JPS58164150A - Battery - Google Patents

Battery

Info

Publication number
JPS58164150A
JPS58164150A JP57048204A JP4820482A JPS58164150A JP S58164150 A JPS58164150 A JP S58164150A JP 57048204 A JP57048204 A JP 57048204A JP 4820482 A JP4820482 A JP 4820482A JP S58164150 A JPS58164150 A JP S58164150A
Authority
JP
Japan
Prior art keywords
battery
heat
hollow body
outside
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57048204A
Other languages
Japanese (ja)
Inventor
Ryoji Okazaki
良二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57048204A priority Critical patent/JPS58164150A/en
Publication of JPS58164150A publication Critical patent/JPS58164150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To efficiently release heat generated in a battery to make possible use at high rate discharge and keep safety even in misuse such as short circuit by setting a metallic sealed hollow body, and filling liquid, and connecting electrically one electrode and an outer terminal with the hollow body. CONSTITUTION:When a positive terminal and a negative terminal are shorted, or a battery is discharged at large current, joule heat is generated inside the battery, and battery temperature is increased. Heat is released to outside in the outside of the battery, and transmitted to the side wall of a tube 2'' in the center portion. Pure water in the tube is heated and vaporize and heat is absorbed by temperature increase and heat of vaporization. Vapor is cooled by outside air in a cap 2', and liquefied to water, and heat of condensation is released at the same time. Heat generated in the battery is quickly released outside and overheating inside the battery is suppressed. Liquefied water in the cap 2' moves along inner wall of the tube 2'' and again vaporized by heat in the inside of the battery, and then liquefied. This cycle is repeated and water functions as heat transmission media.

Description

【発明の詳細な説明】 本発明は強放電時、短絡時に自己発熱により過熱し易い
比較的大形で高出力の電池、例えば、大形の非水電解液
リチウム電池、アルカリ電解液電池などに好適な熱放散
機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to relatively large, high-output batteries that tend to overheat due to self-heating during strong discharge or short circuit, such as large non-aqueous electrolyte lithium batteries, alkaline electrolyte batteries, etc. The present invention relates to a suitable heat dissipation mechanism.

従来、上記の電池においては強放電で使用する場合、電
池の自己発熱のため電池温度が上昇し、電池のセパレー
タ、ガスケット、外装体などのプラスチック材料が溶融
、或いは軟化して電池が破損するなどの理由で、放電電
流の上限が規制され、機器側で必要とする十分な出力を
供給することが困難で、機器の設計に制約が加えられて
いる場合が多かった。また、誤使用により、電池の両極
端子を短絡させたり、短絡に近い状態で接続された場合
、或いは内部短絡をした場合などには自己発熱により上
記の如き電池の破損が発生したり、著しい場合には破裂
、爆発、発火に至るなど危険性が高かった。これらの問
題に対して、従来電池内や機器に電流ヒユーズや温度ヒ
ユーズを設けて過大電流が流れた場合に回路を断つこと
により事故を未然に防ぐ方法が一部で採られているが、
電池内にヒユーズを設ける場合はヒユーズの取換えが不
能で不経済なことや、電池内にヒユーズを取付けるスペ
ースを確保することや、作業の頻雑性のために実用性が
とぼしかった。又、機器にヒユーズを取付ける場合は、
機器外で電池を短絡させるなど取扱いの誤りによる危険
を防ぐことができなかった。
Conventionally, when the above-mentioned batteries are used with strong discharge, the temperature of the battery rises due to self-heating of the battery, causing plastic materials such as the battery separator, gasket, and exterior body to melt or soften, resulting in damage to the battery. For this reason, the upper limit of the discharge current is regulated, making it difficult to supply the sufficient output required by the equipment, and often placing constraints on equipment design. In addition, if the battery's terminals are short-circuited or connected in a near-short-circuit condition due to misuse, or if an internal short-circuit occurs, the battery may be damaged as described above due to self-heating, or in severe cases. There was a high risk of rupture, explosion, or fire. To address these problems, some methods have been adopted to prevent accidents by installing current fuses and temperature fuses in batteries and equipment to cut off the circuit when excessive current flows.
When a fuse is provided within a battery, it is not practical because it is impossible to replace the fuse, which is uneconomical, and the space required to install the fuse within the battery is required and the work is frequent. Also, when installing fuses on equipment,
It was not possible to prevent dangers due to mishandling, such as short-circuiting of batteries outside the equipment.

