JPS58150753A - Beam-condensing type heat collector - Google Patents

Beam-condensing type heat collector

Info

Publication number
JPS58150753A
JPS58150753A JP57034249A JP3424982A JPS58150753A JP S58150753 A JPS58150753 A JP S58150753A JP 57034249 A JP57034249 A JP 57034249A JP 3424982 A JP3424982 A JP 3424982A JP S58150753 A JPS58150753 A JP S58150753A
Authority
JP
Japan
Prior art keywords
lens
angle
elevation
heat collecting
fresnel lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57034249A
Other languages
Japanese (ja)
Inventor
Akira Kushihashi
櫛橋 昭
Kenji Matsuoka
健司 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP57034249A priority Critical patent/JPS58150753A/en
Publication of JPS58150753A publication Critical patent/JPS58150753A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

PURPOSE:To contrive to miniaturize a tracking mechanism by disposing a reflecting mirror for reflecting solar rays toward a condenser lens arranged in elevation-angle changeable form and providing a tracking mechanism operating the elevation angle. CONSTITUTION:A sealed heat-insulating housing 3 is fixed to a stand 8 under the state in which a Fresnel lens 1 is positioned at a section lower than a heat collecting pipe 2 and at a downward attitude while a plane mirror 4 for reflecting solar rays toward the Fresnel lens 1 is disposed in elevation-angle changeable shape by oscillation around a shaft 5 in the east and west direction, and the tracking mechanism 6 varying, fixing and operating the elevation angle so that an angle of incidence to the Fresnel lens 1 of reflected rays is made constant or approximately constant regardless of the change of solar altitude in the daytime at every one week unit is provided. Relative positions between the Fresnel lens 1 and the tracking reflecting plane mirror 4 may be determined so that solar rays (a) going pass by the southern end of the lens 1 at the summer solstice southing are projected to the northern end of the plane mirror 4.

Description

【発明の詳細な説明】 本発明は、主として太陽熱冷暖房・給湯用に用いられる
もので、特に集光方法が反射式てなく、7レネルレンズ
や凸レンズを利用したレンズ集光式の集熱装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention is mainly used for solar air conditioning and hot water supply, and particularly relates to a lens condensing type heat collecting device using a 7-renel lens or a convex lens, rather than a reflective type.

