JPS58134217A - Dynamic pressure gas bearing device for rotary unit - Google Patents

Dynamic pressure gas bearing device for rotary unit

Info

Publication number
JPS58134217A
JPS58134217A JP57016299A JP1629982A JPS58134217A JP S58134217 A JPS58134217 A JP S58134217A JP 57016299 A JP57016299 A JP 57016299A JP 1629982 A JP1629982 A JP 1629982A JP S58134217 A JPS58134217 A JP S58134217A
Authority
JP
Japan
Prior art keywords
thrust
sleeve
face
dynamic pressure
gas bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57016299A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tanaka
克彦 田中
Takanobu Sato
佐藤 高信
Ikunori Sakatani
郁紀 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP57016299A priority Critical patent/JPS58134217A/en
Priority to DE19833303499 priority patent/DE3303499A1/en
Publication of JPS58134217A publication Critical patent/JPS58134217A/en
Priority to US07/008,149 priority patent/US4805972A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
    • F16C33/1015Pressure generating grooves

Abstract

PURPOSE:To reduce the starting torque by adopting a dynamic pressure gas bearing for improving the dynamic revolution precision, the reliability in high speed, and the durability and shaping the end face of a thrust bearing into a convex spherical face. CONSTITUTION:When a sleeve 3 is rotated, the surrounding gas is led as an arrow A shows by the operation of a dynamic pressure generating groove 111, and introduced between an outer diameter face 11 of a fixed shaft 1 forming a radial bearing and a sleeve inner diameter face 32 of a sleeve main body 31. Furthermore, this gas is exhausted to the open air through a shaft hole 34 via a pressure chamber 10 shaped between a thrust end face 12 of the fixed shaft 1 and a thrust end face 33 of the sleeve 3 for forming a thrust bearing. The thrust end face 33 of the sleeve 3 is shaped into a convex spherical face for reducing the starting torque and the damage at the stoppage of starting.

Description

【発明の詳細な説明】 本発明は、事務機、映倫機器、情報機器、及び光学機器
などの回転ユニツ)K使用する軸受装置の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a bearing device used in rotating units such as office machines, electronic equipment, information equipment, and optical equipment.

従来、この種の機器、例えばレーザ、ミラー、プリンタ
に使用される回転多面鏡光偏光器の回転ユニット用軸受
装置には、多面鏡を取付けた軸の両端を玉軸受で支持す
る構造が多く用いられている。このような回転多面鏡光
偏光器では、高速回転中の多面鏡の回転精度がよくな〜
・場合、及び回転むらがある場合、プリンタされる印字
がぼけるため支持軸受に要求される動的回転精度は非常
に厳しい。しかも、最近、プリンタの高速化、小形化に
伴って、回転多面鏡光偏光器の回転数は、従清の数千r
plから最近は数万rpsまで高速化し、また装置自体
も小形化の方向にある。従って、従来のような玉軸受を
用いたスピンドル装置では、玉軸受の軌道輪の加工上の
形状誤差に基づく振動、玉通mKよる振動、及び保持器
に起因する振動あるいは玉軸受に封入されてい木グリー
スが回転中の玉に不規則Kかみ込まれる蕊とKよって起
こる回転むらなどが避けられないことから、要求される
、・:、1′。
Conventionally, bearing devices for rotating units of rotating polygon mirror light polarizers used in this type of equipment, such as lasers, mirrors, and printers, have often had a structure in which ball bearings are used to support both ends of the shaft on which the polygon mirror is attached. It is being In such a rotating polygon mirror light polarizer, the rotation accuracy of the polygon mirror during high-speed rotation is poor.
・If there is uneven rotation, the printed characters will be blurred, so the dynamic rotation precision required of the support bearing is extremely strict. Moreover, as printers have become faster and smaller, the number of rotations of a rotating polygonal polarizer has increased to several thousand r.
The speed has recently increased from pl to tens of thousands of rps, and the equipment itself is also becoming smaller. Therefore, in a spindle device using a conventional ball bearing, there are vibrations caused by shape errors in the machining of the bearing ring of the ball bearing, vibrations caused by the ball thread mK, vibrations caused by the cage, or vibrations contained in the ball bearing. 1' is required because uneven rotation caused by wood grease being irregularly bitten by the rotating ball cannot be avoided.