本発明は上記従来例における諸問題を解決し、電池内で
発生した熱量を有効的に電池外部に放散し、電池発熱に
よる危険性を抑制して大電流放電での使用を可能とする
とともに短絡などの誤使用時にも安全な電池を提供する
ことを目的とするものである。
The present invention solves the problems in the conventional examples described above, effectively dissipates the amount of heat generated within the battery to the outside of the battery, suppresses the danger of battery heat generation, enables use with large current discharge, and short circuits. The aim is to provide batteries that are safe even when used incorrectly.

本発明は電池の内部から電池容器を貫通して電池外に一
部が露出する金属性の密封中空体を設け、この中空体の
内部は減圧もしくは真空状態とし、液体を内封したこと
を第1の特徴とし、さらに中空体が一方の電極と外部端
子とを電気的に導通してなることを第2の特徴とするも
のである。
The present invention provides a metallic sealed hollow body that penetrates the battery container from the inside of the battery and is partially exposed to the outside of the battery, and the interior of this hollow body is kept in a reduced pressure or vacuum state, and a liquid is sealed inside. In addition to the first feature, the second feature is that the hollow body electrically connects one electrode and the external terminal.

本発明における作用効果は、先づ第1に、電池内部で発
生した熱を上記の中空体へ伝導させて電池外部に放散さ
せて電池の自己発熱による温度上昇を抑制するもので、
上記中空体に電池内部の熱が伝導して温度が上昇すると
、その内部の一部の体積を占めて封じられている液体の
温度の上昇とともに液体が蒸発に必要な熱量(蒸発潜熱
)を得て気化し、中空体の内部に拡がって電池内部より
はるかに温度が低い電池外部に露出している部分の中空
体内部において、気化した蒸気が冷却されて液化し、そ
の際、凝縮熱として放散した熱は中空体を通じて電池外
部に放散される。また液化した液体は再び電池内部の高
温度に戻り電池内の温。
The effects of the present invention are, firstly, that the heat generated inside the battery is conducted to the hollow body and dissipated to the outside of the battery, thereby suppressing the temperature rise due to self-heating of the battery;
When the heat inside the battery is conducted to the hollow body and the temperature rises, the temperature of the liquid that occupies a part of the interior volume increases and the liquid gains the amount of heat necessary for evaporation (latent heat of vaporization). The vaporized vapor spreads inside the hollow body and is cooled and liquefied in the part of the hollow body that is exposed to the outside of the battery, which has a much lower temperature than the inside of the battery, and is dissipated as heat of condensation. The generated heat is dissipated to the outside of the battery through the hollow body. The liquefied liquid returns to the high temperature inside the battery and lowers the temperature inside the battery.

度を吸収して気化し電池外部に露出する中空体を通して
熱を放散し液化するというサイクルをくりかえし、電池
内部の熱量を中空体に内封した液体を媒体として効果的
に電池外部に放散することができる。この際、中空体内
の空間を減圧又は真空にすることにより液体の気化を容
易にするとともに、中空体内の過大な圧力上昇を抑制で
きる。
By repeating the cycle of absorbing heat, vaporizing it, dissipating heat through the hollow body exposed to the outside of the battery, and liquefying it, the heat inside the battery is effectively dissipated to the outside of the battery using the liquid sealed inside the hollow body as a medium. Can be done. At this time, by reducing the pressure or creating a vacuum in the space within the hollow body, it is possible to facilitate the vaporization of the liquid and to suppress an excessive rise in pressure within the hollow body.

また本発明における金属製の中空体は一方の極板と接続
することにより集電体としての機能を発揮し、電池外部
に露出している部分は直接、電池端子とするか、あるい
は電池端子を接続するための導電媒体とすることができ
る。
In addition, the metal hollow body in the present invention functions as a current collector by connecting it to one of the electrode plates, and the part exposed to the outside of the battery can be directly used as a battery terminal, or can be used as a battery terminal. It can be a conductive medium for connecting.

