JPS58163517A - Method and device for controlling sheet thickness in rolling mill - Google Patents

Method and device for controlling sheet thickness in rolling mill

Info

Publication number
JPS58163517A
JPS58163517A JP57046400A JP4640082A JPS58163517A JP S58163517 A JPS58163517 A JP S58163517A JP 57046400 A JP57046400 A JP 57046400A JP 4640082 A JP4640082 A JP 4640082A JP S58163517 A JPS58163517 A JP S58163517A
Authority
JP
Japan
Prior art keywords
spring constant
gain
plate thickness
changing
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57046400A
Other languages
Japanese (ja)
Inventor
Yasunobu Hayama
葉山 安信
Sadamu Terado
寺戸 定
Mitsuhiro Abe
阿部 光博
Katsuhiro Okura
大倉 克寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57046400A priority Critical patent/JPS58163517A/en
Publication of JPS58163517A publication Critical patent/JPS58163517A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions

Abstract

PURPOSE:To keep responsiveness constant and to maintain a stable operation and the accuracy of sheet thickness, by obtaining the spring constant of a material to be rolled from the changes of a rolling down force and a roll gap, etc., and changing the gain of a sheet thickness controlling system. CONSTITUTION:The outputs of a pulse genertor 16, a load cell 6, a deviation signal device 8, a roll gas detector 5, etc. are inputted to a command changing device 14. The device 14 calculates a spring constant and also calculates the gain of a servoamplifier 10 by using the spring constant respectively to output a gain changing command to the servo-amplifier 10. Thus the responsiveness is kept constant, and a stable operation and the accuracy of sheet thickness are maintained because the loop gain of the controlling system is kept in a optimum state by changing the gain of the servoamplifier 10 even if the spring constant of sheet is changed.

Description

【発明の詳細な説明】 本発明は圧延機にかける板厚制御方法およびその装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling the thickness of a plate applied to a rolling mill.

従来の圧延機と板厚制御の一例を第1図および第2WA
を参照して説明する。油圧式圧延機としてはワークロー
ルlとこのワークロールlを補強するバックアップ■−
ル2とを備え、ワークミール1間にて圧延されるストリ
ップ3の板厚制御のためセールギャップを変更する油圧
シリンダ4および油圧シリンダ4に取付けられた一一ル
ギャップ検出器5を有する。更に、バックアップ■−ル
2に対して四−ド七ル6が備えられて圧下刃を検出して
おシ、ロードセル6からは圧下刃に当る出力から一定値
を差引いて偏差信号を作る偏差信号装置8に接続され、
ついで偏差信号に一定値を乗じる係数器9に接続されて
いる。係数器9の後段にはサーがアンプ10が配置され
、仁のサー?アンプ10では係数器9からO出力とロー
ルギャップ検出器5から得られるロールギャップ現在値
と目標値11との偏差の和を得て、サーI電流を変化さ
せるものである。サーぎアン7”10杖そのサー?電流
によシサーが弁7の開閉を制御して油圧シリンダ4への
油量を一整している。
An example of a conventional rolling mill and plate thickness control is shown in Figures 1 and 2 WA.
Explain with reference to. As a hydraulic rolling mill, there is a work roll l and a backup to reinforce this work roll l -
It has a hydraulic cylinder 4 for changing the sail gap in order to control the thickness of the strip 3 rolled between the work mills 1, and a single gap detector 5 attached to the hydraulic cylinder 4. Furthermore, a four-door seventh lever 6 is provided for the backup wheel 2 to detect the rolling blade, and a deviation signal is output from the load cell 6 to generate a deviation signal by subtracting a constant value from the output hitting the rolling blade. connected to device 8;
It is then connected to a coefficient multiplier 9 that multiplies the deviation signal by a constant value. A circuit amplifier 10 is arranged after the coefficient unit 9, and a circuit amplifier 10 is arranged after the coefficient unit 9. The amplifier 10 obtains the O output from the coefficient unit 9, the sum of the deviation between the roll gap current value obtained from the roll gap detector 5, and the target value 11, and changes the sir I current. The scissor controls the opening and closing of the valve 7 by the current of the sergian 7"10, thereby adjusting the amount of oil to the hydraulic cylinder 4.

