JPS58140381A - Metallization of silicon nitride sintered body surface - Google Patents

Metallization of silicon nitride sintered body surface

Info

Publication number
JPS58140381A
JPS58140381A JP2167182A JP2167182A JPS58140381A JP S58140381 A JPS58140381 A JP S58140381A JP 2167182 A JP2167182 A JP 2167182A JP 2167182 A JP2167182 A JP 2167182A JP S58140381 A JPS58140381 A JP S58140381A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
buffer layer
nitride sintered
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2167182A
Other languages
Japanese (ja)
Inventor
六郎 神戸
今井 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP2167182A priority Critical patent/JPS58140381A/en
Publication of JPS58140381A publication Critical patent/JPS58140381A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 窒化珪素焼結体は、その優れ九耐熱性、熱衝撃強度、高
温時の機械的強度、耐磨耗性によって高温用機械部材、
特に内燃機関の各部材として注目されるようになったが
、例えばロッカーアームの摺動部のチップとして金属の
ような異種材料に対してロー着によって強固に接合する
場合において要求される高い強度を有する金属化函の生
成Kliがあった。
[Detailed Description of the Invention] Silicon nitride sintered bodies can be used as high-temperature mechanical parts, due to their excellent heat resistance, thermal shock strength, mechanical strength at high temperatures, and abrasion resistance.
In particular, it has attracted attention as a component of internal combustion engines, and for example, it has the high strength required when firmly joining dissimilar materials such as metal by brazing as a chip for the sliding part of a rocker arm. There was a production of metallized boxes with Kli.

これは窒化珪素焼結体の12×104で示される極めて
低い熱膨張係数が上記熱衝撃強度等の耐熱性に大きく寄
与する反画、異種材料の熱膨張係数、41に鋼材の/j
 x 10  と大音(懸隔し同じ一う建ツクスである
高アル(す質磁器の7 j x / f”との間にも大
at差員があるため高温で加熱されるロー着作業時、更
には高温下で使用され丸場合において大111に熱膨張
差をもえらし、これが異種材料との接合強度を低下させ
るものである。
This is because the silicon nitride sintered body has an extremely low coefficient of thermal expansion of 12 x 104, which greatly contributes to the heat resistance such as the thermal shock strength.
x 10 and loud noise (there is also a large difference between high aluminum (7 j Furthermore, when used at high temperatures, a large difference in thermal expansion occurs in the case of a round shape, which reduces the bonding strength with different materials.

本発明は、%に異種材料との間に太き1接合強度を呈す
る窒化珪素焼結体表面の金属化法の確立に成功しえもの
で、書化珪素焼結体の表面に、皺窒化珪素と反応性の高
い金属からなる反応層と、展延性に富む金属からなる緩
衝層の1層を物履蒸着法によりて形成することを轡黴と
したものである。
The present invention has succeeded in establishing a metallization method for the surface of a silicon nitride sintered body that exhibits a bonding strength of 1% between dissimilar materials, and the surface of the silicon nitride sintered body has wrinkles. The mold is made by forming one layer of a reaction layer made of a metal highly reactive with silicon and a buffer layer made of a highly malleable metal by a material vapor deposition method.

しかして、上記基盤の電化−素鉤紬体0表面に形成する
反応層は、窒化珪素と為い反応性を有する金属、例えば
Tj # Cr e Mo # Zr @ Hf a 
Wおよび、これらを含む合金、例えばNi r Crか
ら撰ばれるが、その膜厚はこれら金属が剛性であ抄、か
つ熱**係数が基盤の電化珪素焼結体に比して着しく高
い理由、および蒸着に要する時間を短縮する目的から可
能な限り薄くすることが望ましいが、薄すぎると全体が
反応して、1画の緩衝層との間に必要な接合強度が得ら
れない丸め、少なく共tooiviutは必要であり、
それ以上線略々膜厚に応じて接合強度を高めるがJoo
oX付近から鈍化すると共に、過度の膜厚は上記の理由
によって耐久性を劣化する慣れがあるだけでなく、蒸着
に長時間を要するので最大10000i程度、コoo〜
コ000 Xの範囲が好ましい。
Therefore, the reaction layer formed on the surface of the electrified bare hook body 0 of the base is made of a metal that is reactive with silicon nitride, such as Tj # Cre Mo # Zr @ Hf a
W and alloys containing these, such as Ni r Cr, are selected, but the film thickness is due to the rigidity of these metals, and the reason why the thermal coefficient is significantly higher than that of the base electrified silicon sintered body. It is desirable to make it as thin as possible in order to shorten the time required for vapor deposition, but if it is too thin, the entire layer will react, making it impossible to obtain the necessary bonding strength between one stroke of the buffer layer, resulting in rounding, and less Common tooiviut is necessary,
Beyond that, the bonding strength increases roughly according to the film thickness.
It slows down from around oX, and excessive film thickness not only deteriorates durability due to the reasons mentioned above, but also requires a long time for vapor deposition, so the maximum thickness is about 10,000i.
A range of 000X is preferred.