本発明において、中空体の材質は電池内の発電    
 −要素と接触した場合でも耐食性を有することが前提
であり、例えば非水電解液電池において、筒体が正極集
電体を兼ねる場合はアルミニウム、チタン、ステンレス
スチールを用いることができ、負極集電体を兼ねる場合
はニッケル、銅、ステンレススチール、チタン等を用い
ることができる。まだ、アルカリ電解液を用いるニッケ
ル・カドミウム電池ではニッケル、亜鉛負極を用いるア
ルカリ−次電池で正極集電体な兼ねる場合はニッケル、
負極集電体を兼ねる場合は少くとも電池内部に位置する
部分の表面が銅、真鍮、錫工被われた金属を用いること
ができる。
In the present invention, the material of the hollow body is
- It is assumed that it has corrosion resistance even when it comes into contact with elements. For example, in non-aqueous electrolyte batteries, if the cylinder also serves as the positive electrode current collector, aluminum, titanium, or stainless steel can be used, and the negative electrode current collector If it also serves as a body, nickel, copper, stainless steel, titanium, etc. can be used. Nickel is still used in nickel-cadmium batteries that use an alkaline electrolyte, and nickel is used in alkaline batteries that use a zinc negative electrode when it also serves as the positive electrode current collector.
When serving also as a negative electrode current collector, a metal whose surface is covered with copper, brass, or tinwork at least in the portion located inside the battery can be used.

また筒体の内部に封入する液体は筒体の内部空間の一部
を占有するもので、他の空間は減圧又は真空状態に維持
され、液体は中空体の壁を介して電池内部に存在した状
態で本発明の効果を有効に発揮するもので、電池を正立
させた場合に最も効果がある。これは前述した液化、気
化のサイクルによる放熱機構から容易に理解されよう。
In addition, the liquid sealed inside the cylinder occupied a part of the internal space of the cylinder, and the other space was maintained in a reduced pressure or vacuum state, and the liquid existed inside the battery through the wall of the hollow body. The effect of the present invention is effectively exhibited in this state, and the effect is most effective when the battery is placed upright. This can be easily understood from the heat dissipation mechanism based on the liquefaction and vaporization cycles described above.

又、筒体内部に封入する液体は蒸発潜熱と凝固熱が大き
い液体を選択することが望ましく、沸点は常温以上で電
池の破損が懸念される温度以下とするのが望ましく、身
近かな材料として水を用いることができる。
In addition, it is desirable to select a liquid that has a large latent heat of vaporization and heat of solidification as the liquid sealed inside the cylinder, and its boiling point should preferably be above room temperature and below the temperature at which there is concern about battery damage. can be used.

さらに中空体の形状は電池内部に位置する部分、電池外
部に位置する部分ともに表面積が大きくて熱吸収及び熱
放散を行い易い形にすることにより効果が大きくガリ、
筒体の壁の厚さは機械的強度を確保するに足る最小限の
厚さにすれば効果的である。
Furthermore, the shape of the hollow body has a large surface area for both the internal and external parts of the battery, making it easy to absorb and dissipate heat.
It is effective to set the wall thickness of the cylinder to the minimum thickness sufficient to ensure mechanical strength.

以下に実施例を説明する。Examples will be described below.

第1図は本発明を適用した電池の断面を示したもので、
1はポリプロピレン製の封口蓋、2はステンレススチー
ル製の中空体で、封口蓋1の中央部の透孔を貫通して電
池内部から外部に一部が突出している。この中空体2は
負極端子として機能するキャップ部2−負極集電体とし
て機能する筒部21とから構成され、筒部の中空部を1
0 +oHgで減圧して精製水3を中空部の底部に注入
したのち、キャップ部21と筒部2IVフランジ部2“
1とをレーザ溶接で接合して気密構造としている。4,
4′はステンレススチール製のワッシャーであり、封口
蓋1と中空体2とをカシメによシ一体化するための補強
材として設けている。6は筒部2“の外壁に密着した金
属リチウムから成る負極、6はポリプロピレン不織布製
のセパレータを兼ねた保液材、7はフッ化炭素を主成分
とし、これに炭素粉とフッ素樹脂粉を添加して加圧成型
した正極である。8は正極端子を兼ねたステンレススチ
ール製の電池容器で、封口蓋1を介して開口部の内方へ
の折り曲げにより電池要素を密封している0正極7及び
保液材6にはγ−グチロラクトンに1%JIZ−のホウ
フッ化リチ☆ムを溶解させた電解液を含浸させている。
Figure 1 shows a cross section of a battery to which the present invention is applied.
Reference numeral 1 denotes a sealing lid made of polypropylene, and numeral 2 denotes a hollow body made of stainless steel, which passes through a hole in the center of the sealing lid 1 and partially protrudes from the inside of the battery to the outside. This hollow body 2 is composed of a cap part 2 that functions as a negative electrode terminal and a cylindrical part 21 that functions as a negative electrode current collector.
After reducing the pressure to 0 +oHg and injecting the purified water 3 into the bottom of the hollow part, the cap part 21, the cylinder part 2IV, the flange part 2''
1 are joined by laser welding to form an airtight structure. 4,
Reference numeral 4' denotes a washer made of stainless steel, which is provided as a reinforcing material for integrating the sealing lid 1 and the hollow body 2 by caulking. 6 is a negative electrode made of metallic lithium that is in close contact with the outer wall of the cylindrical portion 2''; 6 is a liquid-retaining material made of polypropylene nonwoven fabric that also serves as a separator; and 7 is a material mainly composed of fluorocarbon, in which carbon powder and fluororesin powder are added. 8 is a stainless steel battery container that also serves as a positive electrode terminal, and the battery element is sealed by bending the opening inward through the sealing lid 1. 7 and the liquid retaining material 6 are impregnated with an electrolytic solution in which 1% JIZ- lithium borofluoride is dissolved in γ-gutyrolactone.