回転精度や回転むらを満足することがむずかしくなって
きている。また、高速化に伴って玉軸受の寿命が短かく
なり、信頼性の面からも問題が生じてきた。さらに、多
面鏡のよごれを防止するためkは、支持軸受には飛散、
蒸発のおそれがあるグリースなどの潤滑剤を使用しない
ことが望まれている。しかしながら、玉軸受はグリース
潤滑のため、グリースの飛散、蒸発による多面鏡の性能
劣化が避けられない。また、磁性流体シールを用いても
、磁性流体に使用される油自身の飛散、蒸発が避けられ
ず、本質的な対策とはなり得ない。このほか、玉軸受の
場合は予圧調整が必要であるため必ずしも組立てが容易
でないこと、及び動的回議精度を維持するために取付誤
差がないように組立′するユとは量産上力、うもむずヵ
、しかった。
It is becoming difficult to satisfy rotational accuracy and rotational unevenness. Additionally, as speeds increase, the lifespan of ball bearings has become shorter, creating problems in terms of reliability. Furthermore, in order to prevent the polygon mirror from getting dirty, the support bearing is
It is desirable not to use lubricants such as grease that may evaporate. However, since ball bearings are lubricated with grease, performance deterioration of the polygon mirror due to grease scattering and evaporation is unavoidable. Further, even if a magnetic fluid seal is used, scattering and evaporation of the oil used in the magnetic fluid cannot be avoided, and this cannot be an essential countermeasure. In addition, in the case of ball bearings, preload adjustment is required, so assembly is not necessarily easy, and in order to maintain dynamic rotation accuracy, it is difficult to assemble without mounting errors, which increases production costs. Damn it, I scolded you.

本発明は上記欠点を改良するため、動的回転精度、高速
での信頼性及び耐久性の向上を図るとともに、軸受まわ
りを清潔に保つことのできる動圧気体軸受を用い二しか
も動圧気体軸受の欠点である起動トルクが大きいこと、
起動停止時の損傷が1 生じやすいことに、対して改良を加えるとともに、軸受
構造を簡単にし組立容易で量産性にすぐれた回転ユニッ
ト周動m気体軸受装置を提供することを目的とする。
In order to improve the above-mentioned drawbacks, the present invention aims to improve dynamic rotation accuracy, high-speed reliability, and durability, and uses a hydrodynamic gas bearing that can keep the area around the bearing clean. The drawback is that the starting torque is large,
It is an object of the present invention to provide a rotary unit circumferential gas bearing device which is easy to cause damage during start-up and stop, and which is improved, has a simple bearing structure, is easy to assemble, and is excellent in mass production.

