JPS58172505A - Measuring method of configuration - Google Patents

Measuring method of configuration

Info

Publication number
JPS58172505A
JPS58172505A JP5581082A JP5581082A JPS58172505A JP S58172505 A JPS58172505 A JP S58172505A JP 5581082 A JP5581082 A JP 5581082A JP 5581082 A JP5581082 A JP 5581082A JP S58172505 A JPS58172505 A JP S58172505A
Authority
JP
Japan
Prior art keywords
laser beam
falls
shape
detector
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5581082A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tanaka
康弘 田中
Yoshiki Ichioka
一岡 芳樹
Tatsuro Suzuki
達朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5581082A priority Critical patent/JPS58172505A/en
Publication of JPS58172505A publication Critical patent/JPS58172505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To enable the measurement of the form of the surface of an object irrespective of the scale of the divergence thereof from a concave, convex or spherical surface and thereby to enable the high-speed measurement thereof, by moving the object round and straight so that a laser beam falls thereon constantly in the vertical direction thereto, and by finding the amounts of rotating and straight movements of the object at each point on the surface thereof. CONSTITUTION:The diameter of a laser beam L1 emitted from a laser 1 is decreased by a lens 2 and a lens 3, and the beam is transmitted through a beam splitter 4 and falls on the surface 5 of an object. Numeral 5 denotes the form of the surface of a section out of those obtained by cutting the object along a plane containing an axis of rotational symmetry, and mark (a) denotes the incident beam of the laser beam L1. Initially, the surface 5 of the object is arranged, as shown by a broken line, so that the laser beam L1 falls vertically onto the center O of the surface 5 of the object. A reflected beams (b) from the surface 5 of the object is reflected to be a laser beam L2 by the beam splitter 4, and falls on the detector 6 of the position of the beam. As the detector 6, a photoelectric detector divided into two parts consisting of two photoelectric detectors and differential amplifiers is employed.

Description

【発明の詳細な説明】 本発明は、滑らかな光反射性の表面を有する回転対称な
物体の形状を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the shape of rotationally symmetric objects having smooth, light-reflecting surfaces.

従来、非球面レンズあるいは非球面鏡などの形状を測定
する方法として、機械的な接触法、あるいは干渉計を用
いる方法が知られている。しかしながら、機械的な接触
法は計測が面倒であるばかりでなく、被測定面を傷つけ
る恐れがある。一方、干渉計を用いる方法は相対精度が
非常に良く、また測定操作も比較的簡単であるが、物体
表面形状が球面からずれるに従って干渉縞の敬が増加し
、解析が困難となる。
Conventionally, mechanical contact methods or methods using an interferometer have been known as methods for measuring the shape of an aspherical lens or an aspherical mirror. However, the mechanical contact method is not only troublesome to measure, but may also damage the surface to be measured. On the other hand, the method using an interferometer has very good relative accuracy and the measurement operation is relatively simple, but as the object surface shape deviates from a spherical surface, the interference fringes become more distorted, making analysis difficult.

本発明はこのような従来方法の欠点を除去したもので、
測定すべき物体に機械的な接触を行なうことなく、非球
面の形状を容易に測定しうる形状測定方法を提供するも
のであろう 本発明(Cおいては、ビーム径を小さく絞ったレーザビ
ームを物体の表面に入射させ、その反射光の位置を検出
することにより、物体表面の形状を測定している。すな
わち、反射光の位置検出を所定の位置に配された光の位
置演出器で行ない、常にレーザビームか物体表面に垂直
に入射するように物体を回転移動および直進移動し、物
体表面上の各点について物体の回転移動量と直進移動量
をを求め、この値を基に物体の表面形状を算出している
The present invention eliminates the drawbacks of such conventional methods,
The present invention provides a shape measuring method that can easily measure the shape of an aspherical surface without making mechanical contact with the object to be measured (in C, a laser beam with a narrow beam diameter is used). The shape of the object surface is measured by making the reflected light incident on the surface of the object and detecting the position of the reflected light.In other words, the position of the reflected light is detected using a light positioning device placed at a predetermined position. The object is rotated and moved linearly so that the laser beam is always incident perpendicularly to the object surface, and the amount of rotational movement and linear movement of the object is determined for each point on the object surface. Based on these values, the object is The surface shape of is being calculated.

以下に図面を参照しつつ、本発明のより詳細な説明を行
なう。
The present invention will be described in more detail below with reference to the drawings.