この構成°の電池において正・負極端子を外部短絡させ
るか、もしくは大電流で放電させた場合、ジュール熱が
電池内に発生して電池温度が上昇する。この場合、電池
の外側部での電池外への放熱とともに、中心部では筒部
21の側壁に伝熱し、筒部内部の精製水3が加熱される
ことにより気化し、温度上昇に必要な熱と気化熱として
電池内の熱を吸収し、気化した水蒸気は中空体2のキャ
ップ部21で外気により冷却され液化して水となり、同
時に凝縮熱を放散することにより、電池内部の発生熱を
迅速に外部に放散させ、電池内部の過熱を抑制する。キ
ャップ部21で液化した水は筒部21の内壁に沿って移
動し再び電池内部の熱で気化し、キャップ部21で液化
するサイクルをくりかえし、伝熱媒体として作用する。
When the positive and negative terminals of a battery with this configuration are externally shorted or discharged with a large current, Joule heat is generated within the battery and the battery temperature rises. In this case, heat is radiated to the outside of the battery at the outer part of the battery, and heat is transferred to the side wall of the cylindrical part 21 in the center part, and the purified water 3 inside the cylindrical part is heated and vaporized, and the heat necessary to raise the temperature is The vaporized water vapor absorbs the heat inside the battery as heat of vaporization, and the vaporized water vapor is cooled by the outside air in the cap part 21 of the hollow body 2 and liquefies into water. At the same time, the heat generated inside the battery is quickly dissipated by dissipating the condensation heat. dissipates to the outside, suppressing overheating inside the battery. The water liquefied in the cap part 21 moves along the inner wall of the cylindrical part 21, is vaporized again by the heat inside the battery, and is liquefied in the cap part 21. The cycle of water liquefied in the cap part 21 is repeated, and acts as a heat transfer medium.

尚、第1図において実線矢印は蒸気の移動方向、点線矢
印は還流液体の移動方向を示している〇 本発明の効果を確認するため、直径60朝、高さ50 
mの電池を試作し、本発明品と従来品との比較を行った
。本発明品Aは先記の実施例の構造の電池、従来品Bは
実施例の構成のうち、中空体の外形と材質が同じで中空
部のないものを用い、これを負極集電体兼負極端子とし
た以外は同〒構成とした。第2図は双方の電池を短絡さ
せた場合の電池の外壁の温度と正・負極間隙に温度セン
サーを挿入して計測した電池内部温度の変化を示したも
のである。第2図において実線は従来品Bの特性を示し
、点線が本発明品Aの特性を示す。・印は電池の外壁温
度、○印は電池の内部温度の各実測点である。
In Fig. 1, the solid line arrow indicates the direction of movement of steam, and the dotted line arrow indicates the direction of movement of reflux liquid. In order to confirm the effect of the present invention, a diameter of 60 mm and a height of 50 mm was used.
A prototype battery was manufactured and a comparison was made between the product of the present invention and a conventional product. The product A of the present invention uses a battery having the structure of the above embodiment, and the conventional product B uses a battery having the same structure as that of the embodiment, but has a hollow body with the same outer shape and material and no hollow part, and this is used as a negative electrode current collector. The configuration was the same except that the negative terminal was used. FIG. 2 shows changes in the temperature of the outer wall of the battery and the internal temperature of the battery measured by inserting a temperature sensor into the gap between the positive and negative electrodes when both batteries are short-circuited. In FIG. 2, the solid line shows the characteristics of the conventional product B, and the dotted line shows the characteristics of the invention product A.・The marks are the external wall temperature of the battery, and the ○ marks are the actual measurement points of the internal temperature of the battery.