本発明を実施例として第1図に基づいて説明する。基台
2に固設された固定軸lの外径面11には動圧発生用の
みぞl11が設けられており、多面鏡4を備えたスリー
ブ3が、ロータ5によって駆動され、第1図において上
方から見て、時計方向に回転すると、前記動圧発生用み
ぞ111の作用により周囲の気体は矢印入方向に進み、
ラジアル軸受を形成する前記外径面11とスリーブ本体
31のスリ→γ内径面支との間に流入する。さらKこの
回1III!一つ−C,ジアヤ軸受、。流入、た空気は
、同定軸の反固定側のスラスト端面12とそれと共働す
るスリニブ3のスラスト端面おとの間に形成される圧力
室10をへて、周囲あ外気に連通ずるスリーブ本体31
と別体のスラスト軸受部35に設ける軸穴あをとおり流
出し、スラスト軸受を形成する。このため、静止時及び
低速回転時には、スリーブ3のスラスト端面おは固定軸
1のスラスト端面12と接触しているが、回転中にはス
リーブ3の回転に伴って流出する空気によって形成され
るスラスト気体軸受膜によちてスラスト端面おは支持さ
れる。なお、前記スラスト端面12とあの少なくとも一
方の端面は、起動トルクを減少させるとともに起動停止
時の損傷を軽減するために、凸球面に形成されている。
The present invention will be explained as an example based on FIG. 1. A groove l11 for generating dynamic pressure is provided in the outer diameter surface 11 of the fixed shaft l fixedly installed on the base 2, and the sleeve 3 equipped with the polygon mirror 4 is driven by the rotor 5, as shown in FIG. When viewed from above and rotated clockwise, the surrounding gas moves in the direction of the arrow due to the action of the dynamic pressure generating groove 111.
It flows between the outer diameter surface 11 forming the radial bearing and the slot → γ inner diameter surface support of the sleeve body 31. Sara K this episode 1III! One-C, Jiaya bearing. The inflowing air passes through the pressure chamber 10 formed between the thrust end surface 12 on the non-fixed side of the identification shaft and the thrust end surface of the slim nib 3 that cooperates with the thrust end surface 12, and passes through the sleeve body 31 which communicates with the surrounding outside air.
It flows out through a shaft hole provided in a separate thrust bearing part 35, forming a thrust bearing. Therefore, when the sleeve 3 is stationary and rotates at low speed, the thrust end surface of the sleeve 3 is in contact with the thrust end surface 12 of the fixed shaft 1, but during rotation, the thrust surface formed by the air flowing out as the sleeve 3 rotates. The thrust end face is supported by a gas bearing membrane. The thrust end face 12 and at least one of the end faces are formed into a convex spherical surface in order to reduce starting torque and reduce damage during starting and stopping.

なお−1起動トルクの減少と起動停止時の損傷を軽減す
るためには、凸球面を形成する端面に軸穴を形成する方
が凸球面が軸穴にくい込むことを防止できるので効果的
である。さらには、一方の端面を凸球面とし、他方の共
働する端面な凸球面よりわずかに半径の大きい凹球面で
形成してもよい。この実施例では、スリーブ3の起動時
のス5f#スト端面おでの起動トルクを減少し、しかも
起′動停止時の耐摩耗性を向上させるために、端面には
しゅう動性のよいプラスチックあるいは耐摩耗性のよい
セラミックなどの材質を用いたスレス軸細部部あがスリ
ーブ3の本体31と別体として取付けられているが、ス
ラスト軸受部はスリーブ本体と一体で構成してもよい。
In addition, -1: In order to reduce the starting torque and reduce damage during starting and stopping, it is more effective to form a shaft hole on the end face that forms the convex spherical surface because it prevents the convex spherical surface from digging into the shaft hole. . Furthermore, one end surface may be a convex spherical surface, and the other cooperating end surface may be a concave spherical surface having a slightly larger radius than the convex spherical surface. In this embodiment, in order to reduce the starting torque at the end face of the sleeve 3 when starting the sleeve 3, and to improve the wear resistance when starting and stopping, the end face is made of plastic with good sliding properties. Alternatively, the thrust bearing part may be constructed integrally with the sleeve body, although the thrust bearing part is made of a material such as ceramic with good wear resistance and is attached separately from the main body 31 of the sleeve 3.

また、固定軸のスラスト端面12の端面にプラスチック
またはセラミックなどの材質を用いて゛もよい。そして
、駆動モータのステータ6はハウジング7に固定されて
おりを防止するためのカバーである。従つで、この軸受
装置は基台2、ハウジング7、及びカバー8で密閉され
ている。
Further, a material such as plastic or ceramic may be used for the end face of the thrust end face 12 of the fixed shaft. The stator 6 of the drive motor is fixed to the housing 7 and serves as a cover to prevent damage. Therefore, this bearing device is sealed with the base 2, the housing 7, and the cover 8.

