(繊
維重量60%)。
Example 4 In the same manner as in Examples 1 and 2, polyJ-P-phenylene tereph clamide fibers and carbon fibers were immersed in an aqueous solution of 50 parts of allylglyphdyl ether and 50 parts of hexamethylenetetramine to determine the amount of adhesion. 01-25% of fiber weight
The resulting product was treated under the same conditions as in Example 1 to create a molded product with Epoquine resin (fiber weight: 60%).

これらの成形品より実施例1と同じように試験片を作成
し剪断強度を測定した結果を第1図に示す。
Test pieces were prepared from these molded articles in the same manner as in Example 1, and the shear strength was measured. The results are shown in FIG.

第1図より明らかなるように処理剤の付着量03〜20
%の範囲内が剪断強度の大riJの向上に効果がある。
As is clear from Figure 1, the amount of treatment agent applied is 03 to 20.
% range is effective in improving the large riJ of shear strength.

以上実施例に示した如く、従来芳香族系ポリアミド樹脂
、炭素繊維などの樹脂との接着性が優れないため複合材
料としての耐久性が十分満足できないものであったが、
カバる新規材料をグリンジル基を有するビニル化合物モ
ノマーとアミン系化合物との混合物で処理することによ
り、強度及び耐久性を飛躍的に向上させることができ、
新しい用途への展開が可能となった。
As shown in the examples above, conventionally, the durability as a composite material was not satisfactory due to poor adhesion with resins such as aromatic polyamide resin and carbon fiber.
By treating a new covering material with a mixture of a vinyl compound monomer having a grindyl group and an amine compound, strength and durability can be dramatically improved.
It has become possible to develop new uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は処理剤付着量と層間剪断強度との関係を示す。 FIG. 1 shows the relationship between the amount of treatment agent deposited and the interlayer shear strength.

Claims (1)

【特許請求の範囲】 1 ″%m香族香木系ポリアミド繊維素繊維などの補強
用繊維と熱硬化性樹脂よりなる繊維強化樹脂を得るため
の該繊維に、グリシジル基を有するビニル化合物のモノ
マーとアミン化合物との混合物をあらかじめ繊維重量の
0.1〜25%付着せしめてなる補強用処理物。 2 芳香族ポリアミド繊維、炭素繊維などの補強用繊維
と熱硬化性繊維よりなる繊維強化樹脂を得るに際し、該
繊維材料にあらかじめグリシジル基を有するビニル化合
物のモノマー20〜80重量係とアミン系化合物との混
合物を繊維重量の0.1〜2.5%付着せしめる如く該
繊維材料を−に記混合物の溶液又は分散液に接触せしめ
、次いで乾燥することを符僅とする子用頻出繊維0)処
理方法。
[Claims] To obtain a fiber-reinforced resin consisting of reinforcing fibers such as aromatic wood-based polyamide cellulose fibers and a thermosetting resin, the fibers are added with a monomer of a vinyl compound having a glycidyl group. A reinforcing treated product made by adhering a mixture with an amine compound in an amount of 0.1 to 25% by weight of the fibers in advance. 2. Obtaining a fiber-reinforced resin made of reinforcing fibers such as aromatic polyamide fibers and carbon fibers and thermosetting fibers. At this time, the fiber material is coated with the mixture described in - in such a manner that a mixture of 20 to 80 weight percent of a vinyl compound monomer having a glycidyl group and an amine compound is adhered to the fiber material in an amount of 0.1 to 2.5% by weight of the fiber. 0) Treatment method for frequently used fibers, which involves contacting with a solution or dispersion of the fibers and then drying.
JP50120755A 1975-10-08 1975-10-08 Hokiyouyoushiyobutsu Oyobi Sonoshiyorihouhou Expired JPS5817492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50120755A JPS5817492B2 (en) 1975-10-08 1975-10-08 Hokiyouyoushiyobutsu Oyobi Sonoshiyorihouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50120755A JPS5817492B2 (en) 1975-10-08 1975-10-08 Hokiyouyoushiyobutsu Oyobi Sonoshiyorihouhou