この構造の装置において、ストリップ3がない状態で目
標値11を必要なロールギャップ量にするとワークロー
ルlの関−が目標値11にで指定された量になる。この
とき、スト・Vツブ3がないので偏差信号装置8の出力
は零である。
In an apparatus having this structure, when the target value 11 is set to the required roll gap amount in the absence of the strip 3, the relationship between the work roll l becomes the amount specified by the target value 11. At this time, since there is no strike V-tube 3, the output of the deviation signal device 8 is zero.

つまり、ストリップ3がない状態では目標値11に従っ
てサーが弁フが制御され油圧クリン〆4が移動し、ロー
ルギャップ検出器5からの信号と目標値11との一致ま
で制御が行われる。次に、ワークロール1間にストリッ
プ3が入)圧延機の出側の板厚が目標板厚になったとき
、p−ドセル6の出力を記憶しておき偏差信号装置8に
てこの目標値を更に入力されるロードセル6の出力から
差引いた値を係数器9に出力する。
In other words, when there is no strip 3, the valve is controlled according to the target value 11, the hydraulic cleaner 4 is moved, and control is performed until the signal from the roll gap detector 5 matches the target value 11. Next, when the strip 3 is placed between the work rolls 1) and the thickness at the exit side of the rolling mill reaches the target thickness, the output of the p-docel 6 is memorized and the deviation signal device 8 is used to determine the target value. is further subtracted from the input output of the load cell 6, and the value is output to the coefficient unit 9.

圧延中目標板厚から出側板厚がずれた場合、ロードセル
6の出力が変化し偏差信号装置8からの出力が零でなく
な〕、サーがアンプ10の人力どおしに差が生じサーf
電Rが生じてサーが弁7が開かれて油圧シリンダ40移
動によ)ロールギャップが変化し板厚が制御される。
If the exit plate thickness deviates from the target plate thickness during rolling, the output of the load cell 6 will change and the output from the deviation signal device 8 will no longer be zero], and a difference will occur in the manual power of the amplifier 10, causing the sensor f.
When the electric current R is generated, the valve 7 is opened and the hydraulic cylinder 40 is moved to change the roll gap and control the plate thickness.

第1図に示す構成に基づき板厚制御系のfysツクを第
2図に示す。このブロック図において、第1図と同一番
号は同一部分を示す。図中、S。
FIG. 2 shows the fys of the plate thickness control system based on the configuration shown in FIG. 1. In this block diagram, the same numbers as in FIG. 1 indicate the same parts. In the figure, S.

は無負荷時のq−ルギャップ設定量、8は実際の無負荷
時のロールギャップ量、hは出口板厚、H1i入口板厚
、Pは圧下刃、hは出口板厚が所定値の場合の圧下刃、
−は圧延機のバネ定数、KQ はシリンダのバネ定数、
f (Rh)は材料の正弧特性、−1はサー?アンプ1
0のゲイン、KV はナーI弁7の流量ゲイン、Aは油
圧シリンダ4の断函積、Dはうlラスの演算子、k社チ
ュー二ンダ率である。この結果、次式が得られる。
is the q-le gap setting amount at no load, 8 is the actual roll gap amount at no load, h is the outlet plate thickness, H1i inlet plate thickness, P is the rolling blade, and h is the value when the outlet plate thickness is a predetermined value. reduction blade,
- is the spring constant of the rolling mill, KQ is the spring constant of the cylinder,
f (Rh) is the positive arc property of the material, -1 is the sir? Amplifier 1
0 gain, KV is the flow rate gain of the Ner I valve 7, A is the categorical product of the hydraulic cylinder 4, D is the ulrus operator, and K company's tuner ratio. As a result, the following equation is obtained.

(1)  板の圧延特性 P = f (H,h)         −(1)(
2)  圧延機の特性 h = 8 十P/KM         ・” (2
)(3)圧下装置及び板厚制御系の特性 〜五マ P 15 (−P+Po)+お−8) −+ −=8AD 
  K。
(1) Rolling characteristics of plate P = f (H, h) − (1) (
2) Characteristics of rolling mill h = 8 10P/KM ・” (2
) (3) Characteristics of rolling down device and plate thickness control system ~ 5 P 15 (-P+Po)+o-8) -+ -=8AD
K.