このような集光型集熱装置は、高温集熱が図れ、幅広い
用途が有るものの、従来から知られているこの種装置は
、第4図で示すように集光レンズ(tl)及びその集光
レンズψすによる焦点または無線相当箇所に位置する集
熱管に)とt備えた密閉断熱ハウジング(呻を、前記集
光レンズ(叫が集魚管(w)よpも上方で上向き姿勢に
位置丁ゐ状態で東西方向軸(−0周9に揺動自在に枢設
し、かつ、このハウジング((社))全体11週間単位
毎に日中の太陽高度の変化(合わせて揺動固定操作すゐ
追尾機構(−を設けて構成していたのであるが、この従
来装置によれば、集光レンズ、集島管管含めたハウジン
グ全体を追尾−作させゐものであるから、追尾駆動負荷
が大吉く、機構全体が大型で設備費の嵩むものになる欠
点があったO 本発明は、かかる実情に鑑み、従来のものに反射鏡を付
加することをもって、集熱効率を低下させることなく、
追尾機構の小型化、経済化が図れるよう圧することを目
的とする口重発明による集光型集熱装置は、集光レンズ
及びその集光レンズによる焦点を九は焦線相通箇所に位
置する集熱管とを備えた書間断熱ハウジング會、前記集
光レンズが前記集熱管よりも下方に位置する状態で固定
するとともに、前記ハウジングの下方INK、太陽光線
管前記集光レンズに向けて反射するための反射鏡vty
y、s方向軸馬り0揺動に工9仰角変更自在に配置し、
かつ前記反射鏡の仰角を変更固定操作する追尾機構を設
けであることt4I徽構成とするものであるから、次の
ような作用及び効果が得られる0つオリ、既記の従来装
置に比して本発明装置は反射鏡が追加構成となるのであ
るが、この反射鏡はそれの機能からみて軽量なもので良
く、集光レンズ、集熱管を備え九重量大なる密閉断熱ハ
ウジングは固定設置した壜壜、軽量な平面鏡等の反射鏡
のみを追尾動作させれば良いから、追尾駆動負荷は従来
に比して著しく小さくなり、よって太陽高度の変化(季
節的変動)K拘わらす常に効率良い集熱作用が行なえJ
4のであり乍ら、追尾機構の小型化及び設備費の低減化
が図れゐに至った。
Although such a concentrating type heat collecting device can collect high temperature heat and has a wide range of uses, conventionally known devices of this kind have a condensing lens (tl) and its concentrator as shown in Fig. 4. The optical lens ψ is placed at the focal point or at the heat collecting tube located at the radio equivalent point) and the hermetically insulated housing is equipped with a hermetically sealed insulated housing. In the state of The conventional device was configured with a tracking mechanism (-), but in this conventional device, the entire housing including the condensing lens and the island condensing tube is used for tracking, so the tracking drive load is reduced. Unfortunately, there was a drawback that the entire mechanism was large and equipment costs were high. In view of these circumstances, the present invention has been developed by adding a reflector to the conventional system, without reducing heat collection efficiency.
The condensing type heat collecting device invented by Kuchiju, which aims to make the tracking mechanism more compact and economical, uses a condensing lens and a focal point of the condensing lens, which is located at a point where the focal lines communicate. an intercalated heat insulating housing comprising a heat tube; the condenser lens is fixed in a position below the heat condenser tube; reflector vty
The axis of rotation in the y and s directions is arranged so that the angle of elevation can be changed freely.
In addition, a tracking mechanism for changing and fixing the elevation angle of the reflecting mirror is provided.Since it has a t4I configuration, the following functions and effects can be obtained, compared to the conventional device described above. Therefore, the device of the present invention requires a reflector as an additional component, but this reflector may be lightweight considering its function, and the nine-weight hermetically insulated housing, which is equipped with a condensing lens and a heat collecting tube, is fixedly installed. Since only a reflecting mirror such as a bottle or a lightweight plane mirror needs to be operated for tracking, the tracking drive load is significantly smaller than in the past. Heat action can be carried out
4, the tracking mechanism has been made smaller and the equipment cost has been reduced.

冑、本発明装置の実施にあたり、集光レンズとして矩形
(カマボブ形)て東西方向に沿ってライン集光タイプの
フレネルレンズ管用いる時は、18轟た9の有効集光集
熱時間を大きくできるとともに1凸レンズの場合に比べ
て使用材料少なくて安価K11作できる利点がある。し
かし、集光レンズとして凸レンズ食用いても良い。
When implementing the device of the present invention, when using a rectangular (Kamabob-shaped) line condensing type Fresnel lens tube along the east-west direction as a condensing lens, the effective light condensing time of 18 and 9 can be increased. In addition, compared to the case of a single convex lens, there is an advantage that less material is used and K11 can be manufactured at a lower cost. However, a convex lens may be used as the condenser lens.