次に反応層の表面に形成する緩衝層は、異種材料とのロ
ー着を容lhKすると共K、各接合層間の熱廖談差を徴
収するためのものであるから展延性に富む金属、例えば
Cu HAl tムu+Agおよびこれらを會む合金が
使用され、重要展延性は若干劣るがロー材との濡れ性の
高いNiも使用でき、価格の面からCu * Nl *
 AIが最も実用に適し、七O膜厚は上記の理由によっ
て反応層とは逆に厚い方が望ましいが、過度に失すると
この緩衝層自体の熱廖@によって接合強度を劣化させる
他、蒸着に長時間を要し量童性を低下し、一方薄すぎる
場合は一一材が下方の反応層にメツ中法で上乗せしても
よく、該緩衝層および上記反応層の膜厚はそれらの金属
およびそれら金属の組合せKよって決定される。
Next, the buffer layer formed on the surface of the reaction layer is to prevent brazing with different materials and to collect the difference in thermal flux between the bonding layers, so it is necessary to use a metal with high malleability, such as a metal with high malleability. Cu HAl tmu+Ag and alloys that combine these are used, and Ni, which has a slightly inferior malleability but has high wettability with brazing material, can also be used, and from the viewpoint of price, Cu * Nl *
AI is most suitable for practical use, and for the reasons mentioned above, it is desirable that the 7O film be thicker than the reaction layer, but if it is lost too much, the thermal expansion of this buffer layer itself will degrade the bonding strength, and it will also cause problems with vapor deposition. If it takes a long time and the testability decreases, but if it is too thin, the buffer layer and the reaction layer may be overlaid on the lower reaction layer using the method. and the combination K of those metals.

また、本発@において上記反応層および緩衝層を形成す
る手段として物思蒸着法KIfIi定し九履由は、それ
ら内層の材質および膜厚を自由に損定しうる旭からであ
って、この物理蒸着法を用いて上記反応層と緩衝層を形
成することKよって従来、仁の種の金属化面を形成する
手段として慣用されているメタライズペーストを、基盤
の表面にスクリーン印刷し先後非酸化性雰囲気中におい
て加熱するメタライズ(厚膜)法における欠点、すなわ
ち基盤上に形成される金属化面が励あるいはWを主体と
する剛性の耐火性金属に@定され、かつその膜厚も10
〜コO#という厚膜のため、異−材料量あ熱**差を徴
収できない信頼fkの低さを一挙に解決することに成功
しえものである。
In addition, the reason why we have decided on the physical vapor deposition method KIfIi as a means for forming the reaction layer and the buffer layer in this work is that the material and film thickness of these inner layers can be freely determined, and this method The reaction layer and the buffer layer are formed using a physical vapor deposition method. Therefore, a metallization paste, which has conventionally been used as a means of forming a metallized surface of seeds, is screen printed on the surface of the substrate and then non-oxidized. The disadvantage of the metallization (thick film) method, which involves heating in a static atmosphere, is that the metallized surface formed on the substrate is made of a rigid refractory metal mainly composed of tungsten or W, and the film thickness is also 10%.
Because of the thickness of the film, it is possible to solve at once the problem of low reliability fk, which makes it impossible to compensate for differences in heat and heat of different materials.

しかして、物思蒸着法としては真空蒸着、イオンビーム
蒸着、スパッタリング勢があり、いずれも採期すゐこと
ができる。
As a physical deposition method, there are vacuum deposition, ion beam deposition, and sputtering, and any of them can be used.