次に、他の実施例として第2図に1回転部の内置がスラ
スト軸受に負荷され、スラスト端面が起動停止時に摩耗
するのを軽減するために、回転部を補助スラスト磁気軸
受で吸引支持するようKしたものを示す。補助スラスト
磁気軸受9は、磁気部材91.92の少なくとも一方に
永久磁石を用いると構造が簡単となる。しかし、91と
92の両方を永久磁石を用いて対向させてもよいし、9
1に永久磁石92K tri性体を用いてもよ〜、1゜
以上のように、本回転3−ニット用動圧気体軸受□・:
1゛ 装置では、回転中のスリーシは、半径方向には固定軸の
外径面とそれと共働するスリーブ内径面によって形成さ
れる動圧グループ軸受からなるラジアル気体(空気)軸
受部と、軸方向にはラジアル気体軸受部の動圧みぞの作
用によって生じる気体膜で形成されるスラスト気体(空
気)軸受部とKよって非接触で支持される。従って、回
転中のスリーブは動圧気体軸受膜で非接触となるため、
軸受に起因する回転むらが避けられるとともに、ラジア
ル軸受にグループ軸受を用いたことにより半径方陣には
動圧による予圧効果が働き、高速回転でもスリーブのラ
ジアル振れをきわめて小さくおさえることができる。ま
た、本軸受装置では、スラスト軸受部は、ラジアル軸受
部から動圧効果によって流出する気体を利用し、スラス
ト端面12とあのいずれか一方の端面のほぼ中央に開口
する軸穴から流出する気体をしぼることKよってスラス
ト負荷能力を生じさせるようにしているので、構造がき
わめて簡単となりコスト的に有利である。
Next, as another example, as shown in Fig. 2, in order to reduce the load on the thrust bearing when the rotating part is placed internally and the thrust end face is worn during startup and stop, the rotating part is supported by suction with an auxiliary thrust magnetic bearing. This shows what was done. The structure of the auxiliary thrust magnetic bearing 9 can be simplified if a permanent magnet is used for at least one of the magnetic members 91 and 92. However, both 91 and 92 may be opposed using permanent magnets, or
You can use a permanent magnet 92K tri-magnetic body for 1, as in 1 degree or more, this rotation 3-knit dynamic pressure gas bearing □:
1. In the device, the rotating three-shield has a radial gas (air) bearing section consisting of a dynamic pressure group bearing formed by the outer diameter surface of the fixed shaft and the inner diameter surface of the sleeve cooperating with it in the radial direction, and the radial gas (air) bearing part in the axial direction. The thrust gas (air) bearing section is supported in a non-contact manner by the thrust gas (air) bearing section, which is formed by a gas film produced by the action of the dynamic pressure groove of the radial gas bearing section. Therefore, the rotating sleeve is not in contact with the hydrodynamic gas bearing membrane, so
In addition to avoiding uneven rotation caused by bearings, by using group bearings for the radial bearings, a preload effect from dynamic pressure acts on the radial square, making it possible to keep the radial runout of the sleeve to an extremely small level even at high speed rotation. In addition, in this bearing device, the thrust bearing section utilizes the gas flowing out from the radial bearing section due to the dynamic pressure effect, and the gas flowing out from the shaft hole that opens approximately in the center of the thrust end face 12 and either end face. Since the thrust load capacity is generated by squeezing K, the structure is extremely simple and advantageous in terms of cost.

