JPS58137141A - Focus detecting method - Google Patents

Focus detecting method

Info

Publication number
JPS58137141A
JPS58137141A JP1855182A JP1855182A JPS58137141A JP S58137141 A JPS58137141 A JP S58137141A JP 1855182 A JP1855182 A JP 1855182A JP 1855182 A JP1855182 A JP 1855182A JP S58137141 A JPS58137141 A JP S58137141A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
objective lens
focus detection
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1855182A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yokomori
横森 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1855182A priority Critical patent/JPS58137141A/en
Publication of JPS58137141A publication Critical patent/JPS58137141A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To perform high-precision focus detection without increasing the size of a device, by guiding reflected light to be used for the detection without guiding it directly to a reflecting member, allowing diffracted light to enter a diffraction grating to strike the reflecting member. CONSTITUTION:The transmission type diffraction grating 10 is arranged in an end surface of a polarization beam splitter 3. Reflected light from an irradiated body 6 is made into parallel luminous flux by an objective lens 5 before entering the diffraction grating 10 and primary diffracted light is also made into parallel luminous flux. Then the diffracted light from the diffraction grating 10 is allowed to enter a prism 7 as the reflecting member. For this purpose, variation of the distribution of the quantity of reflected light from a reflecting surface is utilized to perform the focus detection to improve the precision of the focus detection without increasing the size of the device.

Description

【発明の詳細な説明】 この発明は、焦点検出方法に関する。[Detailed description of the invention] The present invention relates to a focus detection method.

近来、元ディスクメモリ、ビデオディスク等、元による
情報信号の記録、読み出しが実用化されるようになった
0 上記記録、読み出しを行なうのに、一般には、平行光束
化した光を、対物レンズを介して、情報信号を記録し、
あるいに読み出すべき、記録媒体上に集束させる。記録
ないしに読み出しが、適正に行なわ几る几めには、対物
レンズにヨル集束光が記録媒体上に正確に集束する必要
があり、そのためには、対物レンズの焦点が正確に記録
媒体上になけ几ばならないOここにおいて、対物レンズ
と記録媒体との位置関係を正確に検知し調整する必要が
生ずる。このような場合において、対物レンズと、この
対物レンズによる集束光で照射される被照射物体との位
置関係を検出する方法は、焦点検出方法として知ら几、
従来、以下に述べるごとき方法が知らfている。
In recent years, it has become practical to record and read out information signals from sources such as disk memories and video disks. In order to perform the above recording and reading, generally, parallel light beams are converted into parallel beams using an objective lens. record information signals through
Alternatively, it is focused onto a recording medium to be read out. In order to perform recording or reading properly, it is necessary for the objective lens to accurately focus the focused light onto the recording medium. Here, it is necessary to accurately detect and adjust the positional relationship between the objective lens and the recording medium. In such cases, the method of detecting the positional relationship between the objective lens and the object to be irradiated with the focused light from the objective lens is known as a focus detection method.
Conventionally, the following methods are known.

すなわち、光源からの光を平行光束化し、対物レンズに
より被照射物体上に集束させ一被照射物体からの反射光
の、少くとも一部を、対物レンズを介して、透明な反射
部材に導き、この反射部材の反射面を、反射光線のひと
つに対し、はぼ臨界角となるように定め、反射面による
反射光もしくは反射面を透過した光の光量分布の変化、
もしくは・反射光と透過光との光量変化を検出すること
により、対物レンズの、被照射物体に対する焦点誤差信
号を得るというものであるα 以下、I!1図を参照して、この焦点検出方式を簡単に
説明する。
That is, the light from the light source is made into a parallel beam, focused on an object to be irradiated by an objective lens, and at least a part of the light reflected from the object to be irradiated is guided to a transparent reflective member via the objective lens. The reflective surface of this reflective member is set so as to form a nearly critical angle with respect to one of the reflected light rays, and changes in the light intensity distribution of the light reflected by the reflective surface or the light transmitted through the reflective surface,
Or, by detecting the change in the amount of reflected light and transmitted light, a focus error signal of the objective lens with respect to the irradiated object is obtained α.Hereinafter, I! This focus detection method will be briefly explained with reference to FIG.