従来品では電池内部の温度は時間とともに上昇し、約2
00°Cまで達した時点で封口蓋が軟化して変形し、封
口部の一部が開口するとともに気化した電解液とともに
溶融した金属リチウムが電池外に吹き出し、危険な状態
となった。この時電池外壁温度は電池の外壁からの放熱
のため比較的温度上昇は少く約105°Cであった。一
方、本発明品は電池内部温度は96°C1外壁温度は7
6°Cで短絡開始後、約40分後にほぼ一定値となり、
それ以後の温度上昇は見られず、外観にも変化はなかっ
た。
In conventional products, the temperature inside the battery rises over time, and the temperature inside the battery increases by approximately 2
When the temperature reached 00°C, the sealing lid softened and deformed, and a portion of the sealing part opened and molten metal lithium was blown out of the battery along with the vaporized electrolyte, creating a dangerous situation. At this time, the temperature of the outer wall of the battery was approximately 105° C., which was a relatively small temperature increase due to heat radiation from the outer wall of the battery. On the other hand, in the product of the present invention, the internal temperature of the battery is 96°C, and the temperature of the outer wall is 7°C.
After the short circuit started at 6°C, it became almost constant after about 40 minutes.
No increase in temperature was observed after that, and there was no change in appearance.

本電池に用いた封口蓋、保液材の軟化温度は約90’C
であり、保液材の場合は約110°C1封口蓋の場合は
約120″Cで明らかな軟化が起こり、各々の機能を十
分に発揮し得なくなるので、従来品の場合、封口部の破
壊はもとより、保液材も殆んど溶融状態となり、正・負
極が内部で短絡していた。これらの問題は本発明品では
生じなかった。
The softening temperature of the sealing lid and liquid retaining material used for this battery is approximately 90'C.
In the case of liquid retaining material, it becomes obvious that it softens at about 110 degrees Celsius, and in the case of sealing lids, it becomes obvious that it softens at about 120 degrees Celsius, making it impossible to fully demonstrate its functions. In addition, most of the liquid retaining material was in a molten state, and the positive and negative electrodes were short-circuited internally.These problems did not occur with the product of the present invention.

以上の結果より、本発明による電池内部熱の外部への放
出効果が極めてすぐれていることが認められるが、これ
はステンレススチールの如き金属のみの熱伝導よりも水
の如き液体を媒体とした熱伝導が極めて良いことに起因
するもので、この原理を応用した本発明の実施形態には
多様なものがあり、例えば、中空体の形体も電池構造に
より様々に変化させれば良く、放熱部或いは吸熱部の面
積を拡大するため細管を渦巻状としたり、表面に凹凸を
設けるなどの方法を採ることで効果を高めることができ
る。
From the above results, it is recognized that the present invention has an extremely superior effect of discharging the internal heat of the battery to the outside. This is due to its extremely good conductivity, and there are various embodiments of the present invention that apply this principle. For example, the shape of the hollow body may be varied depending on the battery structure, and the shape of the hollow body may be varied depending on the battery structure. The effect can be enhanced by making the thin tube spiral or by providing unevenness on the surface in order to increase the area of the heat absorption part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における電池の断面図、第2図
は同電池の短絡時の温度上昇変化を示す図である。 1・・・・・・樹脂製封口蓋、2・・・・・・ステンレ
ススチール製中空体、2“・・・・・・キャップ部、2
“・・・・・・集電体をなす筒部、2“1・・・・・・
7ランジ部、6・・・・・・負極、6・・・・・・保液
材、7・・・・・・正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
15a 第2図 合間(今夕
FIG. 1 is a cross-sectional view of a battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing temperature rise changes in the same battery during a short circuit. 1...Resin sealing lid, 2...Stainless steel hollow body, 2"...Cap portion, 2
“...Cylinder portion forming a current collector, 2”1...
7. Lunge part, 6... Negative electrode, 6... Liquid retaining material, 7... Positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
15a 2nd drawing interval (this evening

