JPS58169873A - Selectively permeable film and its manufacture and liquid fuel cell using said film - Google Patents

Selectively permeable film and its manufacture and liquid fuel cell using said film

Info

Publication number
JPS58169873A
JPS58169873A JP57051093A JP5109382A JPS58169873A JP S58169873 A JPS58169873 A JP S58169873A JP 57051093 A JP57051093 A JP 57051093A JP 5109382 A JP5109382 A JP 5109382A JP S58169873 A JPS58169873 A JP S58169873A
Authority
JP
Japan
Prior art keywords
liquid
fuel cell
membrane
selectively permeable
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57051093A
Other languages
Japanese (ja)
Inventor
Hidejiro Kawana
川名 秀治郎
Kazunori Fujita
一紀 藤田
Kazuo Iwamoto
岩本 一男
Tatsuo Horiba
達雄 堀場
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57051093A priority Critical patent/JPS58169873A/en
Publication of JPS58169873A publication Critical patent/JPS58169873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a liquid fuel cell of excellent cell characteristic, by using an ion exchange film of excellent ion permeability further with excellent stopping power for a liquid molecule as the partition film. CONSTITUTION:A selectively permeable film is constituted such that fine particles 3 physically and chemically stable for processed liquid are held in the inside of at least an applicable hole 2 of a porous organic high molecular film 1 to provide fine hole size permeably controlled for only a gas state or liquid low molecular material or ion in said liquid. Holding of the particles 3 decreases virtual size of the hole 2 to improve selective permeability. A fine particle chemically or physically stable for a cell electrolyte, for instance, sulfuric acid and phosphoric acid or the like is only required as the particle held to a porous ion exchange film. Under a condition operated as a fuel cell, the ion exchange film as the partition film contains a cell electrolyte. Here an acid electrolyte of, for instance, sulfuric acid, phosphoric acid, etc. and alkaline electrolyte of potassium hydroxide, sodium hydroxide, etc. are used as the electrolyte.

Description

【発明の詳細な説明】 本発明は溶液中の分子あるいはイオンなどを選択的に透
過させる、所[III選択透過膜およびこの膜を隔膜と
して用い喪液体燃料醒池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a selectively permeable membrane (III) that selectively permeates molecules or ions in a solution, and a liquid fuel recovery pond using this membrane as a diaphragm.

選択透過膜は多孔質構造を有しており、この孔を通して
特定の分子やイオンを通過させることによシ、分離やそ
の他の目的のために使用されるものである。ここで、例
えばガスやイオンなどを透過させるためKは、膜の孔径
はとりわけ微小であることが必要である。しかし、これ
までの工業的に見合り走比較的簡単な多孔質膜の製造法
ではα1〜1μmの孔径とするのが限度であり、それ以
下の孔径のものを均一につくることは鑑かしかつ走。
A selectively permeable membrane has a porous structure and is used for separation and other purposes by passing specific molecules or ions through the pores. Here, in order to allow gases, ions, etc. to permeate, the pore size of the K membrane must be particularly small. However, with the industrially available and relatively simple manufacturing methods for porous membranes up until now, the limit is a pore diameter of α1 to 1 μm, and it is difficult to uniformly produce pores with smaller pore diameters. Katsurun.

本発明の1つの目的は、見かけ上の孔径を小さくした多
孔質有機高分子膜からなる選択透過膜を提供することに
ある。
One object of the present invention is to provide a permselective membrane made of a porous organic polymer membrane with a reduced apparent pore size.

また、他のi的は、イオン透過性がrぐれ、かつ液体分
子に対する阻止性のすぐれたイオン交侯膜を隔膜として
用いることKより[池特性のすぐれた液体燃料電池を提
供することにある。
Another objective is to provide a liquid fuel cell with excellent cell properties by using an ion crossing membrane with excellent ion permeability and excellent blocking properties against liquid molecules as a diaphragm. .

本発明の“選択透過膜は、多孔質有機高分子膜の少なく
とも該孔内部に被処理液体に対して物理的および化学的
に安定な微粒子が担持され、該液体中のガス状または液
体の低分子物質あるいはイオンのみが透過しうるように
制御された微小孔径を有することを特徴とする。
The selectively permeable membrane of the present invention has fine particles that are physically and chemically stable with respect to the liquid to be treated supported at least inside the pores of a porous organic polymer membrane. It is characterized by having a micropore diameter controlled so that only molecular substances or ions can pass through it.

