JPS58150761A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS58150761A
JPS58150761A JP3367382A JP3367382A JPS58150761A JP S58150761 A JPS58150761 A JP S58150761A JP 3367382 A JP3367382 A JP 3367382A JP 3367382 A JP3367382 A JP 3367382A JP S58150761 A JPS58150761 A JP S58150761A
Authority
JP
Japan
Prior art keywords
cooler
refrigerant
air inlet
inlet side
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3367382A
Other languages
Japanese (ja)
Other versions
JPS6311580B2 (en
Inventor
滝沢 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP3367382A priority Critical patent/JPS58150761A/en
Publication of JPS58150761A publication Critical patent/JPS58150761A/en
Publication of JPS6311580B2 publication Critical patent/JPS6311580B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は少なくとも二個の冷却器を並設した冷凍箋置i
二関し、その目的とする処は両冷却器の9鬼人口側及び
出口側における冷媒の魚発温度を異ならせて均一な看霜
を得て除霜鴫期な長くすること6;ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a refrigerator i
Regarding this, the purpose is to obtain uniform frosting and extend the defrosting period by varying the heating temperatures of the refrigerant on the intake side and outlet side of both coolers.

第1図C:示すillは一般(二使用されている平形冷
11vヨーケースで、上面C:商品収納及び取出用の開
口部(2)を形成した断熱壁(31にて本体な構成し、
前記断熱壁内壁より適当間隔を存して金属製の仕切板(
4)を配役してプレートフィン形の第1及び第2両冷却
器(5)(6)、軸流形送風機(7)l設置する冷気通
@ f81と、貯蔵室(9)と、前記開口部の相対向す
る両端縁の長手方向C二わたって開口する吹出、吸込両
口(110υとを形成し、又本体下部の機械W(13に
は前記両冷却器と共に冷凍装置ン構成する冷媒圧縮槽(
1s、プレートフィン形凝縮器fl署及び軸流形送風W
aS等を設置しており、1$1及び゛第2両冷却器(5
)(61で熱交換された冷気を送IJ+71でもって矢
印の如く強制循環すること(二より開口部(2)【:低
温のエアーカーテン(0ム)t’影形成て貯蔵室(9)
!冷却するものである。
Figure 1 C: The illumination shown is a flat cold 11V yaw case used in general (2);
A metal partition plate (
4), the first and second plate fin type coolers (5) (6), the axial flow blower (7), the cold air vent @f81, the storage room (9), and the opening. The air outlet and suction ports (110υ) are opened across the longitudinal direction C of both opposing edges of the unit, and the machine W (13) at the bottom of the main body includes a refrigerant compressor that constitutes a refrigeration system together with the two coolers. Tank (
1s, plate fin type condenser fl station and axial flow type air blower W
AS etc. are installed, and 1$1 and 2nd double cooler (5
) (Forcibly circulate the cold air heat-exchanged at 61 as shown in the arrow at IJ+71.
! It is for cooling.