Claims (2)

【特許請求の範囲】[Claims] (1)電池内部から電池容器を貫通して電池外に一部が
露出する金属性の中空体を設け、この中空体内に減圧ま
たは真空状態で液体を封入したことを特徴とする電池。
(1) A battery characterized in that a metallic hollow body is provided that penetrates the battery container from inside the battery and a portion thereof is exposed outside the battery, and a liquid is sealed inside the hollow body under reduced pressure or vacuum conditions.
(2)前記金属性中空体が、一方の電極と外部端子とを
電気的に導通している特許請求の範囲第1項記載の電池
(2) The battery according to claim 1, wherein the metallic hollow body electrically connects one electrode and an external terminal.
JP57048204A 1982-03-25 1982-03-25 Battery Pending JPS58164150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048204A JPS58164150A (en) 1982-03-25 1982-03-25 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048204A JPS58164150A (en) 1982-03-25 1982-03-25 Battery

Publications (1)

Publication Number Publication Date
JPS58164150A true JPS58164150A (en) 1983-09-29

Family

ID=12796849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048204A Pending JPS58164150A (en) 1982-03-25 1982-03-25 Battery

Country Status (1)

Country Link
JP (1) JPS58164150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679382A1 (en) * 1991-07-15 1993-01-22 Accumulateurs Fixes Electrochemical generator with high specific energy
JPH05234616A (en) * 1992-02-20 1993-09-10 Toyota Autom Loom Works Ltd Spiral type battery
US6455186B1 (en) 1998-03-05 2002-09-24 Black & Decker Inc. Battery cooling system
KR100670521B1 (en) 2005-04-11 2007-01-16 삼성에스디아이 주식회사 Li Secondary Battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679382A1 (en) * 1991-07-15 1993-01-22 Accumulateurs Fixes Electrochemical generator with high specific energy
JPH05234616A (en) * 1992-02-20 1993-09-10 Toyota Autom Loom Works Ltd Spiral type battery
US6455186B1 (en) 1998-03-05 2002-09-24 Black & Decker Inc. Battery cooling system
US7056616B2 (en) 1998-03-05 2006-06-06 Black & Decker Inc. Battery cooling system
US7252904B2 (en) 1998-03-05 2007-08-07 Black & Decker Inc. Battery cooling system
US7326490B2 (en) 1998-03-05 2008-02-05 Black & Decker Inc. Battery cooling system
US7939193B2 (en) 1998-03-05 2011-05-10 Black & Decker Inc. Battery cooling system
KR100670521B1 (en) 2005-04-11 2007-01-16 삼성에스디아이 주식회사 Li Secondary Battery

Similar Documents

Publication Publication Date Title
US4188460A (en) Internal battery fuse
KR100502337B1 (en) Lithium secondary battery
CN205752266U (en) A kind of security protection power module
US20210359353A1 (en) Thermal management of electrochemical storage devices
US8043738B2 (en) Liquid action substance battery
WO2019192356A1 (en) High-voltage fuse
US20100035129A1 (en) Safety device for a sealed accumulator
JP4221531B2 (en) battery
JP7163317B2 (en) Secondary battery having a hollow filled with thermally conductive resin
KR100947977B1 (en) Secondary Battery
JPS58164150A (en) Battery
JP2989313B2 (en) Battery device having protection element
CN113410588A (en) Pole and large-capacity battery using same
KR20070067783A (en) Secondary battery
JPH10233237A (en) Nonaqueous electrolyte secondary battery
JP7188708B2 (en) secondary battery
JPH01197963A (en) Battery
JP2001313078A (en) Sealed type non-aqueous secondary battery and battery pack
CN210073929U (en) Battery block and cylindrical battery
JP3754792B2 (en) Temperature fuse and temperature fuse mounting structure for secondary battery
JP3754794B2 (en) Temperature fuse and temperature fuse mounting structure for secondary battery
CN208173737U (en) A kind of novel nickel-hydrogen battery
JPH0541206A (en) Cylindrical nonaqueous electrolyte secondary battery
JPH1064497A (en) Battery
JPH0512929Y2 (en)