本@明によれば、孔内部に微粒子を担持させることによ
シ、見かけ上の孔径を小さくすることにより、イオンや
ガスあるいはその他の低分子物質を選択的に通し、比較
的大きな液体分子に対してすぐれた阻止能力を示すとい
う事実の発見により見出されたものである。
According to Akira, by supporting fine particles inside the pores, by reducing the apparent pore diameter, ions, gases, and other low-molecular substances can selectively pass through to relatively large liquid molecules. This was discovered through the discovery of the fact that it exhibits excellent blocking ability against.

本発明Ω選択透過膜の断面を模式的に示し九のが第1図
である。第1図において、lは多孔質有機高分子膜、2
は孔、3Fi孔2の内部に担持された微粒子である。こ
のように、微粒子3を担持させることにより、孔2の見
かけ上の径が小さくなり、選択透過性が向上する。
FIG. 1 schematically shows a cross section of the Ω selectively permeable membrane of the present invention. In FIG. 1, l is a porous organic polymer membrane, 2
are microparticles supported inside the pores, 3Fi pores 2. By supporting the fine particles 3 in this way, the apparent diameter of the pores 2 becomes smaller and the permselectivity improves.

本発明に用いる多孔質有機高分子膜自体、即ち、材料お
よびその製法は既知のものを用いることができる。例え
ば材料としては、スチレン−ジビニルベンゼン共重合体
、スチレン−ブタジェン共重合体、ポリエチレン、ポリ
塩化ビニル、フッ素系樹脂、酢酸セルロース、ポリスル
ホンなどがある。
Known porous organic polymer membranes, ie, materials and manufacturing methods thereof, can be used in the present invention. For example, materials include styrene-divinylbenzene copolymer, styrene-butadiene copolymer, polyethylene, polyvinyl chloride, fluororesin, cellulose acetate, polysulfone, and the like.

また、多孔質膜とする方法としては例えば(1)αl〜
1μm糧度の粒径を有する液状ラテックスを平板上に流
し、粒子相互を重合させて製膜する方法、(2)膜材料
を溶剤に溶かして製膜した後、溶剤を気化させて多孔質
とする、(3)中性子を膜に照射して孔を開ける、など
の方法を用いることが゛できる。
In addition, as a method for forming a porous membrane, for example (1) αl~
A method of forming a film by pouring liquid latex having a grain size of 1 μm onto a flat plate and polymerizing the particles, (2) forming a film by dissolving the film material in a solvent, and then vaporizing the solvent to form a porous film. Methods such as (3) irradiating the membrane with neutrons to create holes can be used.

本発明において、多孔質有機高分子#(以下、率に膜と
いう、ンの孔内に微粒子を担持するに当っては例えば次
のような方法を用いることができる。
In the present invention, for example, the following method can be used to support fine particles in the pores of a porous organic polymer (hereinafter simply referred to as a membrane).

(1)化学的反応によって溶解状態から固形微粒子に変
換することのできる化合物を浴かした溶液を膜に含浸せ
しめ、かつ化学的反応により孔内部に徴収子を生成させ
る方法。
(1) A method in which a membrane is impregnated with a solution containing a compound that can be converted from a dissolved state into solid fine particles by a chemical reaction, and collectors are generated inside the pores by a chemical reaction.

具体的には、例えば(i)白金、ルテニウムあるいはパ
ラジウムなどの塩化物の溶液に膜を浸漬し、ホルマリン
、水素化ホウ素ナトリウムなどの添加あるいは水素注入
などにより、該塩化物を還元して前記金属の微粒子を孔
内部で生成する方法、(ii)AgNOx水溶液に膜を
浸漬し、HCtにより孔内部にAgC/、粒子を生成さ
せる方法あるいは0ii)Bacz2水浴液に膜を浸漬
し、H!804  により孔内部にB51804粒子を
生成させる方法などがある。
Specifically, for example, (i) the membrane is immersed in a solution of a chloride such as platinum, ruthenium, or palladium, and the chloride is reduced by adding formalin, sodium borohydride, etc., or by injecting hydrogen to remove the metal. (ii) A method in which the membrane is immersed in an AgNOx aqueous solution and AgC/particles are generated inside the pores using HCt; or (ii) A method in which the membrane is immersed in a Bacz2 water bath solution and H! There is a method of generating B51804 particles inside the pores using B51804.

