JPS58162110A - Current source - Google Patents

Current source

Info

Publication number
JPS58162110A
JPS58162110A JP57045874A JP4587482A JPS58162110A JP S58162110 A JPS58162110 A JP S58162110A JP 57045874 A JP57045874 A JP 57045874A JP 4587482 A JP4587482 A JP 4587482A JP S58162110 A JPS58162110 A JP S58162110A
Authority
JP
Japan
Prior art keywords
source
mostr
output
current
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57045874A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishihara
力 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57045874A priority Critical patent/JPS58162110A/en
Publication of JPS58162110A publication Critical patent/JPS58162110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To compensate the influence of a channel length modulating effect, and to have high output resistance, by providing an MOST whose source and gate are connected to an input and an output of an inverting and amplifying circuit, and an MOST connected between said source and a DC power source. CONSTITUTION:An input of an inverting and amplifying circuit constituted of an MOS transistor (TR) 11 and 12, and its output are connected to the source of the first MOSTR 13, and its gate, respectively, and also to the source of the MOSTR 13, the second loading MOSTR 14 is connected. Also, the drain of the MOSTR 13 is used as an output terminal 30 of a current source. When the potential of the output terminal 30 rises by a load variation, a drain current of the MOSTR 13 is inclined to increase by a channel length modulating effect, but since an increase of the current is generated in the MOSTR 14, too, in the same way, a voltage drop increases, and the potential fo a node 21 rises. This potential rise is inverted and amplified by an inverting and amplifying circuit, and is sent to the gate of the MOSTR 13 as a potential drop of a node 22, so that an output current does not increase.

Description

【発明の詳細な説明】 本発明はNOSアナログ回路に広く用いられているMO
Sトランジスタの電流源に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on MO
This relates to a current source for an S transistor.

第1図に従来用いられていたMOSトランジスタ電流源
(以下単に電流源と呼ぶ)の代表的な一例を示す。
FIG. 1 shows a typical example of a conventionally used MOS transistor current source (hereinafter simply referred to as a current source).

図において、1.2.3はそれぞれMOSトランジスタ
(以下MθSTと記す)を示し、この例では1にデプリ
ーション型NUST (以下D−NO8Tと記す)、2
.3にエンハンスメント型MO8T(以下E−MO8T
 と記す)がそれぞれ用いられている。
In the figure, 1, 2 and 3 indicate MOS transistors (hereinafter referred to as MθST), and in this example, 1 is a depletion type NUST (hereinafter referred to as D-NO8T), 2
.. 3. Enhancement type MO8T (hereinafter E-MO8T)
) are used respectively.

なお本例では各MO8Tをヘチャネル型デバイスとし図
の10は高レベル側の電源電圧端子、20は低レベル側
の電源電圧端子、30は核を電源の出力端子をそれぞれ
示す。
In this example, each MO8T is a H-channel type device, and 10 in the figure indicates a high-level side power supply voltage terminal, 20 indicates a low-level side power supply voltage terminal, and 30 indicates an output terminal of the core power supply.

第1図の回路において、D−M(JSTIとE−M(J
8T2は電源10と20の間に縦続接続されてバイアス
回路を構成しておシ、ノード4に発生した電圧をE−M
O8T3のゲートに導びく。E、MO8T3のソースは
電源20に接続され、ドレインは該電流源の出力端子3
0となる。いま、E−NU8T2と3が同一寸法のトラ
ンジスタで構成されておシ、かつE−M(JST3  
の出力抵抗が十分大きいと仮定するとE−1!JU8T
2と3のゲート−ソース間電圧VG8は等しいからE−
MUST3 には出力端子30の電圧によらず、常にバ
イアス回路のMOFTIと2 を流れる電流とほぼ等し
い電流が流れ込むことになり定電流源を構成できる。
In the circuit shown in Figure 1, D-M (JSTI and E-M (JSTI)
8T2 is connected in cascade between power supplies 10 and 20 to form a bias circuit, and the voltage generated at node 4 is connected to E-M.
Lead to the gate of O8T3. E, the source of MO8T3 is connected to the power supply 20, and the drain is connected to the output terminal 3 of the current source.
It becomes 0. Now, E-NU8T2 and 3 are composed of transistors of the same size, and E-M (JST3
Assuming that the output resistance of is sufficiently large, E-1! JU8T
Since the gate-source voltages VG8 of 2 and 3 are equal, E-
Regardless of the voltage at the output terminal 30, a current approximately equal to the current flowing through MOFTI and MOFT2 of the bias circuit always flows into MUST3, so that a constant current source can be configured.