Publications (2)

Publication Number Publication Date
JPS5245673A JPS5245673A (en) 1977-04-11
JPS5817492B2 true JPS5817492B2 (en) 1983-04-07

Family

ID=14794176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50120755A Expired JPS5817492B2 (en) 1975-10-08 1975-10-08 Hokiyouyoushiyobutsu Oyobi Sonoshiyorihouhou

Country Status (1)

Country Link
JP (1) JPS5817492B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814064A (en) * 1981-07-17 1983-01-26 Pioneer Electronic Corp S/n ratio measuring circuit
DE3369353D1 (en) * 1982-11-02 1987-02-26 Akzo Nv Adhesive-coated multifilament yarn of an aromatic polyamide and a method for the manufacture thereof
JP2658308B2 (en) * 1988-12-06 1997-09-30 住友化学工業株式会社 Surface-modified inorganic fiber, method for producing the same, and method for reinforcing resin using the same
JP5477312B2 (en) * 2010-03-18 2014-04-23 東レ株式会社 Sizing agent-coated carbon fiber bundle and method for producing the same
HUE046253T2 (en) 2010-06-30 2020-02-28 Toray Industries Method for producing sizing agent-coated carbon fibers, and sizing agent-coated carbon fibers
JP5864172B2 (en) * 2011-09-09 2016-02-17 東レ・デュポン株式会社 Polyparaphenylene terephthalamide fiber composite, its production method and its use
MX349437B (en) 2011-10-04 2017-07-28 Toray Industries Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same.
US10184034B2 (en) 2011-12-05 2019-01-22 Toray Industries, Inc. Carbon fiber forming raw material, formed material, and carbon fiber-reinforced composite material
WO2023167102A1 (en) * 2022-03-04 2023-09-07 三菱ケミカル株式会社 Method for producing carbon fiber bundle composite, and carbon fiber bundle composite

Also Published As

Publication number Publication date
JPS5245673A (en) 1977-04-11

Similar Documents

Publication Publication Date Title
CA1175196A (en) Liquid matrix system based on a mixture of epoxide resin and an amine curing agent for producing fibre- reinforced plastics components
DE69838168T2 (en) BLANKS FOR MOLDING PROCESSES AND RESINS FOR THIS
TWI595030B (en) High modulus fiber reinforced polymer composite and method for manufacturing the same
CA1218569A (en) Sized carbon fibers suitable for use in composite of improved impact resistance
JPWO2007060833A1 (en) Carbon fiber bundles, prepregs and carbon fiber reinforced composite materials
EP1223015A3 (en) Chemical treatments for fibers and wire-coated composite strands for molding fiber-reinforced thermoplastic composite articles
JPS5817492B2 (en) Hokiyouyoushiyobutsu Oyobi Sonoshiyorihouhou
CN1740207A (en) A kind of epoxy resin roughening and curing agent
TWI273151B (en) Carbon fiber strand
EP0326409B1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
KR970001082B1 (en) Inorganic fiber having modifying surface and its use for reinforcement of resins
KR20160026831A (en) Compositions and methods for making thermoplastic composite materials
US4737527A (en) Fiber reinforced thermosetting resin compositions with coated fibers for improved toughness
EP0100927B1 (en) Aramid fiber coated with polyfunctional aziridine
JP4671890B2 (en) Prepreg
JPH04292634A (en) Prepreg
JPH0284577A (en) Surface-treated carbon fiber
CN106592236B (en) Small tow universal carbon fiber sizing agent, preparation method and application thereof
Rajulu et al. Chemical resistance and tensile properties of epoxy/polymethyl methacrylate blend coated bamboo fibres
JPH09176347A (en) Tubular long article produced from fiber-reinforced resin
CN109853242B (en) Carbon fiber sizing agent and preparation method thereof
JP3137671B2 (en) Prepreg
CA1306320C (en) Fiber reinforced thermosetting resin composition with coated fibers for improved toughness
JP2979483B2 (en) Coated polyamide fiber
JPH01129A (en) Interleaf-containing fiber-reinforced epoxy resin prepreg material