第1図は本発明の一実施例を説明するだめの光学系の構
成を示す概略図である。同図において、レーザーからの
レーザビームL1は、レンズ2およびレンズ3によりビ
ーム径を絞られ、ビームスプリッタ4を透過した後、物
体の表面5に入射する。なお、6は物体をその回転対称
軸をa −b f而で切った断面のうち、その表面形状
を乃くしており、捷たaはレーザビームL゛1の入射光
を示している。
FIG. 1 is a schematic diagram showing the configuration of an optical system for explaining an embodiment of the present invention. In the figure, a laser beam L1 from a laser is narrowed down in beam diameter by lenses 2 and 3, passes through a beam splitter 4, and then enters a surface 5 of an object. Note that 6 is a cross section taken along the axis of rotational symmetry of the object at a-b f, in which the surface shape is omitted, and the cut a indicates the incident light of the laser beam L1.

初期配置として、物体表面5を同図の破線に示すように
、物体表面5の中心0にレーザビームL1が垂直に入射
するように配置する。物体表面5からの反射光すはビー
ムスプリッタ4で反射さ:ll:1・。
As an initial arrangement, the object surface 5 is arranged so that the laser beam L1 is perpendicularly incident on the center 0 of the object surface 5, as shown by the broken line in the figure. The reflected light from the object surface 5 is reflected by the beam splitter 4:ll:1.

れてレーザビームL2となり、光の位置恢出器6に入射
する。
It becomes a laser beam L2 and enters a light position detector 6.

光の位置検出器6としては、例えば第2図に示すような
、2つの光電検出器7,8と差動増幅器9からなる2分
割の光電検出・器を用いう。レーザく−ムL2が第2図
の斜線に示すように2公害1jの光電検出器の中央に入
射すると、各光電検出器の出力は等しくなり、差動増幅
器9の出力は零になる。このようにして、レーザビーム
の位置の零検出を高精度に行なえる。
As the optical position detector 6, a two-part photoelectric detector consisting of two photoelectric detectors 7, 8 and a differential amplifier 9 is used, for example as shown in FIG. When the laser beam L2 enters the center of the two photoelectric detectors 1j as indicated by the diagonal lines in FIG. 2, the outputs of each photodetector become equal and the output of the differential amplifier 9 becomes zero. In this way, zero detection of the position of the laser beam can be performed with high precision.

次に、物体表面6を第1図の実線5′で示すように、0
を中ノし・とじて上記平面内で角度αたけ(ロ)転じ、
更に、回転対称軸yに垂直なX軸方向にdたけ直進移動
させると、再びレーザヒ゛−ムL1力;物体表面5′に
垂直に入射する。この判定は、上記光の検出器6を用い
て行なう0 このようにして、物体表面5を微少鼠ずつ回転移動およ
び直進移動させて、レーザビームを物体表向に垂直に入
射させると、物体表面6の各点における回転移動量αと
直進移動jtdか11追次求められる。
Next, the object surface 6 is 0 as shown by the solid line 5' in FIG.
Cut the inside and close it, turn the angle α (b) in the above plane,
Further, when the laser beam L1 is moved straight by d in the X-axis direction perpendicular to the rotational symmetry axis y, the laser beam L1 force is again perpendicularly incident on the object surface 5'. This determination is made using the light detector 6. In this way, when the object surface 5 is rotated and moved linearly minute by minute and the laser beam is incident perpendicularly to the object surface, the object surface The amount of rotational movement α and the linear movement jtd at each point in 6 are found in 11 subsequent steps.

第3図は、この測定方法により求められる回転移動量α
および直進移動量dと、物体の表面形状形状は、回転移
動量αと直進移動量dがら、簡単な計算によって求捷る
、例として、物体表面の隣り合う2点を2次式で近似し
た場合の物体の表向形状の求め方を、第4図を参照して
説明を行なう。
Figure 3 shows the amount of rotational movement α determined by this measurement method.
The linear movement amount d and the surface shape of the object can be calculated by simple calculation using the rotational movement amount α and the linear movement amount d.For example, two adjacent points on the object surface are approximated by a quadratic equation. The method for determining the surface shape of an object in this case will be explained with reference to FIG.