ところで、電流源にとって最も重要な%件は、出力端子
の電圧変化によって電流源の電流が変化しないこと、す
なわち出力抵抗が高いことである。
By the way, the most important requirement for a current source is that the current of the current source does not change due to a change in the voltage at the output terminal, that is, that the output resistance is high.

−例を挙げると差動増幅回路の同相弁別比(問皿)は該
回路に使用される電流源の出力抵抗に直接比例する。し
かしながら、第1図のE−IVIO8T3の電流−電圧
特性はM2図に示すような有限の傾斜すなわち出力抵抗
r。をもつことが知られている。
- For example, the common mode discrimination ratio of a differential amplifier circuit is directly proportional to the output resistance of the current source used in the circuit. However, the current-voltage characteristic of E-IVIO8T3 in FIG. 1 has a finite slope, ie, output resistance r, as shown in the M2 diagram. It is known to have

この現象はチャネル長変調効果と呼ばれるもので、E−
、MO8T3のチャネル長の減少とともに出力抵抗はま
すます減少する傾向にある。従って、上記のように構成
された電流源では出力抵抗が低下し、安定な電流源が得
られないという欠点があった。
This phenomenon is called the channel length modulation effect, and is called the channel length modulation effect.
, the output resistance tends to decrease more and more as the channel length of MO8T3 decreases. Therefore, the current source configured as described above has the disadvantage that the output resistance decreases and a stable current source cannot be obtained.

本発明の目的は、前記チャネル長変調効果の影響による
出力抵抗の減少を補償し、見掛は上高い出力抵抗を有す
る電流源を提供することKある。
It is an object of the invention to provide a current source which compensates for the reduction in output resistance due to the influence of the channel length modulation effect and has an apparently high output resistance.

本発明の電流は、反転増幅回路と、ゲートが該反転増幅
回路の出力に弄びかれ、ソースが該反転増幅回路の入力
に導ひかれた第1ON(JS トランジスタと、該第1
のM(JS)ランジスタのソースと直流電源の間に接続
された第2の負荷用M(JSトランジスタを備え、前記
第1のMOSトランジスタのドレインを出力端子とする
ことによって構成される。
The current of the present invention is connected to an inverting amplifier circuit, a first ON (JS transistor) whose gate is connected to the output of the inverting amplifier circuit, and whose source is led to the input of the inverting amplifier circuit;
The second load M(JS) transistor is connected between the source of the M(JS) transistor and the DC power supply, and the drain of the first MOS transistor is used as the output terminal.

本発明の実施例について図面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.

第3図は本発明の一実施例の回路図である。FIG. 3 is a circuit diagram of an embodiment of the present invention.

図において、11.12.13.14はそれぞ烟O8T
を示し、この実施例では11にp−Mo5T、 12 
、13.14にE−440S’I’がそれぞれ用いられ
ている。また同図において、10.20.30は第1図
と同一の構成要素である。なお、本実施例でも第1図の
場合と同様に、上記各MO8TがNチャネル型の極性を
もつものとして説明をする。従って電源電圧供給端子1
0.20に供給される電圧の極性及び該電流源の出力端
子30を流れる電流の極性は第1図の場合と同じになる
In the figure, 11, 12, 13, and 14 are respectively smoke O8T.
In this example, 11 is p-Mo5T, 12
, 13.14 and E-440S'I' are used, respectively. Further, in the figure, 10, 20, and 30 are the same components as in FIG. It should be noted that this embodiment will also be described on the assumption that each MO8T has an N-channel type polarity, as in the case of FIG. 1. Therefore, power supply voltage supply terminal 1
The polarity of the voltage supplied to 0.20 and the polarity of the current flowing through the output terminal 30 of the current source will be the same as in FIG.

本実施例において、MO8TIIとN08T12は電源
供給端子10と20の間に直列に接続されて、D−MO
8TIIをロード、E−MO8T12をドライバーとす
るE/D構成の反転増幅回路(インバータ回路)を構成
している。このインバータ回路の入力すなわちE−fV
IO8T12のゲートは第1のMUST13のソースに
、出力すなわちE−uos’r12のドレインは第1の
MUST13 のゲートにそれぞれ接続されている。さ
らに第1のMO8T13のソースにはゲートとドレイン
が共通接続された負荷用第2のE−IVI(JST14
が接続されておシ、第2のE−flJ(JST14 の
ソースは低レベル側電源供給端子20に接続されている
。そして第1のIVIO8T13のドレインが電流源の
出力端子30とされている。
In this embodiment, MO8TII and N08T12 are connected in series between power supply terminals 10 and 20, and D-MO
An inverting amplifier circuit (inverter circuit) with an E/D configuration is configured, with 8TII as a load and E-MO8T12 as a driver. The input of this inverter circuit, that is, E-fV
The gate of IO8T12 is connected to the source of the first MUST13, and the output, ie, the drain of E-uos'r12, is connected to the gate of the first MUST13. Furthermore, the source of the first MO8T13 has a second E-IVI for load (JST14
The source of the second E-flJ (JST14) is connected to the low-level power supply terminal 20.The drain of the first IVIO8T13 is connected to the output terminal 30 of the current source.