前記冷凍装置は42図に=示す如く圧縮11103−凝
縮器fi番−受液器fil−感温部(1フイ)V備えた
温度式膨張弁等の減圧装置an−s2冷却器(6)−第
1冷却器(5)−気液分離器filな高圧ガス管fl載
高圧液雪(至)、低圧液管12D及び低圧ガス管のでも
って環状maすることにより1知の閉回路C;構成され
、冷媒な矢印の如く循環して圧縮、凝縮液化、減圧、蒸
発気化させるナイグルを形成する。前記両冷却器のうち
嘱1冷却器(5)はピップを粗とする多数枚の熱伝導良
好な板状フィン(5人)と、このフィンの両側に配tさ
れた愉員製の両管板(511)(5m)と、前記各フィ
ン及び両管板を直交貫通する複数本の金属製冷媒導管(
501)(504)と、この導管のうち相隣接する導管
!相互(:!KI続する複数個の金a*V字當(5D)
とC;より構成されて送[ILlll(7+o風下11
1gm配置1gi、又sz冷却器(6)はピップを密(
mかい)とする多数枚の熱伝導良好な板状フィン(6A
)と、このフィンの両側C;配置された倹属朧の両管板
(6B)(6B)と、前記各フィン及び両管板を直交貫
通する複数本のmWS製冷媒導t(601)〜(604
)と、この導管のうち相隣接する導管?相互C二接続す
る複数個の愉属製U字11(6B)とベニより構成され
て441冷却器(5)の風下側C−配置され、且つ空気
入口側の最下流の冷媒導管(601)v111冷却器(
5)の窒請出ローの最下流の冷媒導管(50m)に連絡
導管(至)を介して接続している。尚、白抜き矢印は前
記冷却器な通過する冷気の流れ方向Y示す。
As shown in Fig. 42, the refrigeration system consists of a compressor 11103 - a condenser fi number - a liquid receiver fil - a pressure reducing device an such as a thermostatic expansion valve equipped with a temperature sensitive section (1 fi) V - an s2 cooler (6) - The first cooler (5) - A closed circuit C is constructed by forming an annular ma with the high pressure gas pipe fl mounted on the gas-liquid separator fil, the low pressure liquid pipe 12D and the low pressure gas pipe. , the refrigerant circulates as shown by the arrow to form a refrigerant that is compressed, condensed, liquefied, decompressed, and evaporated. Among the two coolers, the first cooler (5) has a large number of plate-like fins (5 members) with rough pips and good heat conduction, and both tubes made by Yukin located on both sides of the fins. Plate (511) (5 m), a plurality of metal refrigerant conduits (
501) (504) and adjacent conduits among these conduits! Mutual (:!KI multiple gold a*V-shaped (5D)
and C;
1gm arrangement 1gi, and the sz cooler (6) has a pip tightly (
A large number of plate-shaped fins (6A) with good heat conduction
), both sides C of this fin; both tube sheets (6B) (6B) of the disposed fins, and a plurality of mWS refrigerant conductors t (601) passing orthogonally through each of the fins and both tube sheets. (604
) and which conduit is adjacent to this conduit? A refrigerant conduit (601) consisting of a plurality of mutually connected U-shaped U-shaped parts 11 (6B) and Beni, arranged on the leeward side C of the 441 cooler (5), and the most downstream refrigerant conduit (601) on the air inlet side. v111 cooler (
It is connected to the most downstream refrigerant conduit (50 m) of the nitrogen discharge row (5) through a communication conduit (to). Note that the white arrow indicates the flow direction Y of the cold air passing through the cooler.

か−る冷凍5m置は実公昭51−15457号公報で既
蔓;公知であり、41及びs2両冷却器(51f6)を
通過する冷媒の蒸発温度はlI2冷却器(6)の空気出
口側から第1冷却器(5)の9気入口側1:[れこの空
気入口側で温度が高くなり、又冷気流の温度はs1冷却
器(5)の空気入口側から襲2冷却器(6)の空気出口
tiI!lI:かけて徐々(−低(なり、この結果冷気
流を第1冷却器(5)でもって予冷除湿し、次C:第2
冷却器(6)で所定温度まで引き下げる作用(−より、
11霜を両冷却器(51(6)+二分散させて除霜間隔
を長くすることができると共(二、111冷却器(5)
の空気入口側の冷媒を減圧装置(17)の作用C:より
加熱して圧縮機a3への液バ7りを防止できる効果な奏
することが知られている。
Such a 5m refrigeration system has already been published in Japanese Utility Model Publication No. 15457/1983; it is well known, and the evaporation temperature of the refrigerant passing through both the 41 and s2 coolers (51f6) is as follows from the air outlet side of the lI2 cooler (6). 9 air inlet side 1 of the first cooler (5): The temperature becomes higher on the air inlet side of the first cooler (5), and the temperature of the cold air flow increases from the air inlet side of the s1 cooler (5) to the second cooler (6). Air outlet tiI! lI: gradually becomes (-low), and as a result, the cold air flow is pre-cooled and dehumidified by the first cooler (5), and then C: the second
The action of lowering the temperature to a predetermined temperature with the cooler (6) (from -)
11 frost can be dispersed in both coolers (51 (6) + 2 to lengthen the defrosting interval (2, 111 cooler (5)
It is known that the effect of the pressure reducing device (17) on the air inlet side of the refrigerant is that it can further heat the refrigerant and prevent liquid leakage to the compressor a3.