また、密閉WfrlIl&ハウジングとして集熱管側に
至るほど漸次幅狭なテーバrmoもの管用いると倉は、
集光作用に伴なって温められたノ1ウジ/グ内の!気が
集熱管部分に集中し、集熱管からO放熱損失を少なくす
ることとt!j、全体として集熱効率を一層高め得る利
点があゐ〇以下本発明の実施例1図面に基づいて詳述す
ると、I11@において(17t!集光レンズの一例で
矩形(カマボブ形)で東西方向に沿ってライン集光−イ
ブのフレネルレンズであり%(りは前記フレネルレンズ
(1)による焦線相当箇所くそれO軸芯が位置するよう
に軸芯を東西方向に向けてほぼ水平姿勢(配置された集
熱管であり、その内部に液体又は気体管流動させる4の
である0(3)はそれの底部側はど漸次幅狭なテーバ薯
のものに構成された密閉断熱ハウジングであり、これは
第2図で明示されているように、黒色−箇が施されt鉄
板製ハウジング本体(8人)の開口St除く全内周面に
、熱伝導ロス防止用グラスウール(8B) を挾む状態
で・・ウジンダ内部O輻射熱を内方に戻す役割を果たす
べくガラス又はアルミニーラム製の鏡<SC>  を張
設して構成され、その−口′sK前記7レネルレンズ(
1)が賜定支持されているとともに1廠鵠近くのハウジ
ング内sK前記集熱管(りが挿通支持され、かつ、この
集熱管(り外側に低反射処11WI!面を有するガラス
パイプ(nが同君に嵌合固定され、このパイプ(1)と
集熱管体)との間の空間を真空にする又はそこに空気を
封入しである。
In addition, if a Taber rmo pipe is used as a sealed WfrlIl & housing which gradually becomes narrower as it reaches the heat collecting pipe side, the warehouse will be
Inside the space that was warmed by the light condensing action! The air is concentrated in the heat collecting pipe part, reducing O heat radiation loss from the heat collecting pipe and t! j, there is an advantage that the heat collection efficiency can be further improved as a whole. 〇 Below, Embodiment 1 of the present invention To be described in detail based on the drawings, in I11 @ (17t! An example of a condensing lens, it is rectangular (kamabob shape) and It is a Fresnel lens that focuses line light along the line - Eve's Fresnel lens. 0 (3) is a heat collecting pipe arranged in which a liquid or gas pipe is allowed to flow inside. 0 (3) is a hermetically insulated housing whose bottom side is constructed of a tapered tube whose width is gradually narrowed. As clearly shown in Fig. 2, glass wool (8B) for preventing heat conduction loss is sandwiched on the entire inner circumferential surface of the iron plate housing body (8 people) except for the opening St, which is marked with black spots. In order to return the radiant heat inside the Ujinda inward, it is constructed with a mirror made of glass or aluminum laminate (SC), and its opening is the 7-lens lens (
1) is fully supported, and the heat collecting pipe is inserted and supported in the housing near the first part, and the heat collecting pipe is a glass pipe having a low reflection surface on the outside. The space between the pipe (1) and the heat collecting tube body is evacuated or air is sealed therein.

そして、前記のような密閉断熱ハウジング(3)t1前
記フレネルレ/ズ(1)が前記集熱管(りよりも下方で
下向き姿勢に位置する状111にスタンド(1) K固
定するとともに、前記ハウジング(j)の下方W6に、
太陽光線管前記7レネルレンズ(1)に向けて反射する
ための反射鏡としての平面鏡(4)を東西方向軸(5)
屑りの揺動により仰角変更自在に配設し、かつ、前記平
面鏡(4)の仰角會、例えば1遍間単位毎に日中の太陽
高置の変化に拘わらず、反射光線のフレネルレンズ(υ
に対する入射角が一定又はほぼ一定になるように変更固
定操作する追尾機構(6) ’(・例えば篭−夕とギヤ
の組合せ、或は流体圧シリンダなど周知構造のため省略
すゐ)t−設けて、全体管構成する◎前記フレネルレン
ズ(1)と追尾反射平面鏡(4ンとの相対位置は原理的
にみて、夏至南中時にかいてレンズ(1)の南端をかす
めた太陽光線(a)が平面鏡(4)の北端に入射するよ
うに決定すれば良い訳であるが、これを設計資料となる
ように第8図を参照にして11輪的KIsき出せば次の
通シである・レン、ズ面が水平のとき(第8図の)にお
いて、レンズが陰にならない条件 ただし、#1:太陽光の傾き角で最小が約10度(夏至
)最大が約60度(冬至) レンズmt傾けたとき(第8図@)K>いてレンズが陰
にならない条件 ただし、#宏:レンズ面の傾き角 上記■式がら、0<0鷺≦70&、ffl壜しくは、1
0f≦#雪≦60度 なる結果が得られる。
Then, the hermetically insulated housing (3) t1 as described above is fixed to the stand (1) K in a state 111 in which the Fresnel lens (1) is positioned in a downward position below the heat collecting pipe (ri), and the housing ( j) below W6,
A plane mirror (4) as a reflecting mirror for reflecting the solar ray tube toward the 7-Renel lens (1) is connected to the east-west axis (5).
The Fresnel lens (4) is arranged so that the elevation angle can be freely changed by the rocking of the debris, and that the elevation angle of the plane mirror (4), for example, a Fresnel lens ( υ
Tracking mechanism (6) that is changed and fixed so that the incident angle is constant or almost constant ◎The relative position of the Fresnel lens (1) and the tracking reflection plane mirror (4) is theoretically determined by the sun's rays (a) that grazed the southern end of the lens (1) at the mid-summer solstice. All you have to do is decide so that it will be incident on the north end of the plane mirror (4), but if you draw out the 11-ring KIs with reference to Figure 8 as a design document, you will get the following formula: When the lens and lens planes are horizontal (as shown in Figure 8), conditions under which the lens will not be in the shadow.However, #1: The minimum tilt angle of sunlight is about 10 degrees (summer solstice), and the maximum is about 60 degrees (winter solstice) Lens mt When tilted (Fig. 8 @) K>, the lens does not become in the shadow.However, #Hiroshi: Inclination angle of the lens surface According to the above ■ formula, 0<0Sagi≦70&, ffl Bottle, 1
The result is 0f≦#Snow≦60 degrees.