しかも、起動停止時にスラスト端面が接触すると□ト とによって摩耗粉“が生じる場合でも、軸穴な経由■ して軸受外部へ排出されるため、摩耗粉が端面の摩耗を
加速するのを、防ぐことができる利点がある。また、ス
ラスト軸受端面は、端面12と羽のいずれか一方を凸球
面に形成しているため、動圧気体軸受の欠点である起動
トルクを、著・シく減少させることが可能であるととも
に、起動停止時の接触による摩耗を軽減することができ
る利点がある。さもに、動圧気体軸受として、ラジアル
軸受部とスラスト軸受部とが一体で構成されていること
から、回転部のスリーブを一端が基台に固設された片持
ちの固定軸によって支持することができるため、構遵−
簡単となりしかも組立精度の影響をはとんと受けないと
ころの、コスト的にも精度的にも有利な軸受装置とする
ことができる。また、駆動モータを構成するロータ及び
ステータ部は発熱しやすいが、動圧作用によりラジアル
軸受部の軸受すきまから流入し、スラスト軸受部に開口
する軸穴な介して流出する気体流が形成されるので、毫
−夕を冷却するための気体流が自動的にできる利点があ
る。
Moreover, even if abrasion powder is generated when the thrust end faces come into contact with □ and □ during startup and stop, it is discharged to the outside of the bearing through the shaft hole, which prevents the abrasion powder from accelerating the wear of the end faces. In addition, since either the end surface 12 or the blade of the thrust bearing end face is formed into a convex spherical surface, the starting torque, which is a disadvantage of hydrodynamic gas bearings, is significantly reduced. It has the advantage of being able to reduce wear due to contact during startup and stop.In addition, as a hydrodynamic gas bearing, the radial bearing part and thrust bearing part are integrally constructed. Since the sleeve of the rotating part can be supported by a cantilevered fixed shaft with one end fixed to the base, structural compliance is improved.
It is possible to provide a bearing device that is simple and not affected by assembly accuracy, and is advantageous in terms of cost and accuracy. In addition, although the rotor and stator parts that make up the drive motor tend to generate heat, due to the action of dynamic pressure, a gas flow is formed that flows in through the bearing clearance of the radial bearing part and flows out through the shaft hole that opens in the thrust bearing part. Therefore, there is an advantage that the gas flow for cooling the cylinder can be automatically generated.

なお、ラジアル軸受部に設ける動圧発生用のみぞは、使
用条件に応じて設計するため、実施例に図示した以外の
みぞパターンを用いて実施してもよい。
Note that, since the grooves for generating dynamic pressure provided in the radial bearing portion are designed according to the conditions of use, groove patterns other than those shown in the embodiments may be used.