次に本実施例の回路動作について説明する。まず、出力
端子30の電位が負荷変動によって上昇した場合を想定
すると、M(JST13のドレイン電流113は前述の
チャネル長変調効果により増加しようとする。ところが
、この時電流の増加は同様に負荷用MU8T14にも生
じるので、IVIUST14での電圧降下が増大し、ノ
ード21すなわちNO,9T13のソースの電位は上昇
することになる。
Next, the circuit operation of this embodiment will be explained. First, assuming that the potential of the output terminal 30 increases due to load fluctuation, the drain current 113 of M Since this also occurs at MU8T14, the voltage drop at IVIUST14 increases, and the potential at the source of node 21, ie NO, 9T13, increases.

5− このノード21の電位上昇はMO8TllとMO8’l
’12から成るインバータで反転増幅されて、該インバ
ータの出力であるノード22の電位の下降としてMO8
T13のゲートに送られる。この結果IVIO8T13
のゲート−ソース間電圧VG8は減少するので、結局出
力端子30の電位が上昇したにもかかわらず、M(JS
T13の電流I11すなわち電流源の出力電流はほとん
ど増加せず、チャネル長変調効果が補償された理想に近
い定電流特性が得られることになる。以上、負荷の変動
によって出力端子30の電位が上昇した場合について本
実施例の動作を説明したが、出力端子30の電位が下降
した場合には前述と全く逆の動作となることは以上の説
明よシ明らかであろう。本実施例の効果をさらに明瞭に
するため、M(JST13の相互コンダクタンス及び出
力抵抗をそれぞれ9m 13及r13、負荷用MO8T
14の等価抵抗をr14、インバータ回路の増幅度を−
Aとして、電流源の出力抵抗rQを書き表わすと rOo r sa+r 14+grn 13(1+A)
 rxs rnとなる。上式中、gmta r13は1
0以上、Aは10〜100が一般的な値であるから、本
実施例における電流源の出力抵抗r0は、MO8T13
を単独で用いた場合に得られる出力抵抗r、3に比べ飛
躍的に増大する。
5- The potential rise of this node 21 is MO8Tll and MO8'l
MO8 is inverted and amplified by an inverter consisting of MO8.
Sent to gate T13. This result IVIO8T13
Since the gate-source voltage VG8 of M(JS
The current I11 of T13, that is, the output current of the current source, hardly increases, and a near-ideal constant current characteristic in which the channel length modulation effect is compensated for is obtained. The operation of this embodiment has been described above in the case where the potential of the output terminal 30 increases due to load fluctuations, but as explained above, the operation is completely opposite to that described above when the potential of the output terminal 30 decreases. It should be obvious. In order to further clarify the effect of this example, the mutual conductance and output resistance of M (JST13) are 9m13 and r13, respectively,
The equivalent resistance of 14 is r14, and the amplification degree of the inverter circuit is -
As A, the output resistance rQ of the current source is written as rOo r sa+r 14+grn 13(1+A)
rxs rn. In the above formula, gmta r13 is 1
Since the general value is 0 or more and A is 10 to 100, the output resistance r0 of the current source in this example is MO8T13
The output resistance r, 3, obtained when R is used alone is dramatically increased.

以上のように本実施例によれは、チャネル長変調効果に
よって生じる出力電流の増加を負荷M(JST14での
電圧降下として取り出し、これを反転増幅回路を介して
Mos’r13に負帰還するように回路構成が修正され
ているため、チャネル長変調効果の影響が補償され、高
い出力抵抗を有する理想的な定電流源が得られる。
As described above, according to this embodiment, the increase in output current caused by the channel length modulation effect is extracted as a voltage drop at the load M (JST14), and this is negatively fed back to the Mos'r13 via the inverting amplifier circuit. Due to the modified circuit configuration, the effects of channel length modulation effects are compensated for, resulting in an ideal constant current source with high output resistance.