然し乍ら、か\る冷?1に装置において、lI2冷却器
(6)の導管(601)の冷媒蒸発温度と、′I11冷
却器i51の導f(5(z)の冷媒蒸発温度との差は大
きく、過冷却状態の冷気流に含まれる水分は箒2冷却器
(6)の各フィン(6A)の空気入口側よりも111?
I?I却器(5)の各フィン(5A)の空気入口側に霜
として多@+;付看するが、結果としてプインピツデの
密な第2冷却器(6)の各フィン(6ム)間か霜によっ
て先に閉塞する事態を招いた。この事uv回避するため
唇:は、第2SI却器(6)のフィンピッチt’41冷
却器(5)のフインビ1テ(=近づけてやれば良い訳で
あるが、第2冷却器(6)の肴霜量が少なくなる代わ怪
月;島交換が悪くなり、冷気I!l!を所1!温度迄引
下げることができない新たな欠点が生じた。
However, is it cold? 1, the difference between the refrigerant evaporation temperature in the conduit (601) of the lI2 cooler (6) and the refrigerant evaporation temperature in the conduit f(5(z) of the 'I11 cooler i51) is large, and the cooling in the supercooled state is The moisture contained in the airflow is 111?
I? There is a lot of frost on the air inlet side of each fin (5A) of the first cooler (5). This caused the blockage to occur earlier due to frost. In order to avoid this, the fin pitch of the second SI cooler (6) is 41, and the fin pitch of the cooler (5) is closer to the fin pitch of the cooler (5). ), the amount of frost on the plate has decreased, but the island exchange has become worse, and a new drawback has arisen: the cold air I!l! cannot be lowered to the temperature of 1!.

即ち、本願発明者は横幅18001の冷凍ν璽−ケーX
(ll(ニー横幅155am、縦1!50Q11.高5
11国、フィンピップ16■の第1冷却器(5)と、こ
のs1冷却器と横幅、縦幅、高さが同じでフィンピッチ
10鴫の$2冷却器(61とを5011の間隔を存して
設置し、冷凍装置への封入冷媒’IkeR−502とし
、42冷却器(61の導管の冷媒蒸発温度を一40℃、
蒸発圧力k 0.3 % () l二設定して外気温度
24℃、湿度8096の1囲条件で、第1及び第2両冷
却器+51(6)(=おける冷媒蒸発温度及び冷気流温
度の推移な実験により確認した処114図に示す温度特
性を得た。′@4図(=示す(イ)はIll及び第2両
冷却器(51(6)t−通過する冷気流温度、(口6)
はvI2冷ati)(6)1に通Jfる冷媒蒸発温度、
((ff5)は第1冷却器(5)を通過する冷媒蒸発温
度、斜線(八5)(ハロ)はsl及び第2SI却器t5
)(60;おける最多着霜部分である。
That is, the inventor of the present application has created a frozen
(ll (knee width 155am, height 1!50Q11. height 5
In 11 countries, the first cooler (5) with fin pips 16■ and the $2 cooler (61) with the same width, length, and height as this s1 cooler but with a fin pitch of 10 mm have a spacing of 5011. The refrigerant 'IkeR-502' was sealed in the refrigeration system, and the refrigerant evaporation temperature in the conduit 61 was set to -40℃,
Evaporation pressure k 0.3 % () 1. Under the conditions of an outside temperature of 24°C and a humidity of 8096, the refrigerant evaporation temperature and cold air flow temperature in both the first and second coolers +51 (6) (= The temperature characteristics shown in Fig. 114 were confirmed through continuous experiments.'@Fig. 6)
is the refrigerant evaporation temperature passing through Jf (6) 1,
((ff5) is the evaporation temperature of the refrigerant passing through the first cooler (5), and the diagonal line (85) (halo) is the sl and second SI cooler t5
) (60;) is the most frosted part.