実施例1 平均粒*/pの81sNa l) * F ’重量部と
平均粒径ajμの絢V費末!重量部とからなる混合肴末
をJOxlOXjmO板状に成形し、これを窒素雰囲気
中ty’zoc、を時間保持して常圧焼結によつセ得九
脅化珪素′鉤結体のJ(Itlo−からなる一方の主表
面に対して、表面粗さa/7〜a#tμ&の研磨加工を
施した後、洗浄(中性洗剤および流水)−アセトンによ
る水分の置換−洗浄(/、 /、”’ / ’ )リク
ロルエタンおよびアセトン)−乾燥の清浄工程を加えた
ものを基盤としこれを真空蒸着機(日本真空技術@EB
V−40H)の真空槽内において/ 0” Torr台
に減圧すると共に100℃に加熱し、上記の研磨加工を
施した示す金属からTIを撰び、これを電子ビーム加を
生成し、ついで上記の真空度を保持した状態において展
延性に富む金属からCu上撰び、同じく電子ビーム加熱
によって熔融、上記Tムからなる反応層の上にl#の厚
さに緩衝層を形成した試料について、基盤の窒化珪素−
細体に対する上記反応層と緩衝層とからなる金属化面の
接合強度を調べるため、該金属化向をフォトエツチング
によって111m−の円形のパターン′とし、端面を平
坦′に研磨し九/as−の鋼線を央会わせて半田、ロー
着した螢、1直方向の引張抄試験を行なった結果を第1
表に示す′。
Example 1 Average grain*/p of 81sNa l) *F' Part by weight and average grain size ajμ of the total cost! The mixed powder consisting of JOxlOXjmO and JOxlOXjmO is formed into a plate shape, kept at ty'zoc in a nitrogen atmosphere for a period of time, and then sintered under pressure to obtain a J( After polishing one main surface made of Itlo- to a surface roughness of a/7 to a#tμ&, cleaning (neutral detergent and running water) - water replacement with acetone - cleaning (/, / , "' / ') dichlorethane and acetone) - with the addition of a drying cleaning process, and this is then processed using a vacuum evaporation machine (Japan Vacuum Technology @ EB
TI was selected from the metal shown above, which was heated to 100° C. and subjected to the above polishing process, in a vacuum chamber of V-40H). Regarding a sample in which Cu was selected from a metal with high malleability while maintaining a vacuum degree of , it was similarly melted by electron beam heating, and a buffer layer with a thickness of l# was formed on the reaction layer made of T. Silicon nitride base
In order to examine the bonding strength of the metallized surface consisting of the reaction layer and the buffer layer to the thin body, the metallization direction was formed into a 111 m circular pattern by photoetching, and the end surface was polished to a flat surface. The results of a tensile test in one perpendicular direction are shown in the first table.
′ shown in the table.

但し、゛上記の反応層と緩衝層とからなる金属化面は、
T1による反応層を第1表に示したそれぞれO膜厚K1
着し九都度、Cuの緩衝層をlμの膜厚に蒸着して形成
し丸。
However, the metallized surface consisting of the above reaction layer and buffer layer is
The reaction layer due to T1 is O film thickness K1 shown in Table 1.
After each deposition, a Cu buffer layer was deposited to a thickness of lμ to form a circle.

fA/* 第2表から、金属化面の反応層を各棟の膜厚のTiとし
、緩衝層をlμの膜厚に固定したCuとし友場合、反応
層の膜厚がjOλ(too’)、以下0Illl厚は一
定困−の丸め蒸着時間によって推定した)の場合は引張
強さによって表わされる基盤との接合強度が着しく低く
て実用4&に乏しくiooλから急上昇して膜厚に伴な
って接合強縦t−高め10001に適するとシー着部か
ら剥離する棚の強度を示したが、前に述ぺ九理由と総合
してJoooム揚度が好ましい膜厚であることが示され
友。
fA/* From Table 2, if the reaction layer on the metallized surface is Ti with the thickness of each layer and the buffer layer is Cu with a fixed thickness of lμ, then the reaction layer thickness is jOλ (too'). (hereinafter 0Illll thickness is estimated by rounding deposition time), the bonding strength with the substrate expressed by the tensile strength is so low that it is not practical, and it increases sharply from iooλ as the film thickness increases. It was shown that the strength of the shelf that peels off from the bonded part is suitable for the bonding strength of 10001, but it has been shown that the thickness of the film is preferably 10,000 mm, taking into consideration the reasons mentioned above.

実施例コ 金属化内の反応層を膜厚JoooAのT1に同定し、緩
衝層としてCuおよび伽の展延性に富んだ金属を用いる
と共Kl[厚を変えて前と同様の試験を行なつ九紬果を
第1表に示す、但し、緩衝層をAIとした場合はロー材
に商品名、アルツル41LjI)と呼ばれる日本スペリ
ア社のアルイニウム用の半田を使用した。
EXAMPLE The reaction layer in the metallization was identified at T1 with a film thickness of JoooA, and the buffer layer was made of a malleable metal of Cu and G. Table 1 shows the results of the tests. However, when the buffer layer was made of AI, a solder for aluminum manufactured by Nippon Superior Co., Ltd. called Altsul 41LjI (trade name) was used as the brazing material.