微粒子の担持量を変えることによって見かけ上の孔径を
変えることができる。したがって、その担持量は目的と
する分離すべき物質やイオンの種類に応じて任意に選択
することができる。
The apparent pore size can be changed by changing the amount of fine particles supported. Therefore, the supported amount can be arbitrarily selected depending on the target substance to be separated and the type of ions.

また、微粒子としては、分離すべき物質やイオンを溶か
している被処理液体例えば溶媒に対して化学的に不活性
なもの、あるいは物理的変化を生1□1 じないもの金柑いるのが好ましい。したがって、被処理
液体の種類に応じて適宜選択することができる。一般的
には水中で用いる場合では硫酸バリウム、塩化鋏粒子等
の溶解度積の小さいM溶塩、酸性溶液中で用いる場合は
、水素イオンよりもイオン化傾向の小さい白金、金、銀
、等の貴金属などが適当である。
Further, as the fine particles, it is preferable to use kumquats that are chemically inert to the liquid to be treated, such as a solvent, in which the substance or ions to be separated are dissolved, or that do not cause any physical change. Therefore, it can be appropriately selected depending on the type of liquid to be treated. Generally, when used in water, M solution salts with a small solubility product such as barium sulfate and chloride scissor particles are used, and when used in acidic solutions, noble metals such as platinum, gold, silver, etc., which have a smaller ionization tendency than hydrogen ions. etc. are appropriate.

本発明の選択透過膜は例えば、純水製造用の逆浸4膜、
有機物除去用分離膜、食塩電解用隔膜、液体クロマトグ
ラフィー用イオン交侯膜、液体燃料電池用隔膜等として
用いることができるっ杢兄明者らは樵−の研究により、
前述の選択透過族のうち、イオン交換膜を用いた選択透
過膜を液体燃料電池の隔膜として用いることにより電池
特性を向上できることを見出し友。このような効果は上
記イオン交換膜(隔膜)がfta反応により発生したイ
オンの移動のみを効率的に行なわせ、しかも液体燃料が
カソード側に移動するのを阻止するという2つの相反す
る作用、効果が従来のイオン交換膜より改善されたため
にもたらされるものである。従来のイオン交換膜では、
多量の燃料がカソード側に移動してしまうため、カソー
ド部分で直接酸化反応が起り、カソードの酸素a度が低
Fするために、カソードの単極電位が低下し、それによ
って電池電圧がかなり低下するものでめった。また、本
発明の電池にお^ては燃料の利用率という点でも有利で
ある。
The selectively permeable membrane of the present invention is, for example, a reverse immersion 4 membrane for pure water production,
Through the research of woodcutter and others, it can be used as a separation membrane for organic matter removal, a diaphragm for salt electrolysis, an ion crossing membrane for liquid chromatography, a diaphragm for liquid fuel cells, etc.
Among the permselective members mentioned above, Tomo discovered that cell characteristics could be improved by using a permselective membrane using an ion exchange membrane as a diaphragm in a liquid fuel cell. This effect is due to two contradictory actions and effects: the ion exchange membrane (diaphragm) efficiently moves only the ions generated by the fta reaction, and also prevents the liquid fuel from moving to the cathode side. This is due to the fact that this is improved over conventional ion exchange membranes. With conventional ion exchange membranes,
As a large amount of fuel moves to the cathode side, a direct oxidation reaction occurs at the cathode, and the oxygen level at the cathode becomes low F, which lowers the monopolar potential of the cathode, which significantly reduces the battery voltage. I rarely found anything to do. The battery of the present invention is also advantageous in terms of fuel utilization.

本発明の液体燃料電池は、アノード、カソードおよび上
記両電極間に介在された隔膜を含む液体燃料電池におい
て、前記隔膜が電池用電解液に安定な微粒子を、孔内部
に担持せしめた多孔質イオン3!羨膜であることを特徴
とする。
The liquid fuel cell of the present invention is a liquid fuel cell including an anode, a cathode, and a diaphragm interposed between the two electrodes, in which the diaphragm is made of porous ions that carry fine particles stable in a battery electrolyte inside the pores. 3! It is characterized by an envious membrane.

本発明の液体燃料電池は、用いているイオン交換膜がイ
オンの選択透過性を阻害することなく、燃料に対しては
すぐれた阻止性を示すことにより、電池特性が向上する
ものである。これは前記イオン交換膜の見かけ上の孔径
が小さいためである。
The liquid fuel cell of the present invention has improved cell characteristics because the ion exchange membrane used exhibits excellent fuel blocking properties without inhibiting ion permselectivity. This is because the apparent pore size of the ion exchange membrane is small.