以上の実施例かられかるように1本発明の回転ユニット
用動圧気体軸受装置を用−・ると、回転精度がよく、回
転むらのない、高速回転に適した、起動トルクが小さく
、スラスト軸受端面の耐摩耗性の良い、グリース、油な
どの潤滑剤及びシール用流体鴎よる軸受まわりの汚染の
な(%、し力1も組立て容4′で組立精度の良い、量産
性にすぐれた回転ユニットが得られる。
As can be seen from the above embodiments, when the hydrodynamic gas bearing device for a rotating unit of the present invention is used, the rotational accuracy is good, there is no rotational unevenness, it is suitable for high-speed rotation, the starting torque is small, and the thrust Good wear resistance on the bearing end face, no contamination around the bearing from lubricants such as grease and oil and sealing fluid (%), assembly accuracy with a force of 1 and assembly volume of 4', and excellent mass production. A rotating unit is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面図、第2図昏言他の実施
例の第1図相当図で、符号1G言固定軸、2は基台、3
はスリーブ、12、μsはスラスト端面、斜は軸穴、1
11は動圧発生用のみそである。 特許出願人  日本精工株式会社 !2F 手続補正書(自発) 昭和57年6月16日 q#齢庁長官島田春樹殿 1、事件の表示 昭和57年特許願第16299号 3、補正をする者 事件との関係 特許出願人 4、補正の対象 明細書の「発明の詳細な説明」の欄 5、補正の内容 明細書第2頁19〜2D行目「レーザ、ミラー、プリン
タ」とあるな「レーザビームプリンタ」と訂正する。 手続補正書(自発) 昭和57年7月科日 特許庁長官若杉和夫殿 1、事件の表示 昭和57年特許願第16299号 3、補正をする者 事件との関係 特許出願人 4、補正の対象 (1)  明細書の「特許請求の範囲」の欄(2)明細
書の「発明の詳細な説明」の欄5、補正の内容 (1)  明細書の「特許請求の範囲」の欄別紙の通り
補正する。 (2)明細書の「発明の詳細な説明」の欄イ)明細書第
7頁7〜8行目「回転部の目量が・・・・・・」とある
な「回転部の自重が・・・・・・」と訂正する。 口)明細書第8頁第9〜15行目「また、本軸受装置で
は、スラスト軸受部は、ラジアル軸学部から動圧効果に
よって流出する気体を利用し、スラスト端面12とおの
いずれか一方の端面のほぼ中央に開口する軸穴から流出
する気体をしぼることによってスラスト負°荷能力を生
じさせるようにしているので、−構造がきわめて簡単と
なりコスト的べ有利である。」とあるを「また、本軸受
装−では、スラスト軸受部は、ラジアル軸受部ア、動圧
効果によって生じて発生する気体を利用していて、すな
わち、ラジアル軸受部からの気体を両スラスト端面12
、お間に導き、スラスト負荷能力な生じさせ、スラスト
端面12とあのいずれか一方の端面のはぼ中央に開口す
る軸穴へと流出させているので、構造がきわめて簡単と
なりコ・スト的に有利である。」と訂正する。 ハ)明細書第9頁第1行目「・・・・・・凸球面に形成
しているため、」とあるを「・・・・・・凸球面に形成
している場合には、」と訂正する。 −、。 〔別     紙〕 特許請求の範囲 (1)  基台に一端が固設された片持ちの固定軸のま
わりをスリーブが回転する構造の回転ユニットにおいて
、前記スリーブの内径面又は/及び核内後面と共働する
前記固定軸の外径面に動圧発生用のみぞを備え、前記固
定軸又は前記スリーブQスラスト端面のはぼ中央に開口
する外気と連通する軸穴な備え、定格回転時に前記両ス
ラスト端面間で形成される圧力室に前記動圧発生用のみ
ぞにより発生する作動気体が導かれ、前記軸穴により前
記圧力室の圧力調整が行われて前記スリーブを支持°し
ていることを特徴とする回転ユニット用動圧気体軸受装
置。 スラスト磁気軸受を配設した特許請求の範囲第1項記載
の回転ユニット用動圧気体軸受装置。 (4)前記スラスト端面のいずれか一方が、しゆう動性
のよいプラスチックまたはセラミックでできている特許
請求の範囲第1項記載の回転ユニット用動圧気体軸受装
置。 (5)前記動圧発生用のみぞの形°状は少なくともスラ
スト端面に向かって圧力上昇をもたらすところのみぞ形
状を含んでいる動圧気体軸受からなる特許請求の範囲第
1項記載の回転ユニット用動圧気体軸受装置。 (6)気体軸受装置が基台及びノ・ウジング等の密閉部
材で密閉されている特許請求の範囲第1項記載の回転ユ
ニット周動圧気体軸受装置。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a diagram corresponding to FIG. 1 of another embodiment, where 1 is a fixed shaft, 2 is a base, and 3
is the sleeve, 12, μs is the thrust end face, oblique is the shaft hole, 1
11 is a miso paste for generating dynamic pressure. Patent applicant NSK Ltd.! 2F Procedural amendment (voluntary) June 16, 1980 q# Age Agency Director Haruki Shimada 1, Indication of the case 1982 Patent Application No. 16299 3, Person making the amendment Relationship with the case Patent applicant 4, In column 5 of "Detailed Description of the Invention" of the specification to be amended, on page 2, lines 19-2D of the specification of contents of the amendment, the phrase ``laser, mirror, printer'' is corrected to ``laser beam printer.'' Procedural amendment (voluntary) July 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case Patent Application No. 16299 of 19833, Person making the amendment Relationship to the case Patent applicant 4, Subject of the amendment (1) "Claims" column of the specification (2) Contents of the amendment in "Detailed Description of the Invention" column 5 of the specification (1) Addendum to the "Claims" column of the specification Correct as expected. (2) Column ``Detailed Description of the Invention'' in the specification a) On page 7, lines 7-8 of the specification, it says, ``The scale interval of the rotating part is...''