第1図(1)において、符号1に光源、符号2は、コリ
メートレンズ、符号3に偏光ビームスプリッタ−1符号
4は1/4波長板、符号5は対物レンズ、符号6ば被照
射物体、符号7に反射部材としてのプリズム、符号8に
光検出部をそnぞn示しているO 光源1としては、半導体レーザーが好適である。
In FIG. 1 (1), 1 is a light source, 2 is a collimating lens, 3 is a polarizing beam splitter, 4 is a quarter wavelength plate, 5 is an objective lens, 6 is an object to be irradiated, Reference numeral 7 indicates a prism as a reflecting member, and reference numeral 8 indicates a photodetector. As the light source 1, a semiconductor laser is suitable.

光源1から発せらnた光は、コリメートレンズ2によっ
て平行光束化され、偏光ビームスプリッタ−3に入射し
、その一部は対物レンズ5の光軸りと平行な方向へ反射
され、1/4波長板4を介して対物レンズ5に入射し、
レンズ5によって集束光束となり、被照射物体6に入射
する0被照射物体6は、例えばビデオディスク等である
The light emitted from the light source 1 is collimated by the collimating lens 2 and enters the polarizing beam splitter 3. A part of the light is reflected in a direction parallel to the optical axis of the objective lens 5, and is converted into a parallel beam by the collimating lens 2. enters the objective lens 5 via the wave plate 4,
The irradiated object 6 is, for example, a video disc or the like, and is converged by the lens 5 and is incident on the irradiated object 6.

さて、被照射物体6と、対物レンズ5との位置関係が適
正な場合、第1図(1)は、この状態を示しているが・
この場合−被照射物体6からの反射光は、対物レンズ5
を透過したのち、同レンズ5の作用により、光軸りに平
行な平行光束となり、1/4波長板4を透過して、偏光
ビームスプリッタ−3に、図面上、左方より入射する。
Now, if the positional relationship between the irradiated object 6 and the objective lens 5 is appropriate, FIG. 1 (1) shows this state.
In this case - the reflected light from the irradiated object 6 is reflected by the objective lens 5
After passing through the lens 5, the light becomes a parallel light beam parallel to the optical axis, passes through the quarter-wave plate 4, and enters the polarizing beam splitter 3 from the left side in the drawing.

この光は、1/4波長板を2度透過しているので、七の
偏光面ば、上記スズリッター3により分離した状態から
90度旋回しており、そnゆえ、そのまま、偏光ビーム
スグリツタ−3を直進的に透過し、反射部材たるプリズ
ム7に入射する。
Since this light has passed through the 1/4 wavelength plate twice, the polarization plane 7 has been rotated 90 degrees from the state where it was separated by the tin ritter 3. 3 and enters the prism 7, which is a reflecting member.

プリズム7の反射面9は、こ几に入射する、被照射物体
6からの反射光の反射光線のうち、光軸りに合致するも
のに対し、反射面9に対する入射角θが、臨界角となる
ように足めらnでいる。第1図に示す状態では、プリズ
ム7に入射する光束に平行光束であるから、反射面9に
対する入射角は、すべての部分で同一であり、従って反
射率も同一である。
The reflective surface 9 of the prism 7 is such that the angle of incidence θ with respect to the reflective surface 9 is a critical angle for the reflected light from the irradiated object 6 that is incident on the prism and coincides with the optical axis. I'm in a hurry to make it happen. In the state shown in FIG. 1, since the light beam incident on the prism 7 is a parallel light beam, the angle of incidence on the reflecting surface 9 is the same in all parts, and therefore the reflectance is also the same.

光検出部8は、受光素子81.82を有し、反射面9に
よる反射光束を受光する。前述した如く、第1図(1)
に示す状態においては、反射面9に入射する光束の入射
角に、いたるところ一定で、反射率もいたるところ等し
いから、この状態において、受光素子81.82の受け
る光の強度はどちらも同じであり、受光素子81,82
の出力の差ば0となる。
The light detection unit 8 includes light receiving elements 81 and 82, and receives the light beam reflected by the reflecting surface 9. As mentioned above, Figure 1 (1)
In the state shown in , the angle of incidence of the light beam incident on the reflecting surface 9 is constant everywhere, and the reflectance is the same everywhere, so in this state, the intensity of the light received by the light receiving elements 81 and 82 is the same. Yes, light receiving elements 81, 82
The difference between the outputs is 0.