即ち燃料分子はイオンに比較して大きいのでイオンの透
過性は孔の大小に影響をうけKくいが、燃料分子は孔径
が小さい相通りにくくなるためであシ、これは見かけ上
の径が小さくなつ九場合も同様であるためである。
In other words, since fuel molecules are large compared to ions, ion permeability is affected by the size of the pores, but this is because fuel molecules have a small diameter and are difficult to pass through. This is because the same holds true for nine months.

本発明の電池の一例を@2図に示す。第2図は電池の概
略Vr面図を示すもので、4はアノード、5はカソード
、6は燃料ま九は燃料と電池用電解液の混合物であるア
ノライト、7は炭酸ガス排出口、8は空気などの酸化剤
供給口、9は酸化剤や生成水の出口でろシ、ここで、隔
膜1が前記微粒子を担持した多孔質イオン交換膜で博成
されている。
An example of the battery of the present invention is shown in Figure @2. Figure 2 shows a schematic Vr side view of the battery, where 4 is an anode, 5 is a cathode, 6 is a fuel, an anolite is a mixture of fuel and battery electrolyte, 7 is a carbon dioxide gas outlet, and 8 is a An oxidizing agent supply port such as air, and a filter 9 are outlets for the oxidizing agent and produced water, and a diaphragm 1 is formed of a porous ion exchange membrane supporting the fine particles.

多孔貞イオ/交侯MK担持する粒子としては電池用電解
液劉えは硫酸や9ん酸などに対し、化学的わるいは物理
的に安定な微粒子であればよい。
The particles supporting the porous metal oxide/cross-linked MK may be fine particles that are chemically resistant or physically stable to sulfuric acid, 9-acid, etc. in the battery electrolyte.

また、上記微粒子として白金、パラジウムあるいはルテ
ニウムなどの電池反応の触媒として作用するものを用い
九場合、電池特性の向上に寄与するものでるる。微粒子
の担持量としては、イオン交換膜の単位面積当り、0.
02〜2η/個2の範囲が一般的である。
Further, when the fine particles are made of platinum, palladium, or ruthenium, which acts as a catalyst for battery reactions, they contribute to improving battery characteristics. The amount of fine particles supported is 0.00000000000000 per unit area of the ion exchange membrane.
The range is generally from 02 to 2η/piece2.

燃料電池として動作する状態では隔膜としてのイオン交
換膜は電池用電解液を含むものである。
When operating as a fuel cell, the ion exchange membrane as a diaphragm contains a battery electrolyte.

ここで、上記電解液としては例えば硫酸、りん酸などの
酸性醸解液、水酸化カリウム、水酸化ナトリウム等のア
ルカリ性電解液などが用いられる。
Here, as the electrolytic solution, for example, an acidic brewing solution such as sulfuric acid or phosphoric acid, or an alkaline electrolytic solution such as potassium hydroxide or sodium hydroxide is used.

液体燃料としてはメタノール、ヒドラジン、ホルマリン
あるいはぎ酸などが用いられる。
Methanol, hydrazine, formalin, or formic acid is used as the liquid fuel.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

〔選択透過展の製造〕[Manufacture of selective transmission]

425)を、0.5 mot/ Lの塩化白金板水浴液
に1時間浸漬したt!に乾燥した。次に、水素雰囲気中
、90tZ’のmlFで@記j化白金酸を還元し、孔内
部に白金黒を生成させた。膜に言浸した塩化白金酸は、
膜1crn”当り3.2■でるり、白金黒としては膜1
cr111当り1.2〜であった。
425) was immersed in 0.5 mot/L of platinum chloride plate water bath solution for 1 hour. dried. Next, the platinic acid described above was reduced with 90 tZ' mlF in a hydrogen atmosphere to generate platinum black inside the pores. The chloroplatinic acid soaked in the membrane is
3.2 ■ per 1 crn of film, 1 film as platinum black
It was 1.2 per cr111.

上記膜についてイオンの選択透過性を調べ次。Next, examine the ion permselectivity of the above membrane.