なお、上記実施例では負荷用N08T14をE−M(J
STとしたがこれはD−M(JS’l’であってもよく
、その場合NUST14はゲートとソースが接続された
構成となる。また、電流詠自身の電圧降下を小さくする
ためにMO8T14のスレッショルド電圧を回路中の他
のM(JSTと異なる値としてもよい○これは例えはN
UST14をスレッシ曹ルド電圧制御用のイオン注入工
程を省いたMO8’l’とすること7− によって可能である。さらに上記実施例では、反に増幅
回路(!: してE−、MUST12 とD−MUST
ll から成るインバータ回路を用いたがこれは単なる
一例であって、反転増幅回路には周知の種々の構成方法
のいずれを用いてもよい。
In addition, in the above example, the load N08T14 is E-M (J
Although ST is used, this may be DM (JS'l'), in which case NUST14 will have a configuration in which the gate and source are connected.Also, in order to reduce the voltage drop of the current source itself, MO8T14 The threshold voltage may be set to a value different from other M (JST) in the circuit.
This is possible by making the UST 14 a MO8'l' without the ion implantation process for controlling the threshold voltage. Furthermore, in the above embodiment, the amplifier circuit (!: E-, MUST12 and D-MUST
Although an inverter circuit consisting of ll is used, this is merely an example, and any of various well-known construction methods may be used for the inverting amplifier circuit.

以上、説明したように、本発明によれば従来のN(JS
電流源の欠点が解消され、きわめて高い出力抵抗を有す
る電流源を得ることができるのでその効果は大きい。
As explained above, according to the present invention, the conventional N(JS
The disadvantages of the current source are eliminated and a current source with extremely high output resistance can be obtained, so the effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMOSトランジスタを用いた電流源の一
例の回路図、第2図はMOSトランジスタの電流−電圧
特性の一例を示す%性曲線図、第3図は本発明の一実施
例の回路図である。
Fig. 1 is a circuit diagram of an example of a current source using a conventional MOS transistor, Fig. 2 is a percentage curve diagram showing an example of current-voltage characteristics of a MOS transistor, and Fig. 3 is a circuit diagram of an example of a current source using a conventional MOS transistor. It is a circuit diagram.

Claims (1)

【特許請求の範囲】[Claims] 反転増幅回路と、ゲートが該反転増幅回路の出力に導び
かれ、ソースが該反転N111m回路の入力に導びかれ
た第1のMOSトランジスタと、該第1のMOS トラ
ンジスタのソースと直流電源の間に接続された負荷用の
第2のMOSトランジスタを備え、前記第1のMo5i
ランジスタのドレインを出力端子とすることを特徴とす
る電流源。
an inverting amplifier circuit, a first MOS transistor whose gate is led to the output of the inverting amplifier circuit and whose source is led to the input of the inverting N111m circuit; a source of the first MOS transistor and a DC power source; a second MOS transistor for load connected between the first Mo5i
A current source characterized in that the drain of a transistor is used as an output terminal.
JP57045874A 1982-03-23 1982-03-23 Current source Pending JPS58162110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045874A JPS58162110A (en) 1982-03-23 1982-03-23 Current source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045874A JPS58162110A (en) 1982-03-23 1982-03-23 Current source

Publications (1)

Publication Number Publication Date
JPS58162110A true JPS58162110A (en) 1983-09-26

Family

ID=12731353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045874A Pending JPS58162110A (en) 1982-03-23 1982-03-23 Current source

Country Status (1)

Country Link
JP (1) JPS58162110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356489A (en) * 1986-08-27 1988-03-11 Dainippon Printing Co Ltd Thermal transfer recording sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356489A (en) * 1986-08-27 1988-03-11 Dainippon Printing Co Ltd Thermal transfer recording sheet

Similar Documents

Publication Publication Date Title
KR920001634B1 (en) Inter-mediate potential generation circuit for generating a potential intermediate between a power source potential and ground potential
US6809578B2 (en) Stable voltage generating circuit
US4247824A (en) Linear amplifier
US6380799B1 (en) Internal voltage generation circuit having stable operating characteristics at low external supply voltages
EP0490690A1 (en) Amplifier circuit
KR0126911B1 (en) Circuit and method for voltage reference generating
JP2793891B2 (en) AB class push-pull drive circuit
JPH0583003B2 (en)
JPS6119134B2 (en)
JPS58162110A (en) Current source
JPS61157106A (en) Fixed bias circuit
US20210328563A1 (en) Circuit employing mosfets and corresponding method
JPS6028074B2 (en) Static MIS memory
JPH0133974B2 (en)
JP2927803B2 (en) Constant voltage generator
JPH02161817A (en) Inverter circuit
JPH0741215Y2 (en) Differential amplifier circuit
JPH04120907A (en) Operational amplifier circuit
JPH03270252A (en) Bias voltage generator and current detector
JPH0210917A (en) Threshold voltage generator of mos transistor
JPH02124609A (en) Current mirror circuit
JP2005539335A (en) Temperature compensated current reference circuit
JP2005539335A6 (en) Temperature compensated current reference circuit
JPH0262043B2 (en)
JPS60224329A (en) Input circuit of mos integrated circuit element