で第2冷却器(6)から出、冷媒は一40℃でlI2冷
却器(6)に入り、5℃過熱され一′55℃でs1冷却
!!! (5)から出るため(二、冷媒蒸発温度と冷気
流温度との差は′41冷却器(5)の空気入口側で12
℃、第2冷却器(6)の空気入口側で9℃となり、lI
1冷却器(5)の空気入口側のみで冷媒の過熱を得る丈
で風路抵抗の大きい第2冷却器(6)の空気入口側が冷
却運転開始から約12〜14時間で霜C二より閉塞さ九
−口約2回の除霜運転音必要とする結果V招いた・ 本発明は史(二除霜回数を少なくするためになされたも
ので、以下45図(二晶づきその実施例な説明する。尚
、第3図(=おいて′141図及び嘱2図と同じ符号は
同じものとする。
The refrigerant exits the second cooler (6) at -40°C, enters the lI2 cooler (6), is superheated by 5°C, and cools down at -55°C! ! ! (5) (2. The difference between the refrigerant evaporation temperature and the cold air flow temperature is 12 on the air inlet side of the cooler (5).
℃, 9℃ on the air inlet side of the second cooler (6), and lI
The air inlet side of the second cooler (6), which is long enough to superheat the refrigerant only on the air inlet side of the first cooler (5) and has a large air path resistance, was blocked by frost C2 about 12 to 14 hours after the start of cooling operation. The present invention was made in order to reduce the number of times the defrosting operation was performed, and an example thereof is shown in Fig. 45 below (Fig. 45). The same reference numerals as in Fig. 3 and Fig. 2 are the same.

r’41e家受液器叫からの高圧液冷媒!二号同蚤;分
流する丁字管等の分流器、(20A)(20Ii1)は
この分流器に入口端l夫々接続さ九た高圧液枝管、(1
7A)(17B)はこの高圧液枝管【二人口端を夫q按
続され感温部(17Aイ)(17Bイ)を夫々備えた温
度式膨張弁等の減圧装置、(21A)は入口端l減圧装
置(17A)の出口端、出口端を第2冷却器(6)の空
気出口側最下流の導管(606)(二接続された低圧液
管、(2131)は入口端を減圧装置(17B)の出口
端、出口端を第2冷却器(6)の9電入口側最下流の導
管(60g)に接続された低圧液管、(25人)はII
2冷却器(6)の空気出口側最下流の導管(604)と
第1冷却! +51の空気出口側最下流の導管(504
)とt接続する連絡導管、(25B)は112冷却器(
61の空気入口側最上流の導管(601)とi]11冷
却器(5)の空気入口側最下流の導管(501)とV播
纏する連絡導管、(22人)(22m)[81冷却器(
5)の9気出口I!最上流の導管(504)、?電入口
側最上流の導管(501) C夫々入口端を接続された
低圧ガス枝管、(至)はこの両低圧ガス枝雪。
High pressure liquid refrigerant from the r'41e home liquid receiver! No. 2 same type; flow dividers such as T-shaped pipes, (20A) and (20Ii1) are high-pressure liquid branch pipes, (1
7A) and (17B) are pressure reducing devices such as temperature-type expansion valves connected to the high-pressure liquid branch pipe [two ports are connected to each other and equipped with temperature-sensing parts (17A) and (17B), respectively, and (21A) is the inlet. End l The outlet end of the pressure reducing device (17A), the outlet end of the air outlet side of the second cooler (6), the most downstream conduit (606) (two connected low pressure liquid pipes, (2131) the inlet end of the pressure reducing device (25 people) are II
The most downstream conduit (604) on the air outlet side of the second cooler (6) and the first cooling! +51 air outlet side most downstream conduit (504
) and connecting conduit, (25B) is the 112 cooler (
The most upstream conduit (601) on the air inlet side of 61 and the most downstream conduit (501) on the air inlet side of vessel(
5) 9 Ki Exit I! The most upstream conduit (504), ? The most upstream conduit on the power inlet side (501) C is a low-pressure gas branch pipe with its inlet end connected to both low-pressure gas branch pipes.

からの低圧ガスt−,1に合して低圧ガス管@1;導く
丁字管等の集合器、罰は低圧ガス枝管(2宜1 ) g
;設けられ、第2冷却器(6)の9慨入口側の冷媒蒸発
温度tこの冷却器の9見出口側の冷媒蒸発温度より高く
維持する蒸発圧力調整弁である。
Combine the low pressure gas t-, 1 from the low pressure gas pipe @1; lead to a collector such as a T-shaped pipe, and the penalty is a low pressure gas branch pipe (2 1) g
is an evaporation pressure regulating valve that is provided and maintains the refrigerant evaporation temperature t on the 9th inlet side of the second cooler (6) higher than the refrigerant evaporation temperature on the 9th outlet side of this cooler.