中に浸漬し、既知の交流ブリッジ法即ち、膜を通して1
00OH! の変流を流し、ホイートストーンブリッジ
のつり合いから膜抵抗を測定する方法を用いた。この結
果、膜の電気抵抗はα52Ω・i(処理前は0.50Ω
・副諺)であり、冥質的にイオン透過性は低下していな
いことを確認した。一方、液体分子の阻止性能を調べた
結果、次の通り、看しく向上していることが判った。計
画は、液体としてメタノールを用い、その透過t(Q)
を測定し、それからF式に基づいて透過係数を求め、そ
の大、小で判定した。
1 through the membrane using the known AC bridging method, i.e.
00OH! A method was used in which the membrane resistance was measured from the Wheatstone bridge balance by flowing a variable current of . As a result, the electrical resistance of the film was α52Ω・i (0.50Ω before treatment)
・Adverse proverb), and it was confirmed that ion permeability did not decrease substantively. On the other hand, as a result of examining the liquid molecule blocking performance, it was found that the following improvement was achieved. The plan is to use methanol as the liquid and its permeation t(Q)
was measured, and then the transmission coefficient was determined based on the F formula, and judgment was made based on whether it was large or small.

Q=pXjTXΔCX5 (Q:メタノール透過量mol、 P :メタノール透
過係数mol/ (mol/l) ・m・cm” 、 
ΔT:経過時間騙、ΔC:M両側のメタノール濃度差m
ot/l、8:膜面積611”) 測定結果、Pは0.8 X I Q = mol/ (
mol/l ) ・騙・cm8(処理前はZ OX 1
0−”mat/ (mol/l)・関・31)でめった
Q=pXjTXΔCX5 (Q: methanol permeation amount mol, P: methanol permeation coefficient mol/ (mol/l)・m・cm”,
ΔT: elapsed time, ΔC: methanol concentration difference on both sides of M
ot/l, 8: membrane area 611") Measurement result, P is 0.8 X I Q = mol/ (
mol/l) ・Deception・cm8 (Z OX 1 before processing
0-"mat/ (mol/l)・Seki・31).

第3図に白金黒担持量とメタノール透過係数との関係t
−調べた結果を示す。白金黒の担持量は塩化白金酸の1
11度を楕々変えることにより調整した。
Figure 3 shows the relationship between the amount of platinum black supported and the methanol permeability coefficient.
- Show the results of your investigation. The supported amount of platinum black is 1 of chloroplatinic acid.
Adjustment was made by changing the angle of 11 degrees.

その他の担持条件は前記実施例1と同じである。Other supporting conditions were the same as in Example 1 above.

第3図から明らかなように、白金黒の担持量が増加する
に従ってメタノール透過係数は確実に小さくなって行く
ことが認められる。このことから、白金黒である微粒子
を相持させることにより膜の見かけ上の孔径を小さくで
き、液体分子の阻止能力を向上できることが判る。
As is clear from FIG. 3, it is recognized that as the amount of platinum black supported increases, the methanol permeability coefficient steadily decreases. This shows that by incorporating platinum black fine particles, the apparent pore size of the membrane can be reduced and the ability to block liquid molecules can be improved.

また、メタノール透過係数とメタノール利用率との関係
を第4図に示す。第4図から明らかな通り、メタノール
透過係数を小さくするに従ってほぼ比例的にメタノール
の利用率を高くすることができる。
Further, FIG. 4 shows the relationship between the methanol permeability coefficient and the methanol utilization rate. As is clear from FIG. 4, as the methanol permeability coefficient is reduced, the methanol utilization rate can be increased almost proportionally.

実流?112’ 実ゐ例1と同様の多孔質陽イオン交換膜を、0、1 m
ol/ Lの塩化バリウム水浴液に0.5時間浸漬した
後取り出し、これを約2mot/lの硫酸中に浸漬して
孔内部の塩化バリウムを硫酸バリウム粒子に震えた。単
位面積当9の硫酸バリウムの担持量は1 q/cm ”
で6つ次。
Actual flow? 112' A porous cation exchange membrane similar to that in Example 1 was
After being immersed in a barium chloride water bath solution of 0.1 mol/L for 0.5 hour, it was taken out and immersed in about 2 mot/L of sulfuric acid to convert the barium chloride inside the pores into barium sulfate particles. The amount of barium sulfate supported per unit area is 1 q/cm”
So 6th one.

上記膜のメタノール透過係数は0.65X10−@mo
t/ (mot/l)・騙・備3 である。
The methanol permeability coefficient of the above membrane is 0.65X10-@mo
t/ (mot/l), deception, and bei3.