まt1平面鏡の最小幅、つまりレンズ全幅に皿って反射
光線を入射させるtめ(最低限必要な帽(Ws )につ
いて考察すると、 #X −H(−180Q−(θtmx+#m月−■故に
、01が決定すれば、上記■■式で得られる#X、X、
及びθ1+θ8が解り、これらからWmは通常の三角関
数式により容易く求めることができる0 崗、前述のレンズ面の傾き角(1m)0選び方としては
、 ■ 冬期に多くのエネルギー會採りたい暖房・給湯を主
体とする集光集熱の場合、 0雪 −01m畠X @ 夏期に多くのエネルギーtsvたい冷房機運転を主
体とする集光集熱の場合、 リ−01− とすることが考えられるが、実用土はレンズと平面鏡と
の最小離間寸法0との兼ね會いから決めるのが望ましい
Considering the minimum width of the t1 plane mirror, that is, the entire width of the lens to allow the reflected light to enter, #X −H(−180Q−(θtmx+#m−■ Therefore) , 01 is determined, #X, X, obtained by the above formula
and θ1+θ8, and from these, Wm can be easily determined using the usual trigonometric formula. In the case of concentrating heat collection mainly based on 0 snow -01m field It is desirable to determine the practical range based on the minimum separation dimension of 0 between the lens and the plane mirror.

以上は反射鏡(4)上平面鏡とした例について説明した
が、反射鏡(4)として第1@の紙面上で撤物Wtなし
、紙面に垂直方向には直線状とし几シリンドリカルな凹
面鏡を使用しても良い。
The above has explained an example in which the reflecting mirror (4) is an upper plane mirror, but as the reflecting mirror (4), a cylindrical concave mirror with no removal material Wt on the paper surface of the first @ and a straight line in the direction perpendicular to the paper surface is used. You may do so.

【図面の簡単な説明】[Brief explanation of the drawing]

!1面は本発明に係る集光型集熱装置の実施例上水1.
11115!11は全体概略図、第2!lは要部の拡大
縦断71図、第8図(イ)綱)は設計条件の解析図、第
4@け従来装置の全体概略図であ為・(1)・・・・・
・集光レンズ、(2)・・・・・・集熱管、(8)・・
・・・・ハウジング、(4)・・・・・・反射鏡、(I
s)・・・・・・電画方向軸、(6)・・・・・・追尾
機構。 =21
! The first page shows an example of the water concentrating type heat collecting device according to the present invention.
11115!11 is the overall schematic diagram, 2nd! 71 is an enlarged longitudinal cross-sectional view of the main part, Figure 8 (A) is an analysis diagram of the design conditions, and Figure 4 is an overall schematic diagram of the conventional device. (1)...
・Condensing lens, (2)... Heat collecting tube, (8)...
...Housing, (4) ...Reflector, (I
s)... Electrographic direction axis, (6)... Tracking mechanism. =21

Claims (1)