か\る冷凍装置1;よれば、減圧装置(17A)により
低圧液となった冷媒は第2冷却器(6)の9見出口側か
ら111冷却器(5)の空気出口(IIに、減圧装置(
17B)(:より低圧液となった冷媒は112冷却器(
6)の空気入口側から181冷却器(5)の空気入ロ側
蓼工夫41’lれ、蒸発気化して低圧ガス枝管(22A
)<22B)v通り集合器善にて集合して圧縮IIIに
戻るチイクA/を繰り返す、このとき、112冷Is器
(6)の9電入口側V魔れる冷媒の蒸発温度は1IA4
1圧力!ll11弁(ロ)C二より第2冷却器(6)の
空気出口側を鷹れる冷媒の蒸発温度より高く過熱を得る
ようC;制御されている。
According to the refrigeration system 1, the refrigerant that has become a low-pressure liquid by the pressure reducing device (17A) is transferred from the 9th outlet side of the 2nd cooler (6) to the air outlet (II) of the 111th cooler (5) under reduced pressure. Device(
17B) (: The refrigerant that has become a lower pressure liquid is transferred to the 112 cooler (
6) from the air inlet side of the 181 cooler (5), the air inlet side of the 181 cooler (5) is evaporated, and the low pressure gas branch pipe (22A
) < 22B) Repeat the steps A/ to collect at the collector and return to compression III. At this time, the evaporation temperature of the refrigerant on the 9 electric inlet side of the 112 refrigerant Is unit (6) is 1IA4
1 pressure! It is controlled by C2 to obtain superheat higher than the evaporation temperature of the refrigerant flowing into the air outlet side of the second cooler (6).

本発明の冷凍装置を従来の冷凍装置と同じ条件で実験し
た結果villa図により説明する。尚、第4Si:示
T(口゛5)((”6)は本発明冷凍装置の111及び
第2両冷却器+51+6)を通過する冷媒蒸発温度であ
る。
The results of experiments on the refrigeration system of the present invention under the same conditions as conventional refrigeration systems will be explained using villa diagrams. Incidentally, 4th Si: T(5) (("6) is the evaporation temperature of the refrigerant passing through both the 111 and the second cooler +51+6 of the refrigeration system of the present invention.

この実験C:よれば、s2冷却器(6)の空気出口側の
冷媒蒸発温度は一40℃、空気入口側の冷媒蒸発温度は
一55℃、411冷却器(5)の空気出口側の冷媒蒸発
温度は一55℃、空気入口側の冷媒蒸発温度は一50℃
となり、冷媒蒸発温度と冷気流温度との差はs1冷却器
(5)の空気入口側で7℃、第2冷却器(5)の空気入
OgIAで4℃となり、蒸発圧力−整弁(ロ)(二よっ
て@2冷却器(6)の空気入口(llv流れる冷媒で5
℃の過熱を得てs2冷却器(6)の空気入口01!Eお
ける冷媒蒸発温度と冷気流温度との差を小さくするばか
りでなく、第1冷却器(5)の空気入口側でも5℃(蒸
発圧力Q、45〜0.5〜G)の過熱を得てvs1冷却
器(5)の空気入口[II4二おける冷媒蒸発温度と冷
気流温度との!を小さくTることができ、この結果′s
2冷却器(6)の熱交換を低下させることな(霜による
各フィン(6A)間の閉塞迄の峙間V葺くとることがで
きるとともに、ill及び第2両冷却器+51[61へ
の着霜の均一化が図れ、冷却運転開始から約20峙間経
過して除霜運転開始となった。尚、1]11及び第2冷
却器+5)(61は管板(511)(4B)t’共通化
したものでもよい。
According to this experiment C:, the refrigerant evaporation temperature on the air outlet side of the s2 cooler (6) is -40°C, the refrigerant evaporation temperature on the air inlet side is -55°C, and the refrigerant on the air outlet side of the 411 cooler (5). The evaporation temperature is -55℃, and the refrigerant evaporation temperature on the air inlet side is -50℃.
Therefore, the difference between the refrigerant evaporation temperature and the cold air flow temperature is 7°C at the air inlet side of the s1 cooler (5), 4°C at the air inlet OgIA of the second cooler (5), and the difference is evaporation pressure - valve regulation (rotator). ) (2 @2 air inlet of cooler (6) (5 with refrigerant flowing)
℃ superheat obtained air inlet 01 of s2 cooler (6)! In addition to reducing the difference between the refrigerant evaporation temperature and the cold air flow temperature at E, superheating of 5°C (evaporation pressure Q, 45~0.5~G) is obtained on the air inlet side of the first cooler (5). The air inlet of the vs1 cooler (5) [refrigerant evaporation temperature and cold air flow temperature at II42! can be made small, and as a result, ′s
Without reducing the heat exchange of the second cooler (6) (until the blockage between each fin (6A) due to frost), it is possible to cover the space between each fin (6A) without reducing the heat exchange between the ill and the second cooler (6). The frost formation became uniform, and defrosting operation started approximately 20 hours after the start of cooling operation. Note that 1] 11 and 2nd cooler + 5) (61 is tube plate (511) (4B) t' may be standardized.