実施例3 実施例1と1川様の陽イオン交換膜を、0.5〜1mo
l/lの硝酸銀水IiI液中に1時間浸漬した後取り出
し、これを約2nnot/ tの塩酸中に浸漬して孔内
部の硝ill銀を塩化銀の粒子に変えた。単位面積(h
−)当りの塩化銀の担持量は0.5′qであった。
Example 3 A cation exchange membrane of Example 1 and Ichikawa was used in an amount of 0.5 to 1 mo.
After being immersed in l/l silver nitrate solution III for 1 hour, it was taken out and immersed in about 2 nnot/t hydrochloric acid to convert the silver nitrate inside the pores into silver chloride particles. Unit area (h
The amount of silver chloride supported per (-) was 0.5'q.

上記膜のメタノール透過係数は1.0X10−’mol
/ (mol/l) ・W ・cm”であった。
The methanol permeability coefficient of the above membrane is 1.0X10-'mol
/ (mol/l)・W・cm”.

〔成体燃料電池の製作〕[Production of adult fuel cell]

実施例4 実施例1で製造した白金黒担持陽イオン交換膜を用い、
第2図に示す構成のメタノール燃料電池(準位電池)を
製作した。即ち、タンタル製金網に触媒として白金黒を
1備2当920■、結着剤としてポリテトラフルオロエ
チレンを5#lJl]えたものを塗布後焼成し、カソー
ド及びアノードを作製する。両者の間に白金黒担持陽イ
オン交換膜を介在させ、アノード側からメタノールと希
硫酸を混合した電解液を供給する。カソード側には空気
を供給すると、酸素と水素イオンが結合して水を生成す
る。アノードではメタノールが水と反応して水素イオン
、電子と炭酸ガスを発生する。水素イオンは陽イオン交
換膜を通ってカソードに運する。炭酸ガスは気泡となっ
て電池外へ排出され、電子は外部回路を流れて電力を発
生する。この際白金黒担持陽イオン交![はメタノール
がカソードへ達するのを阻止しており、カソード性能の
低下を防止すると共にメタノールの利用効率の向上に寄
与している。第5図は上記燃料電池(曲mA)と無処理
陽イオン交換膜を用いた燃料1に池(曲線B)の電池電
圧の性能を比較したものである。白金黒担持陽イオン交
換膜を用いた実施例のものは50 m A /cm ”
の1流密度で比較すると無処理のイオン交換膜を用いた
場合に比較して0.03 Vの電池電圧の向上が見られ
た。
Example 4 Using the platinum black supported cation exchange membrane produced in Example 1,
A methanol fuel cell (level cell) having the configuration shown in FIG. 2 was manufactured. That is, a cathode and an anode are prepared by coating a tantalum wire mesh with platinum black (1/2/920 cm) as a catalyst and polytetrafluoroethylene (5 #1 Jl) as a binder and then firing. A platinum black supported cation exchange membrane is interposed between the two, and an electrolytic solution containing methanol and dilute sulfuric acid is supplied from the anode side. When air is supplied to the cathode side, oxygen and hydrogen ions combine to produce water. At the anode, methanol reacts with water to generate hydrogen ions, electrons, and carbon dioxide gas. Hydrogen ions are transported to the cathode through a cation exchange membrane. The carbon dioxide gas forms bubbles and is expelled from the battery, and the electrons flow through an external circuit to generate electricity. At this time, platinum black supported cation exchange! [ prevents methanol from reaching the cathode, prevents deterioration of cathode performance, and contributes to improving methanol utilization efficiency. FIG. 5 compares the cell voltage performance of the above fuel cell (curve mA) and the fuel cell using untreated cation exchange membrane (curve B). The example using a platinum black-supported cation exchange membrane had an output of 50 mA/cm.
When comparing the single flow density of , an improvement in battery voltage of 0.03 V was observed compared to when an untreated ion exchange membrane was used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一夾施例艷なる選択透過膜の断面構造
の模式図、第2図は本発明の一実施例になる液体燃料電
池(単位電池)の断面構造を示す概略図、第3図は本発
明の一実施例になる選択透過膜の白金担持量とメタノー
ル透過係数との関係を示すグラフ、第4図は同じく本発
明の一実施例になる選択透過膜のメタノール透過係数と
メタノール利用率との関係を示すグラフおよびijg5
図は本発明の一実施例になる液体燃料電池の#を流密度
と電池電圧との関係を示すグラフである。 l・・・多孔質高分子膜、2・・・孔、3・・・微粒子
、4・・・アノード、5・・・カソード、6・・・燃料
またはアノラχ l 口 幕z図 避3図 t3受、黒担才李量 とグy/cgz)鑵4図
FIG. 1 is a schematic diagram showing the cross-sectional structure of a permselective membrane according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the cross-sectional structure of a liquid fuel cell (unit cell) according to an embodiment of the present invention. Figure 3 is a graph showing the relationship between the amount of platinum supported and the methanol permeability coefficient of a selectively permeable membrane which is an embodiment of the present invention, and Figure 4 is a graph showing the methanol permeability coefficient of a selectively permeable membrane which is also an embodiment of the present invention. Graph showing the relationship between and methanol utilization rate and ijg5
The figure is a graph showing the relationship between #, flow density, and cell voltage of a liquid fuel cell according to an embodiment of the present invention. l...Porous polymer membrane, 2...pores, 3...fine particles, 4...anode, 5...cathode, 6...fuel or anola χ l Opening curtain z Illustration 3 t3 receiver, black teacher li quantity and guy/cgz) 鑵4 figure