【特許請求の範囲】 ■ 集光レンズ(1)及びその集光レンズ(1)による
焦点tたは無線相当箇所に位置する集魚管(2)とを備
えた密閉断熱ハウジング(3)を、前記集光レンズ(1
)が前記集熱管(2)より%下方に位!する状態で固定
するとともに、前記ハウジング(3)の下方Sに、太陽
光線tWrJ記集光レンズ(1)に向けて反射する定め
の反射鏡(4)を東西方向軸(3)mlりの揺動により
仰角変更自在に配量し、かつ前記反射鏡(4)の仰角を
変更固定操作する追尾機構(6)を設けであることt−
特徴とする集光型集熱装置。 ■ 前記集光レンズ(1)が矩形のフレネルレンズであ
る特許請求の範囲第0項に記載の集光型集熱1111゜ ■ 前記密閉断熱ハウジング(3)が集熱管(2)側に
至る糎ど漸次幅狭なテーバ型のものに構成されている特
許請求の範囲第0項に記載の集光型集熱装置。
[Scope of Claims] ■ A hermetically insulated housing (3) comprising a condensing lens (1) and a fish collecting tube (2) located at the focal point t of the condensing lens (1) or at a location corresponding to the radio; Condensing lens (1
) is % lower than the heat collecting pipe (2)! At the same time, a reflector (4) that reflects sunlight toward the condensing lens (1) is mounted below S of the housing (3) and oscillated by an axis of (3) ml in the east-west direction. A tracking mechanism (6) is provided which allows the angle of elevation to be changed freely by movement, and which changes and fixes the angle of elevation of the reflecting mirror (4).
Features a concentrating heat collecting device. ■ The condensing type heat collecting 1111° according to claim 0, wherein the condensing lens (1) is a rectangular Fresnel lens. The condensing type heat collecting device according to claim 0, which is configured as a Taber type device whose width becomes gradually narrower.
JP57034249A 1982-03-03 1982-03-03 Beam-condensing type heat collector Pending JPS58150753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57034249A JPS58150753A (en) 1982-03-03 1982-03-03 Beam-condensing type heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57034249A JPS58150753A (en) 1982-03-03 1982-03-03 Beam-condensing type heat collector

Publications (1)

Publication Number Publication Date
JPS58150753A true JPS58150753A (en) 1983-09-07

Family

ID=12408889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57034249A Pending JPS58150753A (en) 1982-03-03 1982-03-03 Beam-condensing type heat collector

Country Status (1)

Country Link
JP (1) JPS58150753A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202050A (en) * 1985-03-01 1986-09-06 Daido Steel Co Ltd Heat accumulating device using solar energy
JPH04366363A (en) * 1991-06-12 1992-12-18 Takeshi Iyama Cooking method and device using solar heat
KR100825667B1 (en) * 2007-07-11 2008-04-29 주식회사 디씨아이 Solar collector using a lense and a reflection plate
US20090056699A1 (en) * 2007-08-27 2009-03-05 Mills David R Linear fresnel solar arrays and receievers therefor
KR100908208B1 (en) 2007-11-09 2009-07-20 주식회사 디씨아이 Vacuum reflective collector
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202050A (en) * 1985-03-01 1986-09-06 Daido Steel Co Ltd Heat accumulating device using solar energy
JPH04366363A (en) * 1991-06-12 1992-12-18 Takeshi Iyama Cooking method and device using solar heat
KR100825667B1 (en) * 2007-07-11 2008-04-29 주식회사 디씨아이 Solar collector using a lense and a reflection plate
US20090056699A1 (en) * 2007-08-27 2009-03-05 Mills David R Linear fresnel solar arrays and receievers therefor
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor
KR100908208B1 (en) 2007-11-09 2009-07-20 주식회사 디씨아이 Vacuum reflective collector

Similar Documents

Publication Publication Date Title
US4003638A (en) Radiant energy collection
US4131485A (en) Solar energy collector and concentrator
US4074704A (en) Process of and apparatus for solar heating and the like
US4088116A (en) Radiant energy collector
US4287880A (en) Solar collector
US3996917A (en) Solar heating apparatus
US3923381A (en) Radiant energy collection
US20050139210A1 (en) Parabolic trough collector
US4022188A (en) High efficiency solar collector
US20040112373A1 (en) Passive Solar Tracker for a Solar Concentrator
EP1007890B1 (en) Solar collector
US4173968A (en) Receiver for solar energy
US4136673A (en) Multimode solar energy collector and process
JPS58502163A (en) How to maximize solar radiation collection and use
US10119728B2 (en) Solar energy collection and storage
JPS6361579B2 (en)
US6061181A (en) Nontracking light converger
JPS58150753A (en) Beam-condensing type heat collector
Dang Concentrators: a review
US4458672A (en) Thermal panel
US4124017A (en) Collimating solar radiation collector
Richter Optics of a two-trough solar concentrator
US4204521A (en) Solar energy tracking collector
US4342501A (en) Radiant energy collector with focal point between the plane of the frame and earth
WO1978000019A1 (en) Energy concentrator system