すなわち、受光素子81.82の出力差が0であるとき
、被照射物体6は、対物レンズ5の焦点の位置にあり、
対物レンズ5と被照射物体6との相対的位置関係が正し
いことが知らnる。
That is, when the output difference between the light receiving elements 81 and 82 is 0, the irradiated object 6 is at the focal point of the objective lens 5,
It is known that the relative positional relationship between the objective lens 5 and the irradiated object 6 is correct.

しかるに、第1図(Illに示す如く、被照射物体6の
位置が、対物レンズ5の焦点の位置から、対物レンズ5
に対し遠ざかる方向へずnた場合には、被照射物体6か
らの反射光は、対物レンズ5を透過したのち、集束性の
光束となって、プリズム7に入射する。なお、第1図(
II) 、 0IIIにおいては、繁雑をさける友め、
光源11コリメートレンズ2、偏光ビームスプリッタ−
3、”/4波長板4(1記載を省略されている。
However, as shown in FIG.
When the object 6 moves away from the object 6, the reflected light from the object 6 passes through the objective lens 5, becomes a convergent light beam, and enters the prism 7. In addition, Figure 1 (
II), 0III, the friend who avoids complications,
Light source 11 collimating lens 2, polarizing beam splitter
3.''/4 wavelength plate 4 (1 description is omitted.

このように、集束性の光束としてプリズム7に入射する
と、反射面9に対する入射角は、図において、光軸りを
境として、光軸より上の光束部分でに、臨界角より小さ
くなり、光軸より下の光束部分でに、臨界角より大きく
なる。すると、臨界角より小さい入射角をもつ光束部分
でに、反射面による反射率に、第1図(1)に示す状態
より減少し、従って、受光素子82の受ける光強度に、
第1図(13に示す状態より減少する。−万、光軸りよ
り下の光束部分では、反射面9に対する入射角は臨界角
より大きくなるから、これら光束部分に、反射面9によ
り全反射され、すなわち光の100%が、受光素子81
 K入射する。従って、受光素子81による受光光強度
は、第1図(I)に示す状態よりも大となる。そこで、
受光素子81.82の出力を、そ几ぞfiIl、I2と
すれば、こnらの差I、−I2が正であることにより、
対物レンズ5と被照射物体6の、第1図(Illの如き
相対的位置関係を知ることができる。
In this way, when the beam enters the prism 7 as a convergent beam, the angle of incidence on the reflecting surface 9 becomes smaller than the critical angle in the portion of the beam above the optical axis, with the optical axis as the boundary in the figure. The part of the beam below the axis becomes larger than the critical angle. Then, in the portion of the light beam with an incident angle smaller than the critical angle, the reflectance on the reflecting surface decreases from the state shown in FIG. 1(1), and therefore the light intensity received by the light receiving element 82
It decreases from the state shown in FIG. That is, 100% of the light is transmitted to the light receiving element 81.
K is incident. Therefore, the intensity of the light received by the light receiving element 81 is greater than the state shown in FIG. 1(I). Therefore,
If the outputs of the light-receiving elements 81 and 82 are respectively fiIl and I2, since the differences I and -I2 are positive,
The relative positional relationship between the objective lens 5 and the irradiated object 6 as shown in FIG. 1 can be known.

逆に、第1図@)に示す如く、被照射物体6が、その適
正な位置から、対物レンズ5に近ずく方向へずtたと@
ぼ、被照射物体6からの反射光に、発散性の元来となっ
て反射部材7に入射するので、受光素子82の受元元強
度が、受光素子81の七fに比して大きくなり、出力差
ll−l2U負となる。
On the other hand, as shown in FIG.
Since the reflected light from the irradiated object 6 becomes a diverging source and enters the reflecting member 7, the receiving source intensity of the light receiving element 82 becomes larger than that of the light receiving element 81. , the output difference ll-l2U is negative.