45図は本発明の他の実施例な示し、夫々二台の圧縮機
(15人) (1511)、凝縮器(14人)(141
1)、受液器(16A)(1611)、気液分離器(1
8A)(18B)V用イテ1g!冷却器(6)の9見出
口側からs1冷却器(5)の空気出口側に流れる冷媒と
、第2冷却器(6)の空気入口側から第1冷却器(5)
の空気入口側に隠れる冷媒とは夫々独立サイクルを形成
するよう(;構成したものである1両圧縮111(15
A)(15B)は仕事量が同じ若しくは両冷却器(51
(61の空気入Oa口冷媒な供給する圧縮fi(15B
)の方が他方より仕事量の小さいものとする。
Figure 45 shows another embodiment of the present invention, two compressors (15 people) (1511) and a condenser (14 people) (141).
1), liquid receiver (16A) (1611), gas-liquid separator (1)
8A) (18B) Ite 1g for V! The refrigerant flows from the outlet side of the cooler (6) to the air outlet side of the s1 cooler (5), and from the air inlet side of the second cooler (6) to the first cooler (5).
The refrigerant hidden on the air inlet side of the 1-car compression 111 (15
A) (15B) has the same amount of work or both coolers (51
(61 air inlet Oa refrigerant supply compression fi (15B
) has a smaller amount of work than the other.

か\る構成(:よれば、*2冷却器(6)の空気入口側
及び出ロ側ン夫It流れる冷媒の蒸発温度を共Cニー4
0℃に設定した場合でもこの両冷媒と島藺換される冷気
流のうち空気入口側は出口側より温度が高く、空気入口
側の冷媒蒸発温度は空気出口側より高く一55℃となり
、これと同じ作用C:よりs1冷却!1f5)の空気入
口側の冷媒蒸発温度は空気出口側より高(−30℃とな
り、114図(口″5)(CF3H:示す温度特性を得
ることができる。この結果両冷却器(5)(6)の空気
入口側において冷媒の過熱を得て、冷媒蒸発温度と冷気
流温度との差を両冷却器+51+61の空気入口側で共
に小さくすることができ、1JI2冷却器(6)の熱変
換ン損なうことなく霜(二よる各フィン(6ム)間の閉
毫迄の時間を長くとり、且つ両冷却器f51 (6)夫
々の着霜の均一化を図ることができ、除霜周期を長くし
て除霜回数l少なくできた。
According to the configuration (:), the evaporation temperature of the refrigerant flowing on both the air inlet side and the outlet side of the cooler (6) is equal to C.
Even when the temperature is set to 0℃, the air inlet side of the cold airflow that is exchanged with both refrigerants is higher than the outlet side, and the refrigerant evaporation temperature on the air inlet side is -55℃, which is higher than the air outlet side. Same effect as C: More s1 cooling! The refrigerant evaporation temperature on the air inlet side of 1f5) is higher (-30°C) than on the air outlet side, and it is possible to obtain the temperature characteristics shown in Figure 114 (port "5) (CF3H: By superheating the refrigerant on the air inlet side of 6), the difference between the refrigerant evaporation temperature and the cold air flow temperature can be reduced on the air inlet side of both coolers +51+61, and the heat conversion of the 1JI2 cooler (6) is achieved. This allows for a longer period of time for the two fins (6 fins) to close without damaging the frost, and evens out the frost formation on both coolers. By making it longer, I was able to reduce the number of defrosting cycles.