第4図において、(x、y)座標は、物体表面6の中心
0を原点とし、同転対称軸をy軸、これと直角な方向を
X軸とした座標系である。また( x / 、 y l
  )座標は、A点を原点とした、(” + V )座
標に平行な座標系であり、以下′を付したものは(x′
、y′)座標糸での値を示すものとする。
In FIG. 4, the (x, y) coordinates are a coordinate system in which the center 0 of the object surface 6 is the origin, the axis of rotational symmetry is the y axis, and the direction perpendicular to this is the x axis. Also ( x / , y l
) coordinate is a coordinate system parallel to the ('' + V ) coordinate with point A as the origin, and the following '' is (x'
, y′) represents the value in the coordinate thread.

計算は回帰法VCよる。n金目の測定点Aの(x。Calculation is based on regression method VC. (x) of the nth measurement point A.

y)座標による値がxn、ynと求まっているとすれば
、A点と0点の間の距罰XT′は であるから、 と算出される。
y) If the coordinate values are determined as xn and yn, then the distance penalty XT' between point A and point 0 is calculated as follows.

またA点の近傍の物体表面形状を2次式で近似すると、 y = a (x’) +bx で表わされるから、 X7’=:XB’+tanαn+、 + (a(XB 
) +bXB’ ”””(2)とも算出される。
Also, if the object surface shape near point A is approximated by a quadratic equation, it can be expressed as y = a (x') + bx, so X7' =: XB' + tanαn+, + (a(XB
) +bXB'""" (2) is also calculated.

なお、A、B両点の物体の表面形状の傾きは夫々、 し30αtanα n  l      n+1 であるので、上式の未知係数a、bは ―α =b              ・・ ・(3
)1α  −2a XB’ ” b        −
・−(’)n+1 なる関係をもつ。
Note that the slope of the surface shape of the object at both points A and B is 30αtanα n l n+1, respectively, so the unknown coefficients a and b in the above equation are -α = b... ・(3
)1α −2a XB′ ” b −
・It has the following relationship: -(')n+1.

以上、(1) 、 (2) 、 (3) 、 (4)の
4式より、3つの未知数、a’ 、 b 、 XB’が
求まり、B点の(x、y)座標値(”n+i +)’n
+1  )は、1+□ と算出される。この漸化式に従えば物体表面の形状が順
次計算される。
Above, from the four equations (1), (2), (3), and (4), the three unknowns a', b, and XB' are found, and the (x, y) coordinate value of point B ("n+i + )'n
+1) is calculated as 1+□. According to this recurrence formula, the shape of the object surface is calculated sequentially.

なお、以上の説明においては2次近似の例を示したが、
他のn次近似(nは自然数)でも同様に物体表面の形状
を算出できることは明らかである。
In addition, in the above explanation, an example of quadratic approximation was shown, but
It is clear that the shape of the object surface can be similarly calculated using other n-th approximations (n is a natural number).

以上の説明から明らかなように、本発明によれば、滑ら
かな光反射性の表面を有する回転対称な物体であれば、
その物体表面の形状を、凹面、凸面、あるいは球面から
のずれの大きさに関係なく測定できる。また、本発明の
方法は非接触の測定法であるため、物体表面に傷をつけ
ることがない。
As is clear from the above description, according to the present invention, if a rotationally symmetrical object has a smooth light-reflective surface,
The shape of the object's surface can be measured regardless of whether it is concave, convex, or deviated from a spherical surface. Furthermore, since the method of the present invention is a non-contact measurement method, it does not damage the surface of the object.

更に、必要によっては(ロ)軸移動および直進移動の制
御や、レーザビームが物体表面へ垂直に入射しているか
否かの判定をコンピュータで行なうこともできるため、
高速測定が可能となるJ
Furthermore, if necessary, (b) it is also possible to use a computer to control axial movement and linear movement, and to determine whether or not the laser beam is incident perpendicularly to the object surface.
J enables high-speed measurement

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための光学系の構
成を示す概略図、第2図は本発明に用いる光の位置検出
器の一例の構成図、第3図は本発明の方法で得られる測
定量((ロ)転移動量、直進移動量)と物体の表面形状
との関係を表わす図、第4図は本発明の方法で得られた
測定量から物体の表面形状を算出する過程を説明する補
助説明図である。 1・・・・・・レーザjt=係、2+ 3・・・・・・
レンズ、4・・・・・・ビームスプリッタ、5・・・・
・・物体表面、6・・・・・・光の位置検出器、7,8
・・・・・・光電検出器、9・・・・・・差動増幅器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 2m
FIG. 1 is a schematic diagram showing the configuration of an optical system for explaining an embodiment of the present invention, FIG. 2 is a configuration diagram of an example of an optical position detector used in the present invention, and FIG. A diagram showing the relationship between the measured quantities ((b) rotational displacement, linear displacement) obtained by the method and the surface shape of the object, Figure 4 shows the calculation of the surface shape of the object from the measured quantities obtained by the method of the present invention It is an auxiliary explanatory diagram explaining a process of 1... Laser jt = relation, 2+ 3...
Lens, 4...Beam splitter, 5...
...Object surface, 6...Light position detector, 7,8
...Photoelectric detector, 9...Differential amplifier. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2m