結局、受光素子81.82の出力差に、被照射物体に対
する対物レンズの焦点誤差信号として用いることができ
、この焦点誤差信号に応じて対物レンズ5を被照射物体
6に対して変位させることにより、被照射物体6と、対
物レンズ5の焦点の位置とを適正なものとすることがで
きる。なお、被照射物体6上に、読み取るべき情報信号
がある場合に、受光素子81.82の出力和は、この情
報信号に対応するから、第1図(1)に示す状態から、
被照射物体6を除いた系は、例えばビデオディスクのビ
ツクア、ブ装置として用いることができる。
In the end, the output difference between the light receiving elements 81 and 82 can be used as a focus error signal of the objective lens with respect to the irradiated object, and by displacing the objective lens 5 with respect to the irradiated object 6 according to this focus error signal, , the irradiated object 6 and the focus position of the objective lens 5 can be made appropriate. Note that when there is an information signal to be read on the irradiated object 6, the output sum of the light receiving elements 81 and 82 corresponds to this information signal, so from the state shown in FIG. 1 (1),
The system excluding the irradiated object 6 can be used, for example, as a video disc read-out device.

ところで、現実には、被照射物体と対物レンズの相対位
置を、適正に調整するには、上記焦点検出において、反
射面に入射する光の、0.01度のオーダーの入射角の
変化を検知できなけnばならない。このために、焦点検
出には極めて高い精度が要求される。この高精度の要求
に答える方法として、従来、反射部材として、プリズム
? ICかえて、平行四辺都都状の縦断面形状を有する
ものを用い、その互いに対向する平行な2面を反射面と
して使用し、被照射物体からの反射光を上記2面の反射
面で2度以上繰返して反射させることにより、全反射で
ない反射光成分の光強度を次第に減衰させることにより
全反射する成分との光強度差を増幅する方法が知られて
いる。しかし、この方法を実施する几めには、反射部材
の大型化に伴い、装置が大型化するという間部があり、
また、反射部材において反射面として用いられる2面に
、極めて高い平行度が要求される。
By the way, in reality, in order to properly adjust the relative position between the irradiated object and the objective lens, in the focus detection described above, a change in the angle of incidence of the light incident on the reflective surface on the order of 0.01 degrees is detected. I must be able to do it. For this reason, extremely high accuracy is required for focus detection. As a way to meet this demand for high precision, we have traditionally used prisms as reflective materials. Instead, an IC with a vertical cross-sectional shape of a parallelogram is used, and its two mutually opposing parallel surfaces are used as reflecting surfaces, and the reflected light from the irradiated object is reflected by the two reflecting surfaces. A method is known in which the light intensity of the reflected light component that is not totally reflected is gradually attenuated by repeating the reflection more than once, thereby amplifying the difference in light intensity between the reflected light component and the totally reflected component. However, there is a problem with implementing this method, as the size of the device increases as the reflecting member becomes larger.
Furthermore, extremely high parallelism is required for the two surfaces used as reflective surfaces in the reflective member.

本発明の目的に、上記の如き焦点検出方式において、装
置の大型化等をもたらすことなく、高精度で焦点検出を
平ないうる焦点検出方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a focus detection method that can perform focus detection with high accuracy and without increasing the size of the device in the focus detection method described above.

以下、本発明を説明する。The present invention will be explained below.

本発明による焦点検出方法の特徴とするところは、上記
の焦点検出方式において、検出に使用する反射光を、直
接的に反射部材に導かず、まず回折格子に導き、この回
折格子による回折光を反射部材に入射させる点にある。
A feature of the focus detection method according to the present invention is that in the above focus detection method, the reflected light used for detection is not guided directly to a reflecting member, but is first guided to a diffraction grating, and the diffracted light by this diffraction grating is The point is to make the light incident on the reflective member.