Claims (1)

【特許請求の範囲】 1、多孔質有機高分子膜の少なくとも鎖孔の内部に被処
理液体に対し物理的および化学的に安定な微粒子が担、
持され、#、液体中のガス状または液状の低分子物質あ
るいはイオンのみが透過しうるように制御され九微小孔
径を有することを特徴とす低分子のみを選択的に透過し
得る大きさであることを特徴とする特許請求の範囲第4
項記載の選択透過膜、。 3、多孔質有機高分子膜がイオン交換膜であることを特
徴とする特許請求の範囲第1項または第2項記載の選択
透過膜。 4、制御された孔径が被処理液体中の水素イオンのみが
透過し得る大きさであることを特徴とする特許請求の範
囲第2項を九は第3項記載の選択透過膜。 5、微粒子が水素イオンよシもイオン化傾向の小さい貴
金属ま九はその化合物であることを特徴とする特許請求
の範11g4項記載の選択透過膜。 6、イオン交換膜が合成樹脂、合成セルロースお−1よ
び天然セルロースから選ばれるものである特許請求の範
囲第4項記載の選択透過膜。 7、イオン交換膜が合成樹脂、合成セルロースおよび天
然セルロースから選ばれるものであることを特徴とする
特許請求の範囲第4項記載の選択透過膜。 8、化学的反応によって固形粒子に変換することのでき
る化合物を溶かした溶液を多孔質有機高分子膜に含浸せ
しめ、かつ化学的反応によp少なくとも孔内部に微粒子
を生成させることを特徴とする選択透過膜の製法。 9、固体状化合物を溶かした溶液を多孔質有機高分子膜
に含浸し、かつ溶媒を除去することにより少なくとも孔
内部に9粒子を生成させることを特徴とする選択透過膜
の製法。 10、アノード、カソードおよび両電極間に介在された
隔膜を言む液体燃料電池において、前記隔膜が電池用電
解液に安定な微粒子を、孔内部に一担持せしめることに
よ多制御された孔径を有する多孔質イオン陽交換膜であ
ることを特徴とする液体燃料電池。 11、前記微粒子が′wlL池反応の九めの触媒として
作用するものであることを特徴とする特許請求の範囲第
1θ項記載の液体燃料電池。 12、前記#粒子が白金、パラジウムおよびルテニウム
から選ばれる少なくともl檀であることを特徴とする特
許請求の範囲m111項記載の液体燃料電池。 13、隔膜の単位面積尚りの微粒子の相持量は0.02
〜211I/ cm ”であることを特徴とする特許請
求の範囲第7項ま九は第11項記載の液体燃料電池。 14、 Ill池用電解液が酸性電解液であることを特
徴とする特許請求の範囲第10項または第11項記載の
液体燃料電池。
[Claims] 1. Fine particles that are physically and chemically stable with respect to the liquid to be treated are supported at least inside the chain pores of the porous organic polymer membrane,
It is characterized by having a micropore diameter that is controlled so that only gaseous or liquid low molecular weight substances or ions in the liquid can pass through it. The fourth claim characterized in that
The selectively permeable membrane described in Section 1. 3. The selectively permeable membrane according to claim 1 or 2, wherein the porous organic polymer membrane is an ion exchange membrane. 4. The selectively permeable membrane according to claim 2, wherein the controlled pore diameter is such that only hydrogen ions in the liquid to be treated can pass therethrough. 5. The selectively permeable membrane according to claim 11g4, wherein the fine particles are a compound of a noble metal that has a smaller tendency to ionize than hydrogen ions. 6. The selectively permeable membrane according to claim 4, wherein the ion exchange membrane is selected from synthetic resin, synthetic cellulose-1, and natural cellulose. 7. The selectively permeable membrane according to claim 4, wherein the ion exchange membrane is selected from synthetic resin, synthetic cellulose, and natural cellulose. 8. A porous organic polymer membrane is impregnated with a solution containing a compound that can be converted into solid particles by a chemical reaction, and fine particles are generated at least inside the pores by the chemical reaction. Manufacturing method of selectively permeable membrane. 9. A method for producing a selectively permeable membrane, which comprises impregnating a porous organic polymer membrane with a solution containing a solid compound and removing the solvent to generate particles at least inside the pores. 10. In a liquid fuel cell, which refers to a diaphragm interposed between an anode, a cathode, and both electrodes, the diaphragm has a well-controlled pore size by carrying particulates stable in the battery electrolyte inside the pores. A liquid fuel cell characterized in that it is a porous ion cation exchange membrane. 11. The liquid fuel cell according to claim 1θ, wherein the fine particles act as a catalyst for the 'wlL pond reaction. 12. The liquid fuel cell according to claim 111, wherein the # particles are at least one selected from platinum, palladium, and ruthenium. 13. The amount of fine particles supported per unit area of the diaphragm is 0.02
Claims 7 and 9 are the liquid fuel cell according to claim 11, characterized in that the electrolyte is an acidic electrolyte. A liquid fuel cell according to claim 10 or 11.
JP57051093A 1982-03-31 1982-03-31 Selectively permeable film and its manufacture and liquid fuel cell using said film Pending JPS58169873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051093A JPS58169873A (en) 1982-03-31 1982-03-31 Selectively permeable film and its manufacture and liquid fuel cell using said film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051093A JPS58169873A (en) 1982-03-31 1982-03-31 Selectively permeable film and its manufacture and liquid fuel cell using said film