7/′ // 、、/”′ JI      J      表 両Jllから、緩衝層o*厚はCu 、 N1 、 A
I (Dいずれkおいてもajμから効果を表わし、膜
厚に略々比例して接合強度を^めるが一1j声権度から
飽和する傾向が示され丸。
7/' // ,, /”' JI J From both tables, the buffer layer o*thickness is Cu, N1, A
I (D) In both cases, the effect is expressed from ajμ, and the bonding strength is approximately proportional to the film thickness, but there is a tendency to saturate from the degree of control.

夷−例J 金属化面の反応層として、T1の他窒化珪素と反応性O
^い金属として知られるZr * Cr *iおよびそ
れらを含む合金としてl:コのNi・Crによって代表
させ、一方緩債層として展延性があ伽、牛田−−材と濡
れ性のよいCu * Ni eAu 、 Ag O金属
あるいはそれらを含む合金がら廉価なCuおよびN1を
用い、前者反応層をコ000)、、H看緩債層をよjμ
として組合せ、藺と同様の試験を行なつ九結果を第3表
に示す。
夷-Example J In addition to T1, silicon nitride and reactive O
Zr * Cr * i, which is known as a hard metal, and alloys containing them are represented by Ni and Cr; on the other hand, Cu *, which has great malleability as a mild layer and has good wettability with Ushida wood, Using inexpensive Cu and N1 from NieAu, AgO metals or alloys containing them, the former reaction layer is made into a thinner layer.
The results are shown in Table 3.

// 第3表から、Zr s Cr * Mo e Ti l
Nl・Crからなる反応層とs Cu t Niからな
る1ikIII1層によって形成される金属化面はいず
れの組合せにおいても満足すべき引張強さを示し、反応
層としてTi a Zrを、緩衝層としてCuを秦んだ
場合、特に優れた効果を表わすことが確かめられた。
// From Table 3, Zr s Cr * Mo e Ti l
The metallized surface formed by the reaction layer consisting of Nl.Cr and the 1ikIII layer consisting of sCu t Ni exhibits satisfactory tensile strength in both combinations, with Ti a Zr as the reaction layer and Cu as the buffer layer. It was confirmed that particularly excellent effects were exhibited when Qin was used.

以上の通り、窒化珪素焼結体の表面に、窒化珪素と反応
性の高い金属または合金からなる反応層と、展帆性に富
む金属または合金からなる緩衝層を、物理蒸着法によっ
て形成するととt特徴とし九本発明の窒化珪素焼結体表
面の金属化法は、上記反応層および緩衝層のそれぞれに
目的に応じた材質および膜厚を自由に鎮定することがで
きるので、基盤の窒化珪素と艦固に結合した極めて薄い
反応層と、展帆性に富み、接合される他の材料との熱1
1脹差を吸収するに足る膜厚の緩衝層とからなり、ロー
着によって他O金属と強固に接合し、高い耐久性を具え
た金属化面を得ることができる。
As described above, a reaction layer made of a metal or alloy highly reactive with silicon nitride and a buffer layer made of a highly malleable metal or alloy are formed on the surface of a silicon nitride sintered body by physical vapor deposition. tCharacteristicsThe method for metallizing the surface of a silicon nitride sintered body of the present invention allows the material and film thickness of the reaction layer and buffer layer to be freely determined according to the purpose, so that The heat between the extremely thin reactive layer bonded to the solid material and other materials that are highly malleable and bonded.
It consists of a buffer layer with a film thickness sufficient to absorb one expansion difference, and is firmly bonded to other O metals by brazing, making it possible to obtain a highly durable metallized surface.

なお、シー着によって接合しうる材料は金属に@らず酸
化物あるいは炭化物等他のセラミック焼結体の表面に金
属化面を設けたものでもよく、大皺の窒化物焼結体を得
るためコ体壕九はそれ以上に分割し先輩化物焼結体を接
合することもで龜るが、熱廖鰻係数の異なる異種材料と
の四−着に対して轡に有効である。
Note that the material that can be joined by sealing is not limited to metals, but may be other ceramic sintered bodies such as oxides or carbides with a metallized surface provided on the surface. Although it is difficult to divide the core body into more parts and join the composite sintered bodies together, it is effective for combining different materials with different thermal coefficients.