以下にまず、第2図を参照して、不発明の詳細な説明し
よう。
The invention will now be described in detail with reference to FIG.

g2ffio(IJにおいて、符号10i回折格子を示
している。この回折格子10に透過型であり、屈折率n
1の媒質で形成されており、その格子足数をDとする。
g2ffio (in IJ, the symbol 10i diffraction grating is shown. This diffraction grating 10 is a transmission type, and has a refractive index n
1 medium, and the number of lattice feet is D.

図の如く、回折光の回折角をθm1回折元の伝幡する媒
質の屈折率を02とし、入射角を0皿、波長を人とすれ
ば周知の如く、次の関係が成立つ。
As shown in the figure, if the diffraction angle of the diffracted light is θm1, and the refractive index of the medium through which the diffraction source propagates is 02, the incident angle is 0 disk, and the wavelength is human, the following relationship holds true as is well known.

nX8tnθi+n2sinθm=m   (1)mi
回折の次数である。本発明の実施にあたっては、任意の
次数の回折光が、原理的に使用可能であるが、実際には
、光強度の大きい1次回折元の使用が、もつとも実用的
であるから、以下、話を1次元に限って説明する。
nX8tnθi+n2sinθm=m (1) mi
This is the order of diffraction. In implementing the present invention, diffracted light of any order can be used in principle, but in reality, it is most practical to use a first-order diffraction source with a high light intensity, so this will be discussed below. will be explained in one dimension only.

(υ式の両辺の微分を取ると、 −n1cosθidθ4−n2cosθmdθm=0こ
′rLから、 が得らnる。従って、H、cosθ1)n2cOsθm
 であるならば、1dθrr4 > jdθ1$  が
成立つ。すなわち、この場合、入射角0通の変動分dO
iを、回折角θmの変動dOmにおいて増大せしめるこ
とができる。
(If we take the differential on both sides of the υ equation, we get -n1cosθidθ4-n2cosθmdθm=0ko'rL. Therefore, H, cosθ1)n2cOsθm
If so, 1dθrr4 > jdθ1$ holds true. That is, in this case, the variation dO for zero incident angles
i can be increased with a variation dOm of the diffraction angle θm.

第2図(Illにおいて、符号11ニ反射型の回折格子
を示す。この場合K Its 、(’−O3θi>co
solllならば\や(1すJdOml>1d01を満
足きせることかできる〇本発明では、回折格子への入射
光の入射角の変動を、回折光において増大させうるとい
う原理が利用されるのである。
FIG. 2 (Ill) shows a reflection type diffraction grating with reference numeral 11. In this case, K Its , ('-O3θi>co
Soll can satisfy \ya (1 JdOml>1d01) The present invention utilizes the principle that the variation in the angle of incidence of light incident on the diffraction grating can be increased in the diffracted light.

以下、具体的な例に即して説明する。This will be explained below using a specific example.

第3図に、本発明の実施の1態様を示している繁雑を避
けるため、混同の虞nのないものについてに、第1図に
おけると同一の符号を用いた。
FIG. 3 shows one embodiment of the present invention. To avoid clutter, the same reference numerals as in FIG. 1 have been used for things that can avoid confusion.

図において符号10は、第2図+11に示したごとき透
過型の回折格子であって、偏光ビームスプリッタ−3の
端面に図の如く配備されている。第3図に示す状態にあ
って、対物レンズ5の焦点に、正確に被照射物体6上に
ある。従って、被照射物体6からの反射ft、ハ、対物
レンズ5により平行光束化されて、回折格子lOに入射
し、1次回折元もまた平行光束である。反射面9の態位
に、この平行光束が臨界角θをもって入射するように足
めらnている。第3図の状態でに、受光素子81.82
の出力差II  I2が0となることは容易に理解さn
よう。
In the figure, reference numeral 10 denotes a transmission type diffraction grating as shown in FIG. In the state shown in FIG. 3, the object 6 to be irradiated is exactly at the focus of the objective lens 5. Therefore, the reflection ft, c from the irradiated object 6 is converted into a parallel beam by the objective lens 5, and enters the diffraction grating lO, and the first-order diffraction source is also a parallel beam. The attitude of the reflecting surface 9 is adjusted so that this parallel light beam is incident at a critical angle θ. In the state shown in Fig. 3, the light receiving elements 81 and 82
It is easy to understand that the output difference II I2 is 0.
Good morning.