・・・(3) 入口板厚が馬で無負荷ロールギャップが80のとき圧下
刃がPoでそのときの出口板厚をり。
...(3) When the inlet plate thickness is horse and the no-load roll gap is 80, the rolling blade is Po and the outlet plate thickness is.

とすると、創外(tl 、 (21、(3)は次のよう
になる。
Then, outside the wound (tl, (21, (3)) becomes as follows.

また、JP=P−Po ΔH=H−曳 Δh=h−h。Also, JP=P−Po ΔH=H-hiki Δh=hh.

ΔS″β−8oとすると、次式を得る。When ΔS″β−8o, the following equation is obtained.

(1) (4)式から、 jp = KlB (ΔH−jh)        −
・・(7)(2) (5)式から、 (3) (6)式から、 この結果、(7)(8) (9)式よジノP、ΔS を
消去する。
(1) From equation (4), jp = KlB (ΔH−jh) −
...(7) (2) From equations (5), (3) From equations (6), As a result, Zino P and ΔS are eliminated according to equations (7), (8), and (9).

ここで、K−板のバネ定数であ多にはループダインで上
式の分母のDの係数の逆数である。
Here, the spring constant of the K-plate is the reciprocal of the coefficient of D in the denominator of the above equation using loop dyne.

このループダイy[はa鴫式からも判明するように、ナ
ーー弁7の流量ゲイン恥、板のバネ定数4、圧延機伊噂
定数−、シリンダのバネ定数4、チエー二ンダ皐kに依
存してお)、制御系の安定性と応答性を支配している。
As can be seen from the formula, this loop die y[ depends on the flow rate gain of the inner valve 7, the plate spring constant 4, the rolling mill constant 4, the cylinder spring constant 4, and the chain cylinder k. ), which governs the stability and responsiveness of the control system.

従来における安定性や応答性を改善するためにチェー二
ンダ率にの変化に対応してサーがアン7’IOのゲイン
拘、を変化させてルー1ダインKを調整し、サーが弁7
の流量ゲインKVの変化に対応してサー?アンプ10の
グインムを変化させてループゲインKを調整する方法は
提案されている。を九圧延機のバネ定数ム、シリンダの
づネ定数4によってもループゲインKO補正は可能であ
る。
In order to improve the stability and responsiveness of the conventional system, the circuit adjusts the loop 1 dyne K by changing the gain control of the amplifier 7' IO in response to changes in the chain-inder ratio, and the circuit adjusts the gain control of the valve 7'
In response to changes in the flow rate gain KV, A method of adjusting the loop gain K by changing the gain of the amplifier 10 has been proposed. It is also possible to correct the loop gain KO by setting the spring constant of the rolling mill to 4 and the spring constant of the cylinder to 4.

本発明は板Oバネ定数4の変化に対応してナーがアンプ
のゲインを変化させルー1ダインを最適にする板厚制御
方法、および装置の提供を目的とする。
An object of the present invention is to provide a plate thickness control method and device that optimizes the loop 1 dyne by changing the gain of the amplifier in response to changes in the plate O spring constant 4.

かかる目的を達成するため本発明としては、(1)圧延
中の圧下力変化、ロールギャップ変化、および板厚変化
と、予め計測した圧延機のバネ定数とから圧延材のバネ
定数を求め、この圧延材のバネ定数の値によプ板厚制御
系のゲインを変えることを特徴とし、 (2)圧下力検出用のロードセルとロールギャップ用の
検出器との出力から圧延材のバネ定数を演算する装置と
、上記圧延材のバネ定数によjIl板厚制御系の制御ゲ
インを変更する装置とを備えたことを特徴とする。
In order to achieve this object, the present invention (1) determines the spring constant of the rolled material from changes in rolling force, roll gap, and plate thickness during rolling and the spring constant of the rolling mill measured in advance; It is characterized by changing the gain of the plate thickness control system depending on the value of the spring constant of the rolled material, (2) Calculating the spring constant of the rolled material from the output of a load cell for detecting rolling force and a detector for roll gap. and a device that changes the control gain of the jIl plate thickness control system according to the spring constant of the rolled material.