Publications (1)

Publication Number Publication Date
JPS58169873A true JPS58169873A (en) 1983-10-06

Family

ID=12877197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051093A Pending JPS58169873A (en) 1982-03-31 1982-03-31 Selectively permeable film and its manufacture and liquid fuel cell using said film

Country Status (1)

Country Link
JP (1) JPS58169873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108658A (en) * 1997-10-10 2011-06-02 3M Co Manufacturing method of membrane electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108658A (en) * 1997-10-10 2011-06-02 3M Co Manufacturing method of membrane electrode

Similar Documents

Publication Publication Date Title
CN110869538B (en) Reinforced diaphragm for alkaline hydrolysis
US8900435B2 (en) Separating gas using ion exchange
JP5468830B2 (en) Gas separation with immobilized buffer
US7938891B2 (en) Using ionic liquids
US20090301297A1 (en) Producing Articles That Include Ionic Liquids
Lee et al. Cellulose nanocrystals–blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents
US20090092882A1 (en) Fuel cell with flow-through porous electrodes
US9446350B2 (en) Gas decomposition apparatus and method for decomposing gas
US20140326603A1 (en) Carbon dioxide permeation device and method of transporting carbon dioxide
EP3403081A1 (en) Electrochemical sensor
Kim et al. Sulfonated poly (ether ether ketone) composite membranes containing microporous layered silicate AMH-3 for improved membrane performance in vanadium redox flow batteries
Chen et al. Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries
US3350232A (en) Homeoporous electrode for electrochemical devices, method of its manufacture, and fuel cell incorporating such electrodes
JPH04305249A (en) Production of catalyst for liquid fuel battery and production of electrode thereof
JP2005531891A (en) Fuel cell with polymer electrolyte membrane grafted by irradiation
US20190074522A1 (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
JP2006225218A (en) Oxygen generating electrochemical element
JPH06260183A (en) Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same
JPS58169873A (en) Selectively permeable film and its manufacture and liquid fuel cell using said film
JP4910305B2 (en) A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.
JP2002500806A (en) Electrolytic reactor such as fuel cell with zeolite membrane
JP6859963B2 (en) Redox flow fuel cell
Banerjee et al. Role and Important Properties of a Membrane with Its Recent Advancement in a Microbial Fuel Cell. Energies 2022, 15, 444
JP2005038620A (en) Electrolyte membrane for alcohol type fuel cell, membrane electrode junction for alcohol type fuel cell, alcohol type fuel cell, and manufacturing method of electrolyte membrane for alcohol type fuel cell
JPS6051505A (en) Gas selective composite membrane