被照射物体6が、対物レンズ5から遠ざかる方向へずれ
ると(第1図+II)参照)、回折格子10へ入射する
光束に、集束性の光束となるので、第4図に示す如く、
1次回折光も集束性となり、受光素子81への入射光量
が増大し、出力差IIIzU正となる。
When the object 6 to be irradiated moves away from the objective lens 5 (see FIG. 1+II)), the light beam incident on the diffraction grating 10 becomes a convergent light beam, as shown in FIG.
The first-order diffracted light also becomes convergent, the amount of light incident on the light receiving element 81 increases, and the output difference IIIzU becomes positive.

逆に、第1図(2)に示すような具合に、被照射物体6
が、対物レンズ5に近口<ようにずnると、第5図に示
す如く、回折格子10への入射光は発散性となり、受光
素子82への入射光量が増大し、出力差l1−I2に負
となる。
Conversely, as shown in FIG. 1 (2), the irradiated object 6
However, when the objective lens 5 is near the lens, as shown in FIG. 5, the light incident on the diffraction grating 10 becomes divergent, the amount of light incident on the light receiving element 82 increases, and the output difference l1- I2 becomes negative.

このように、出力差1.−12を、焦点誤差信号として
用いることにより、対物レンズ5を被照射物体6に対し
、正しい位置に、調整することが可能となる。
In this way, the output difference is 1. By using -12 as a focus error signal, it becomes possible to adjust the objective lens 5 to the correct position with respect to the irradiated object 6.

第2図に即しての説明を、この例にあてはめて考えて見
ると、H2==lXnlに一般にnl>1であり、θI
は、通常の検知状態においてθIzOであり、0mは一
般に有限値であるから、条件(2)式に、極めて有効に
満足されており、回折格子10への入射角の変動を、回
折光において有効に増幅させることができる。回折光の
方向の変動が大きくなることに、反射面9への入射角の
変動が大きくなることである。従って、本発明で(り、
焦点検出の精度が同上する。どの程度の精度向上が可能
である力)を、1例によって評価してみよう。仮に、回
折格子10として、ガラス板(屈折率1.5)l/r、
ルーリングエンジ111 ンによるけがきにより格子形成したものを用い、こnを
、2局−0,985又に、0.996の条件で使用する
場合を考えてみると、第3図に示す例において、回折格
子10への入射角θ1が水準のθi = 0がら、仮に
△θl二±03度の領域で変動したとした場合、反射面
への入射角の変化に、第6図に示す如きものとなる。
Applying the explanation given in Figure 2 to this example, we find that H2==lXnl, generally nl>1, and θI
is θIzO in the normal detection state, and 0m is generally a finite value, so condition (2) is very effectively satisfied, and the variation in the angle of incidence on the diffraction grating 10 is effectively reflected in the diffracted light. can be amplified. As the direction of the diffracted light increases, the angle of incidence on the reflecting surface 9 also increases. Therefore, in the present invention (ri,
The accuracy of focus detection is the same as above. Let's use an example to evaluate how much accuracy can be improved. Assuming that the diffraction grating 10 is a glass plate (refractive index 1.5) l/r,
If we consider the case where a grid formed by marking with a ruling engine is used under the conditions of 2 stations - 0,985 and 0.996, in the example shown in Fig. 3, , if the angle of incidence θ1 on the diffraction grating 10 changes from the level θi = 0 in the range Δθl2±03 degrees, the change in the angle of incidence on the reflecting surface will be as shown in Figure 6. becomes.

曲flilJ6−1はλ/D = 0.996の場合、
曲線6−2n”/n=0.985の場合、曲線6−3[
、第1図に示す場合を示している。従来例にくらべ、λ
/D=0.985の場合に、約5倍、λろ二0996の
場合にば約10倍、反射面への入射角を増大でき、こn
によって、検出精度は大幅に向上する。
For the song flilJ6-1, when λ/D = 0.996,
When curve 6-2n”/n=0.985, curve 6-3 [
, shows the case shown in FIG. Compared to the conventional example, λ
/D=0.985, the angle of incidence on the reflecting surface can be increased by about 5 times, and in the case of λ 0996, it can be increased by about 10 times.
This greatly improves detection accuracy.