Claims (1)

【特許請求の範囲】[Claims] 滑らかな光反射性の表面を有する回転対称な物体の形状
を測定するに際し、前記物体の回転対称軸を含む平面内
でレーザビームを照射し、前bビ物体の表面からのレー
ザビームの反射光の位置を所定の位置に配された光の位
置検出器で検出することにより、@記物体の表面の任意
の点からの反射光が常に同一の位置に戻るように前記物
体を回転対称軸を含む平面内で回転移動および直進移動
させ、この操作を前記物体の表面の回転対称軸を含む平
面内の各点について行ない、前記各点における回転移動
量と直進移動量から物体の表面形状を算出することを特
徴とする形状測定方法。
When measuring the shape of a rotationally symmetrical object having a smooth light-reflecting surface, a laser beam is irradiated within a plane that includes the axis of rotational symmetry of the object, and the reflected light of the laser beam from the surface of the object is measured. By detecting the position of the object with a light position detector placed at a predetermined position, the rotational symmetry axis of the object is set so that the reflected light from any point on the object's surface always returns to the same position. This operation is performed for each point in the plane containing the rotational symmetry axis of the surface of the object, and the surface shape of the object is calculated from the amount of rotational movement and the amount of linear movement at each point. A shape measuring method characterized by:
JP5581082A 1982-04-02 1982-04-02 Measuring method of configuration Pending JPS58172505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5581082A JPS58172505A (en) 1982-04-02 1982-04-02 Measuring method of configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5581082A JPS58172505A (en) 1982-04-02 1982-04-02 Measuring method of configuration

Publications (1)

Publication Number Publication Date
JPS58172505A true JPS58172505A (en) 1983-10-11

Family

ID=13009277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5581082A Pending JPS58172505A (en) 1982-04-02 1982-04-02 Measuring method of configuration

Country Status (1)

Country Link
JP (1) JPS58172505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644884A1 (en) * 1989-03-24 1990-09-28 Amiard Hugues Pivoting scanning interferometer for measuring the profile of aspherical surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644884A1 (en) * 1989-03-24 1990-09-28 Amiard Hugues Pivoting scanning interferometer for measuring the profile of aspherical surfaces

Similar Documents

Publication Publication Date Title
US5067817A (en) Method and device for noncontacting self-referencing measurement of surface curvature and profile
US3986774A (en) Gauging surfaces by remotely tracking multiple images
US3885875A (en) Noncontact surface profilometer
JPS6379004A (en) Light probe for measuring shape
GB2158228A (en) Astigmatic non-contact optical probe
EP0792438B1 (en) Method and device for determining the thickness of a layer applied to an optical fiber
US4906097A (en) Imaging and inspection apparatus and method
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
JP2576576B2 (en) Interferometry method and Fizeau interferometer using the same
JPS58172505A (en) Measuring method of configuration
JPS58172506A (en) Measuring method of configuration
JPS60142204A (en) Dimension measuring method of object
JP2787809B2 (en) Method and apparatus for measuring the refractive index of a wafer made of glass material
SU1004755A1 (en) Optical method of measuring object surface roughness height
Mashimo et al. Development of optical noncontact sensor for measurement of three-dimensional profiles using depolarized components of scattered light
JPS60104206A (en) Optical measuring device
Creath High resolution optical profiler
JP3457918B2 (en) Opposite plane parallelism measurement method and apparatus
JPS60257302A (en) Optical probe
JP2661001B2 (en) Method and apparatus for measuring refractive index distribution
Greenleaf Self-calibrating surface measuring machine
JPS6199806A (en) Measuring instrument for depth of groove
JPS63101702A (en) Optical length measuring gauge
RU2148790C1 (en) Method and device for precise contactless measurement of distance between surfaces
RU1775598C (en) Method and device for measuring parameters of transparent pipes