ここで、第3図を参照して本発明の詳細な説明する。第
3図において、第1図と同一部分には同符号を付す。1
はワークロール、2はツー10−ルlt−補強するパツ
クアッfa−ル、4は油圧シリンダ、5はロールギャッ
プ検出器、6はロードセル、8はロードセルからの出力
よ〕目標値を差引く偏差信号装置、9は係数器、10は
サー簀アンプ、11は目標板厚値、7はサーが弁である
。このうち、サーイアン110については、後述する変
更指令装置からの信号でダインを調整できる機能を有す
る。
The present invention will now be described in detail with reference to FIG. In FIG. 3, the same parts as in FIG. 1 are given the same reference numerals. 1
2 is the work roll, 2 is the tool 10-tool, reinforcing pack far, 4 is the hydraulic cylinder, 5 is the roll gap detector, 6 is the load cell, and 8 is the output from the load cell] A deviation signal for subtracting the target value 9 is a coefficient unit, 10 is a sensor amplifier, 11 is a target plate thickness value, and 7 is a valve. Of these, the sirian 110 has a function of adjusting the dyne using a signal from a change command device, which will be described later.

ワークロール1を駆動する電動機15にはノ譬ルスジエ
ネレータ16が連結され、こOパルスジェネレータ16
の出力は変更指令装置1′4に接続される。この変更指
令装置14にはパルスジェネレータ16の出力の他、ロ
ードセル6の出力、偏差信号装置8の出力、ロールイヤ
ツブ検出器Sかもの出力等が入力される。そしてこの変
更指令装置x+iは、板のバネ定数に3とこの4を用い
てサーがアンプ100ダインKhとのそれぞれの計算を
行表い、サーIアンプ10にゲイン変更指令を出力する
。この変更指令装置14への他の入力としては板厚値1
7およびチェーエンダ率18である。
A pulse generator 16 is connected to the electric motor 15 that drives the work roll 1.
The output of is connected to the change command device 1'4. In addition to the output of the pulse generator 16, the change command device 14 receives the output of the load cell 6, the output of the deviation signal device 8, the output of the roll wear detector S, etc. Then, this change command device x+i performs respective calculations for the sir amplifier 100 dyne Kh using 3 and 4 for the spring constant of the plate, and outputs a gain change command to the sir I amplifier 10. Another input to this change command device 14 is the plate thickness value 1.
7 and chain-ender rate 18.

この変更指令装置14における板のバネ定数に、の計算
について説明する。板のバネ定数4゛の計算式としては
1式が与えられる。
The calculation of the spring constant of the plate in this change command device 14 will be explained. One formula is given as a calculation formula for the spring constant of the plate, 4'.

1 (−十−)ノp=j3+jsM+ノS6       
   ・−・uK、  KM このal)式の適用に当シ、圧砥機のバネ定数−は板幅
、圧下刃の関数として予め求められる。
1 (-10-) no p = j3 + jsM + no S6
··· uK, KM To apply this formula al), the spring constant of the rolling machine is determined in advance as a function of the plate width and the rolling blade.

すなわち、板幅値17と■−ドセに60出力から求めら
れる。ノ8)1はノ考ツクアップ四−ル2のベアリング
の油膜厚さで、圧下刃とリール回転数の関数であシ、/
fルスジエネレータ五6の出力による回転数と四−ド七
ル6の出力とから求めることができる。/々ツクアツグ
ロール2のロール偏心量jS・の直接計算は不可能であ
るが、このノSeはバックアップロール2の回転角の周
期関数であり、偏差信号装置8かもの出力ΔP。
That is, it is determined from the plate width value of 17 and the output of 60 in -doce. 8) 1 is the oil film thickness of the bearing of the take-up four reel 2, which is a function of the rolling blade and reel rotation speed.
It can be determined from the rotational speed based on the output of the f-lux generator 56 and the output of the four-wheel drive generator 56. Although it is impossible to directly calculate the roll eccentricity jS of the roll 2, this Se is a periodic function of the rotation angle of the backup roll 2, and the output ΔP of the deviation signal device 8.