以上の如く本発明は、フィンピップの粗いs1冷却器と
、フインビ1デの細かい112冷却器とt間隔な存して
並設し、冷気流t”11冷却器から鵠2冷却器(二、冷
媒!第2冷却器の空気出口側からSt冷却器の空気入口
側4:fiす冷凍装置において、高圧液冷媒を減圧する
少なくとも二個の減圧装置と、減圧された一万の冷媒を
$2冷却器の空気出口側かF)18m冷却器の空気出口
側−二、他方の冷媒t’i12冷却器の空気入口側から
s1冷却器の空気入口側(=夫々流す雪路とを備えたも
のであるから、冷気流の流れ方向と逆方向に流れる冷媒
の薫発温Iに2両冷却器の空気出口側から9気へ口[1
g:、かけて高くなるようC二勾配!つけ、しかも空気
入口側において冷媒の過熱を得ることができるためC;
、s2冷却器の熱交換を損なうことな(、各フィン間の
霜による閉塞化の時間な長くとれると共(二両冷却器夫
々の着霜を均一にでき、除1回数を少なくすることがで
きる。
As described above, in the present invention, the coarse s1 cooler of the finpip and the fine 112 cooler of the finpip are installed side by side with an interval of t, and the cold air flows from the 11 cooler to the 2 cooler (2, Refrigerant! In the refrigeration system from the air outlet side of the second cooler to the air inlet side of the St cooler, there are at least two pressure reducing devices that reduce the pressure of the high-pressure liquid refrigerant, and the reduced pressure of the refrigerant is $2 From the air outlet side of the cooler F) 18m Air outlet side of the cooler - 2, from the air inlet side of the other refrigerant t'i 12 cooler to the air inlet side of the s1 cooler (= one equipped with a snow path for each to flow) Therefore, when the refrigerant is heated in the opposite direction to the flow direction of the cold air, there is an opening [1] from the air outlet side of the two-car cooler to the
g:, C two slopes so that it becomes higher! C;
, without impairing the heat exchange of the s2 cooler (the time for frost blockage between each fin can be lengthened), the frost formation on each of the two coolers can be made uniform, and the number of times of removal can be reduced. can.

【図面の簡単な説明】[Brief explanation of drawings]

Illは一般ζ二使用されている冷5[Vヨーケースの
縦断面図、s2図は従来の冷凍装置な示T冷媒回路囚、
第3因は本発明冷凍装置の実施例を示T冷媒回路因、i
’44因は本発明及び従来の冷凍装置における冷電流及
び冷媒蒸発温度を示す特性図、4m5図は本発明の他の
実施例を示す冷媒回路図である。 15)・・・第1冷却器、(5A)・・・フィン、(5
01)〜(504)・・・導管、(6)・・・42冷却
器、(6A)“・°フィン、(601〜C604)・・
・導管、(17A)(17B)−=減圧装置、(25A
)(25B)・・・連絡導管。 1117図       1 11I4図 ρJ11’1 *2図 11!3図 115m1 廿
Ill is a longitudinal cross-sectional view of a commonly used refrigerant case, s2 is a conventional refrigeration system, and the T refrigerant circuit is
The third factor shows the embodiment of the refrigeration system of the present invention, T refrigerant circuit factor, i
Figure '44 is a characteristic diagram showing the cold current and refrigerant evaporation temperature in the refrigeration apparatus of the present invention and the conventional one, and Figure 4m5 is a refrigerant circuit diagram showing another embodiment of the present invention. 15)...First cooler, (5A)...Fin, (5
01)~(504)...Conduit, (6)...42 Cooler, (6A)"・°Fin, (601~C604)...
・Conduit, (17A) (17B) - = pressure reducing device, (25A
) (25B)...Communication conduit. 1117Figure 1 11I4Figure ρJ11'1 *2Figure 11!3Figure 115m1 廿