. "..." I corrected myself. Page 8 of the specification, lines 9 to 15: "In addition, in this bearing device, the thrust bearing section utilizes the gas flowing out from the radial shaft section due to the dynamic pressure effect, and the thrust end surface 12 and either one of the Since the thrust load capacity is generated by squeezing the gas flowing out from the shaft hole that opens approximately at the center of the end face, the structure is extremely simple and is advantageous in terms of cost. In this bearing device, the thrust bearing part utilizes the gas generated by the dynamic pressure effect in the radial bearing part a, that is, the gas from the radial bearing part is transferred to both thrust end faces 12.
, the thrust load capacity is generated, and the flow is made to flow into the shaft hole opening in the center of the thrust end face 12 and either end face, so the structure is extremely simple and cost effective. It's advantageous. ” he corrected. C) In the first line of page 9 of the specification, the phrase "...because it is formed on a convex spherical surface" has been replaced with "...when it is formed on a convex spherical surface," I am corrected. -,. [Attachment] Claim (1) In a rotation unit having a structure in which a sleeve rotates around a cantilevered fixed shaft whose one end is fixed to a base, the inner diameter surface and/or the inner rear surface of the sleeve and A groove for generating dynamic pressure is provided on the outer diameter surface of the cooperating fixed shaft, and a shaft hole that opens at the center of the fixed shaft or the thrust end surface of the sleeve Q and communicates with the outside air is provided. The working gas generated by the groove for generating dynamic pressure is introduced into the pressure chamber formed between the thrust end faces, and the pressure in the pressure chamber is adjusted by the shaft hole to support the sleeve. Features of dynamic pressure gas bearing device for rotating unit. A hydrodynamic gas bearing device for a rotating unit according to claim 1, wherein a thrust magnetic bearing is provided. (4) The hydrodynamic gas bearing device for a rotating unit according to claim 1, wherein either one of the thrust end faces is made of plastic or ceramic with good shearing properties. (5) The rotation unit according to claim 1, comprising a hydrodynamic gas bearing, wherein the shape of the groove for generating dynamic pressure includes a groove shape that causes a pressure increase at least toward the thrust end face. Dynamic pressure gas bearing device. (6) The rotating unit circumferential dynamic pressure gas bearing device according to claim 1, wherein the gas bearing device is sealed with a sealing member such as a base and a nozzle.