−一ルギャップ検出器5の出力と設定値11との差ΔS
、油膜厚Δ8H′%/fルスジエネレータ160出力一
ルスに周期して、バックアップロール2の1回転中に複
数点記憶しておき、平均をとることで除去することがで
きる。以上の結果、k * jp 、 *s 、 Ja
n 、 js・ が特定され、平均値JP 、 js 
、Δ軸と−との!1およびΔS@WOによってaD式に
代入でき、板のバネ定数4 を求める仁とができる。
- Difference ΔS between the output of the gap detector 5 and the set value 11
, oil film thickness Δ8H'%/f Lus Generator 160 output Periodically, a plurality of points are memorized during one rotation of the backup roll 2, and can be removed by taking the average. As a result of the above, k * jp, *s, Ja
n, js・ are specified, and the average value JP, js
, Δ axis and -! 1 and ΔS@WO can be substituted into the aD formula to obtain the spring constant 4 of the plate.

ついで、ナーぎアンプlOのゲインKAO針算に当って
紘、一式を適用し、上述によル求め丸板のバネ定数4、
圧延機のバネ定数−および外部から入力したチェー二ン
ダ率3g、a−ルギャップ検出器sO出力Sから求めら
れる油柱の関数としてのシリンダのバネ定数K。、前述
したサーが弁7の流量ゲインに7 の変化に対応してサ
ーがアンプ10のダインに人 を変化させた従来例すな
わち、油圧シリンダ4の上昇時と下降時それぞれの場合
に生ずる!−I弁7の差圧変化を圧下力換言すればロー
ドセル6から求められるシ、あらかじめ記憶しておい九
ルー1ダインに、およびシリンダ40断面積ムによって
、サー?アンプlOのグインムが求まる。
Next, when calculating the gain KAO of the energy amplifier lO, apply the Hiro set and calculate the spring constant of the round plate 4 according to the above.
The spring constant K of the cylinder as a function of the oil column determined from the spring constant of the rolling mill and the chain cylinder ratio 3g input from the outside, and the output S of the a-le gap detector sO. This occurs in the conventional example where the servo changes the dyne of the amplifier 10 in response to a change in the flow rate gain of the valve 7, that is, when the hydraulic cylinder 4 rises and falls, respectively. - In other words, the change in the differential pressure of the I valve 7 is the reduction force, which is obtained from the load cell 6, and is stored in advance as 9 ru and 1 dyne, and the cross-sectional area of the cylinder 40 as the servo? The guim of the amplifier lO is found.

以上のに、およびムの計算を変更指令装置14にて行な
った後、このグイyKAをサーがアンプlOへ入力して
そのゲインを変更させるtのである。
After the above-mentioned calculations are performed by the change command device 14, the signal yKA is inputted to the amplifier IO to change its gain.