Claims (1)

【特許請求の範囲】[Claims] 窒化珪素焼結体の表面に、該電化珪素と反応性の高い金
属ま九は合金からなる反応層と、展延性に富む金属tえ
は合金からなる緩衝層を、−纏蒸着法によって形成する
ことを特徴とした窒化珪素焼結体表面の金属化法。
A reaction layer made of a metal or alloy highly reactive with the electrified silicon and a buffer layer made of a highly malleable metal or alloy are formed on the surface of the silicon nitride sintered body by a blanket vapor deposition method. A method for metallizing the surface of a silicon nitride sintered body.
JP2167182A 1982-02-12 1982-02-12 Metallization of silicon nitride sintered body surface Pending JPS58140381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167182A JPS58140381A (en) 1982-02-12 1982-02-12 Metallization of silicon nitride sintered body surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167182A JPS58140381A (en) 1982-02-12 1982-02-12 Metallization of silicon nitride sintered body surface

Publications (1)

Publication Number Publication Date
JPS58140381A true JPS58140381A (en) 1983-08-20

Family

ID=12061503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167182A Pending JPS58140381A (en) 1982-02-12 1982-02-12 Metallization of silicon nitride sintered body surface

Country Status (1)

Country Link
JP (1) JPS58140381A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073398A (en) * 1983-09-30 1985-04-25 株式会社東芝 Solidifying treater for radioactive gas
JPS6077186A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic sintered body with metallized surface
JPS6077178A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body and manufacture
JPS62222054A (en) * 1986-03-20 1987-09-30 Fujitsu Ltd Formation of thin metallic film on sintered silicon carbide body
US5198265A (en) * 1991-04-01 1993-03-30 General Electric Company Method of coating an aluminum compound substrate with a composition of elemental titanium and an alkali metal halide, melting the coating, and rinsing the coated substrate
RU2619732C2 (en) * 2014-06-03 2017-05-17 Те Свотч Груп Рисерч Энд Дивелопмент Лтд Outer part based on photo-structured glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144709A (en) * 1974-05-13 1975-11-20
JPS51120951A (en) * 1975-04-16 1976-10-22 Ngk Spark Plug Co Method of metallizing ceramics surface to obtaining high brazing strength with metal material
JPS51125641A (en) * 1974-08-05 1976-11-02 Ngk Insulators Ltd Process for metallizing ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144709A (en) * 1974-05-13 1975-11-20
JPS51125641A (en) * 1974-08-05 1976-11-02 Ngk Insulators Ltd Process for metallizing ceramics
JPS51120951A (en) * 1975-04-16 1976-10-22 Ngk Spark Plug Co Method of metallizing ceramics surface to obtaining high brazing strength with metal material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073398A (en) * 1983-09-30 1985-04-25 株式会社東芝 Solidifying treater for radioactive gas
JPS6077186A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic sintered body with metallized surface
JPS6077178A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body and manufacture
JPH0159238B2 (en) * 1983-09-30 1989-12-15 Tokyo Shibaura Electric Co
JPH0474306B2 (en) * 1983-09-30 1992-11-25
JPS62222054A (en) * 1986-03-20 1987-09-30 Fujitsu Ltd Formation of thin metallic film on sintered silicon carbide body
US5198265A (en) * 1991-04-01 1993-03-30 General Electric Company Method of coating an aluminum compound substrate with a composition of elemental titanium and an alkali metal halide, melting the coating, and rinsing the coated substrate
RU2619732C2 (en) * 2014-06-03 2017-05-17 Те Свотч Груп Рисерч Энд Дивелопмент Лтд Outer part based on photo-structured glass

Similar Documents

Publication Publication Date Title
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
JPH0216273B2 (en)
JPH0367985B2 (en)
JPS58140381A (en) Metallization of silicon nitride sintered body surface
US4657825A (en) Electronic component using a silicon carbide substrate and a method of making it
JPS60235773A (en) Ceramic body bonding method
JPS58151384A (en) Metallization of silicon carbide sintered body surface
JPH0632669A (en) Joined body, metallized body and production of metallized body
JPS6261558B2 (en)
JPS6337077B2 (en)
JPS62168694A (en) Cladding solder
JPS59164676A (en) Ceramic-metal bonded body and manufacture
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JP3505212B2 (en) Joint and method of manufacturing joint
JPS61236661A (en) Method of joining ceramic and metal, same kind of ceramics or different kind of ceramics
JPS63206365A (en) Joined body of ceramic and metal
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH04235246A (en) Alloy for metalizing for ceramics and metalizing method
JPH0240631B2 (en)
JPS59223280A (en) Method of bonding ceramic and metal
JPS61281078A (en) Method of joining ceramics to metal, same ceramics each other or different ceramics
JPS6090877A (en) Bond structure of sic sintered body and metal member
JPH0234909B2 (en) SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO
JP2522124B2 (en) Method of joining ceramics to ceramics