Claims (1)

【特許請求の範囲】[Claims] t フィンビ1テの粗い第1冷却器と、フィンピッチの
喝かい42冷却器とを間隔を存して並設し、冷気fit
−41冷却器から11g2冷却器口、冷媒t’$2冷却
器の9請出口側からs1冷却器の空気入口fil(:f
iす冷凍装置において、高圧液冷媒を減圧する少なくと
も二個の減圧装置と、減圧された一方の冷媒V第2冷却
器の空気出口側から第1冷却器の9請出口側に、他方の
冷媒を′##2冷却器の9鬼人口側から嘱1冷却器の空
気入口側(−夫々流T管路と金備えた冷凍装置。
t A first cooler with a coarse fin pitch and a cooler with a coarse fin pitch of 42 are installed side by side with a gap between them, and the cold air fits.
-41 cooler to 11g2 cooler outlet, refrigerant t' $2 From the 9 liner outlet side of the cooler to s1 cooler air inlet fil (:f
In the refrigeration system, there are at least two pressure reducing devices that reduce the pressure of high-pressure liquid refrigerant, and one refrigerant whose pressure has been reduced is transferred from the air outlet side of the second cooler to the air outlet side of the first cooler, and the other refrigerant is From the air inlet side of the second cooler to the air inlet side of the first cooler (-respectively, the refrigeration device is equipped with a flow T pipe and a metal.
JP3367382A 1982-03-02 1982-03-02 Refrigerator Granted JPS58150761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3367382A JPS58150761A (en) 1982-03-02 1982-03-02 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3367382A JPS58150761A (en) 1982-03-02 1982-03-02 Refrigerator

Publications (2)

Publication Number Publication Date
JPS58150761A true JPS58150761A (en) 1983-09-07
JPS6311580B2 JPS6311580B2 (en) 1988-03-15

Family

ID=12392969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3367382A Granted JPS58150761A (en) 1982-03-02 1982-03-02 Refrigerator

Country Status (1)

Country Link
JP (1) JPS58150761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132252U (en) * 1987-02-23 1988-08-30
JPH02106570U (en) * 1989-02-10 1990-08-24
JPH0540772U (en) * 1991-03-20 1993-06-01 株式会社東洋製作所 Cooler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132252U (en) * 1987-02-23 1988-08-30
JPH0350370Y2 (en) * 1987-02-23 1991-10-28
JPH02106570U (en) * 1989-02-10 1990-08-24
JPH0540772U (en) * 1991-03-20 1993-06-01 株式会社東洋製作所 Cooler

Also Published As

Publication number Publication date
JPS6311580B2 (en) 1988-03-15

Similar Documents

Publication Publication Date Title
WO2018047416A1 (en) Air conditioner
US4240269A (en) Heat pump system
EP3499142B1 (en) Refrigeration cycle device
JPH09145187A (en) Air conditioner
US4407137A (en) Fast defrost heat exchanger
US2819592A (en) Accumulator heat exchanger
JP3087745B2 (en) Refrigeration equipment
US20230168040A1 (en) Heat exchanger, outdoor unit including heat exchanger, and air-conditioning apparatus including outdoor unit
JPS58150761A (en) Refrigerator
US11384970B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2000205735A (en) Refrigerator
JP2765243B2 (en) Air conditioner
JP2877552B2 (en) Air conditioner
CN212006013U (en) Multi-split air conditioning system
JPS6311581B2 (en)
JPH0587426A (en) Air-conditioner
JP2727754B2 (en) Ice making equipment
JPH10196984A (en) Air conditioner
JPH04324067A (en) Air conditioner
CN208901691U (en) A kind of condenser and heat pump system
JP2982742B2 (en) Ice making equipment
JPS5815819Y2 (en) air conditioner
JPS62178856A (en) Multi-chamber air conditioner
CN115103987A (en) Heat exchanger for heat source side unit and heat pump device provided with same
JPS58156171A (en) Refrigerator