第7図には、第2図([I)に示す、反射型の回折格子
11を用いる例を示す。ここでも、混同の虞nのないも
のについては、第1囚におけると同一のものを用いてい
る。符号3′ニ偏光ビームスプリッタ−を示し、この偏
光ビームスプリンター3′ハまた、反射部材を兼ねてい
る。どのようにして、焦点検知を行なうかは、今までの
説明に徴して明らかであると思わ几るので、ここでは説
明を省略する。
FIG. 7 shows an example using the reflective diffraction grating 11 shown in FIG. 2 ([I). Here, too, the same ones as in Prisoner 1 are used to avoid any risk of confusion. Reference numeral 3' indicates a polarizing beam splitter, and this polarizing beam splitter 3' also serves as a reflecting member. Since the method for performing focus detection is considered to be clear based on the explanation so far, the explanation will be omitted here.

本発明の特徴とするところは、上述の如く、回折格子の
使用にある。その際、被照射物体がらの反射光を有効に
検出に寄与させるためには、なるべく高い回折効率の回
折格子の使用が必要となる。
A feature of the present invention, as mentioned above, is the use of a diffraction grating. In this case, in order to make the reflected light from the irradiated object effectively contribute to the detection, it is necessary to use a diffraction grating with as high a diffraction efficiency as possible.

そ几故、本発明の実施にあたっては、100%に近い回
折効率を有するブレーズ格子や、体積位相格子の使用が
好適である。
Therefore, in implementing the present invention, it is preferable to use a blazed grating or a volume phase grating that has a diffraction efficiency close to 100%.

上記の説明に用いた例でに、焦点検出は、反射面による
反射光の光量分布の変化の検出を利用して平なわ几てい
る。しかし、本発明に、このような例に限らず、反射面
を透過した元の光量分布を検出することによって実施し
てもよいし、反射光と透過元との光量変化を検知するこ
とにより実施することも可能である。
In the example used in the above description, focus detection is carried out using detection of a change in the light amount distribution of reflected light by a reflecting surface. However, the present invention is not limited to such an example, and may be implemented by detecting the distribution of the original amount of light transmitted through the reflective surface, or by detecting a change in the amount of light between the reflected light and the transmitted source. It is also possible to do so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に、従来提案されている焦点検出方式を説明する
ための図、第2図は、本発明の詳細な説明するための図
、第3図ないしWIs図に、本発明による焦点検出の具
体的1例を説明するための図、第6図に、本発明の詳細
な説明する几込の図、第7図に、本発明による焦点検出
の具体例の他の1例を示す図である。 1・・・光源、2・・・コリメートレンズ、3・・・偏
光ビームスプリッタ−14・・・l/4波長板、5・・
・対物レンズ、6・・・被照射物体、7・・・反射部材
としてのフ゛リズム、8・・・光検出部、9・・・反射
面、10・・・透過型の回折格子、11・・・反射型の
回折格子、81.82・・・受光素子、3′・・・反射
部材を兼ねた偏光ビームスプリンター。
FIG. 1 is a diagram for explaining a conventionally proposed focus detection method, FIG. 2 is a diagram for explaining the present invention in detail, and FIGS. FIG. 6 is a diagram for explaining a specific example of the present invention, and FIG. 7 is a diagram showing another specific example of focus detection according to the present invention. be. DESCRIPTION OF SYMBOLS 1... Light source, 2... Collimating lens, 3... Polarizing beam splitter-14... l/4 wavelength plate, 5...
・Objective lens, 6... Irradiated object, 7... Film as a reflecting member, 8... Light detection section, 9... Reflective surface, 10... Transmission type diffraction grating, 11...・Reflection type diffraction grating, 81.82... Light receiving element, 3'... Polarizing beam splinter that also serves as a reflecting member.