以上の原理および実施例により板のバネ定数が変化して
も制御系のループゲインを狗、の変化にて最適に保てる
ので、応答性を一定にて自安定操業と板厚精度保持が図
れる。
According to the above-described principles and embodiments, even if the spring constant of the plate changes, the loop gain of the control system can be maintained optimally by changing the rate of change, so that self-stable operation and plate thickness accuracy can be maintained with constant response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の板厚制御の丸めの簡略構成
図およびプ四ツク図、第311は本発明による板厚制御
方法の説明のための装置の簡略構成図である。 図面中 5はロールゼヤツプ検出器、 8は偏差信号装諏、 10はサーがアンプ、 14は変更指令装置である。 特許出願人 三菱重工°業株式会社 復代理人 弁理士 光 石 士 部(他1名) 第1図 第2図
1 and 2 are simplified block diagrams and diagrams of rounding in conventional plate thickness control, and FIG. 311 is a simplified block diagram of an apparatus for explaining the plate thickness control method according to the present invention. In the drawing, reference numeral 5 is a Rollseyep detector, 8 is a deviation signal device, 10 is a sensor amplifier, and 14 is a change command device. Patent applicant: Mitsubishi Heavy Industries, Ltd., sub-agent Patent attorney: Shibu Mitsuishi (and 1 other person) Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  圧延中の圧下力変化、ロールギャップ変化、
および板厚変化と、予め計欄しえ圧延機のバネ定数とか
ら圧延材のバネ定数を求め、この圧延材のバネ定数の値
によシ板厚制御系Orインを変えることを特徴とする圧
延機の板厚制御方法。
(1) Changes in rolling force and roll gap during rolling,
The spring constant of the rolled material is determined from the plate thickness change and the spring constant of the rolling mill in advance, and the plate thickness control system Or-in is changed according to the value of the spring constant of the rolled material. A method for controlling plate thickness in a rolling mill.
(2)  圧下力検出用のロードセルとロールギャップ
用の検出器との出力から圧延材のバネ定数を演算する装
置と、上記圧延材のバネ定数によシ板厚制御系の制御ゲ
インを変更する装置とを備えたことを特徴とする板厚制
御装置。
(2) A device that calculates the spring constant of the rolled material from the outputs of a load cell for detecting rolling force and a detector for the roll gap, and a control gain of the plate thickness control system that changes according to the spring constant of the rolled material. A plate thickness control device comprising:
JP57046400A 1982-03-25 1982-03-25 Method and device for controlling sheet thickness in rolling mill Pending JPS58163517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57046400A JPS58163517A (en) 1982-03-25 1982-03-25 Method and device for controlling sheet thickness in rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57046400A JPS58163517A (en) 1982-03-25 1982-03-25 Method and device for controlling sheet thickness in rolling mill

Publications (1)

Publication Number Publication Date
JPS58163517A true JPS58163517A (en) 1983-09-28

Family

ID=12746098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57046400A Pending JPS58163517A (en) 1982-03-25 1982-03-25 Method and device for controlling sheet thickness in rolling mill

Country Status (1)

Country Link
JP (1) JPS58163517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145703A1 (en) * 2008-03-14 2010-01-20 Nippon Steel Corporation Rolling load prediction learning method for hot plate rolling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145703A1 (en) * 2008-03-14 2010-01-20 Nippon Steel Corporation Rolling load prediction learning method for hot plate rolling
EP2145703A4 (en) * 2008-03-14 2013-10-02 Nippon Steel & Sumitomo Metal Corp Rolling load prediction learning method for hot plate rolling

Similar Documents

Publication Publication Date Title
JPH03238112A (en) Control method and device to compensate speed effect in tandem cold roll device
JPH0635007B2 (en) Rolling mill control method for rolling one strip material
JPH04167950A (en) Method and apparatus for controlling twin-roll type continuous caster
JPS58163517A (en) Method and device for controlling sheet thickness in rolling mill
JPH0218168B2 (en)
US4415976A (en) Method and apparatus for automatic mill zero correction for strip width
KR20020004801A (en) Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine
US3869892A (en) Feed forward gauge control system for a rolling mill
KR20030017105A (en) Method for controlling position and load of edge dam in strip casting process line
KR100939377B1 (en) Method for the meandering control in strip-casting process
JP2547873B2 (en) Automatic plate thickness control device for rolling mill
JPH01205815A (en) Method and apparatus for controlling rotary tension fluctuation of take-up reel
JP2839775B2 (en) Control device for continuous rolling mill
JPH04371309A (en) Controller for hot rolling mill
JP6962860B2 (en) Rolling machine plate thickness control device and its method and rolling system
JPH09248614A (en) Method for controlling meandering in rolling mill
JPS63207411A (en) Method for controlling rolling mill
JPH0775813A (en) Method for controlling tension in rolling mill
JP2680252B2 (en) Shape control method for multi-high rolling mill
KR900002149B1 (en) Thickness control method and system for a single-stand / multi-pass rolling mill
JPH0237909A (en) Sheet thickness control method for rolling mill
JPH1034218A (en) Method for controlling tension in continuous rolling mill
JPS63260614A (en) Device for controlling shape in cluster mill
JPH05169120A (en) Method for controlling camber of rolled stock
JPH01202305A (en) Device for changing and controlling sheet thickness in flying