Claims (1)

【特許請求の範囲】 光源からの光を平行光束化し、対物レンズにより被照射
物体上に集束させ、上記被照射物体からの反射光の少く
とも一部を、上記対物レンズを介して、透明な反射部材
に導き、上記反射部材の反射面の態位を、反射光線のひ
とつに対し、はぼ臨界角となるように定め、上記反射面
による反射光もしくに透過光の光量分布の変化、もしく
は、反射光と透過光との光量変化を検出することにより
、上記対物レンズの、被照射物体に対する焦点誤差信号
を得る焦点検出方式において、 上記反射光の少くとも一部を、回折格子に導き、上記回
折格子による回折光を反射部材に入射させることを特徴
とする、焦点検出方法。
[Claims] Light from a light source is collimated and focused onto an object to be irradiated by an objective lens, and at least a part of the reflected light from the object to be irradiated is transmitted through the objective lens to a transparent beam. changing the light quantity distribution of the reflected light or transmitted light by the reflecting surface, by setting the attitude of the reflecting surface of the reflecting member to be approximately at a critical angle with respect to one of the reflected rays; Alternatively, in a focus detection method that obtains a focus error signal of the objective lens with respect to the irradiated object by detecting a change in the amount of reflected light and transmitted light, at least a part of the reflected light is guided to a diffraction grating. . A focus detection method, characterized in that the diffracted light by the diffraction grating is made incident on a reflecting member.
JP1855182A 1982-02-08 1982-02-08 Focus detecting method Pending JPS58137141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1855182A JPS58137141A (en) 1982-02-08 1982-02-08 Focus detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1855182A JPS58137141A (en) 1982-02-08 1982-02-08 Focus detecting method

Publications (1)

Publication Number Publication Date
JPS58137141A true JPS58137141A (en) 1983-08-15

Family

ID=11974761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1855182A Pending JPS58137141A (en) 1982-02-08 1982-02-08 Focus detecting method

Country Status (1)

Country Link
JP (1) JPS58137141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566953A1 (en) * 1984-06-27 1986-01-03 Canon Kk Optical head device
JPS62141652A (en) * 1985-12-16 1987-06-25 Canon Inc Optical head device
DE102004019823A1 (en) * 2004-04-23 2005-11-10 Carl Zeiss Jena Gmbh Light splitting cube made of two prisms and incorporating a diffracting structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566953A1 (en) * 1984-06-27 1986-01-03 Canon Kk Optical head device
JPS62141652A (en) * 1985-12-16 1987-06-25 Canon Inc Optical head device
JPH0630164B2 (en) * 1985-12-16 1994-04-20 キヤノン株式会社 Optical head device
DE102004019823A1 (en) * 2004-04-23 2005-11-10 Carl Zeiss Jena Gmbh Light splitting cube made of two prisms and incorporating a diffracting structure

Similar Documents

Publication Publication Date Title
US6728034B1 (en) Diffractive optical element that polarizes light and an optical pickup using the same
US4894815A (en) Optical head for reading information from a magnetooptic recording medium
JPS58166543A (en) Optical head of recording and reading device for data carrier
JPS618744A (en) Focus error detector of optical disc device
GB2248989A (en) Focus detection
JPS62103857A (en) Optical pickup device
JPS58220248A (en) Optical pickup
USRE41193E1 (en) Method for fabricating a prism and method for fabricating an optical system
US5745304A (en) Integrated optical pickup system capable of reading optical disks of different thickness
EP0061384B1 (en) Optical automatic focusing sensor
JPS58137141A (en) Focus detecting method
EP0188624A4 (en) Apparatus for detecting tracking error of optical head.
US7065009B1 (en) Optical information storage apparatus and optical device including a beam splitting surface with a convex surface side and a concave surface side
JPS6251045A (en) Optical information reader
JP3607836B2 (en) Optical pickup device
JPH07169071A (en) Optical pickup system for detection of focusing error
JPS63191328A (en) Optical head device
JP3319094B2 (en) Optical pickup and optical guide member
JPS618746A (en) Tracking error detector of optical disk device
JP2584739B2 (en) Focus detection device
JPH03122853A (en) Optical head device
JPS6139947A (en) Optical device for optical pickup
JPS61289545A (en) Optical head device
JPS61233442A (en) Optical head device
JPH02308294A (en) Hologram element