Claims (5)

【特許請求の範囲】[Claims] (1)基台に一端が固設された片持ちの固定軸のま共働
する前記固定軸の外径面に動圧発生用のみ七を備え、前
記固定軸の反固定側のスラスト端面又は/及び該端面と
共働する前記スリーブのスラスト端面が凸球面に形成さ
れ、前記固定軸又は前記スリーブに前記スラスト端面の
はぼ中央に開口する外気と連通する軸穴を備え、定格回
転時に前記両スラスト端面間で形成される圧力室に前記
動圧発生用のみぞKより発生する作動気体が導かれ、前
記軸穴により前記圧力室のπ力調整が行われて前記スリ
ーブを支持していることを橢徴とする回転ユニット用動
圧気体軸受装置。
(1) A cantilever fixed shaft with one end fixed to the base, and a groove for generating dynamic pressure on the outer diameter surface of the fixed shaft cooperating with the fixed shaft, and a thrust end face on the opposite side of the fixed shaft or / and a thrust end surface of the sleeve that cooperates with the end surface is formed into a convex spherical surface, and the fixed shaft or the sleeve is provided with a shaft hole that opens at the center of the thrust end surface and communicates with the outside air, and the Working gas generated from the groove K for generating dynamic pressure is introduced into a pressure chamber formed between both thrust end faces, and the π force of the pressure chamber is adjusted by the shaft hole to support the sleeve. Dynamic pressure gas bearing device for rotating unit.
(2)前記回転スリーブと前記基台との間に1補助スラ
スト磁気軸受を配設した判許請求の範囲第1項記載の回
転ユニット用動圧気体軸受装置。
(2) The hydrodynamic gas bearing device for a rotating unit according to claim 1, wherein one auxiliary thrust magnetic bearing is disposed between the rotating sleeve and the base.
(3)前記スラスト端面のいずれか一方が、しゆう動性
のよいプラスチックまたはセラミックでできている尋許
請求の範囲第1項記載の回転ユニット用動圧気体軸受装
置。
(3) The hydrodynamic gas bearing device for a rotating unit according to claim 1, wherein either one of the thrust end faces is made of plastic or ceramic with good shearing properties.
(4)前記動圧発生用のみその形状は少なくともスラス
ト端面に向かって圧力上昇をもたらすところ゛のみぞ形
状を含んでいる動圧気体軸受からなる判許請求の範囲第
1項記載の回弊ユニット用動圧気体軸受装置。
(4) The recirculation unit according to claim 1, comprising a hydrodynamic gas bearing whose shape includes a groove shape that causes a pressure increase at least toward the thrust end face. Dynamic pressure gas bearing device.
(5)気体軸受装置が基台及びハウジング等の密閉部材
で密閉されている崎許請求の範囲第1項記載の回転ユニ
ット用勤王気体軸受装置。
(5) The gas bearing device for a rotary unit according to claim 1, wherein the gas bearing device is sealed with a sealing member such as a base and a housing.
JP57016299A 1982-02-05 1982-02-05 Dynamic pressure gas bearing device for rotary unit Pending JPS58134217A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57016299A JPS58134217A (en) 1982-02-05 1982-02-05 Dynamic pressure gas bearing device for rotary unit
DE19833303499 DE3303499A1 (en) 1982-02-05 1983-02-02 DYNAMIC GAS STORAGE
US07/008,149 US4805972A (en) 1982-02-05 1987-01-22 Dynamic pressure gas bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016299A JPS58134217A (en) 1982-02-05 1982-02-05 Dynamic pressure gas bearing device for rotary unit

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2401089A Division JPH01312219A (en) 1989-02-03 1989-02-03 Rotary device rotating around fixed shaft
JP2400989A Division JPH01234616A (en) 1989-02-03 1989-02-03 Dynamic pressure pneumatic bearing device for rotor

Publications (1)

Publication Number Publication Date
JPS58134217A true JPS58134217A (en) 1983-08-10

Family

ID=11912665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016299A Pending JPS58134217A (en) 1982-02-05 1982-02-05 Dynamic pressure gas bearing device for rotary unit

Country Status (1)

Country Link
JP (1) JPS58134217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269637A (en) * 1986-05-14 1986-11-29 Toshiba Corp Motor for polarization
US6502989B1 (en) 1999-05-07 2003-01-07 Sumitomo Electric Industries, Ltd. Dynamic pressure bearing and spindle motor with the bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620830A (en) * 1979-07-26 1981-02-26 Matsushita Electric Ind Co Ltd Rotation transmitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620830A (en) * 1979-07-26 1981-02-26 Matsushita Electric Ind Co Ltd Rotation transmitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269637A (en) * 1986-05-14 1986-11-29 Toshiba Corp Motor for polarization
JPH0449338B2 (en) * 1986-05-14 1992-08-11 Tokyo Shibaura Electric Co
US6502989B1 (en) 1999-05-07 2003-01-07 Sumitomo Electric Industries, Ltd. Dynamic pressure bearing and spindle motor with the bearing

Similar Documents

Publication Publication Date Title
JPH04235522A (en) Rotating mirror optical scanner with grooved grease bearing
JP2000186716A (en) Fluid dynamic pressure bearing, spindle motor, and rotor device
JPS5917019A (en) Rotary body supporter
US20040008913A1 (en) Spindle device using dynamic pressure bearing
KR100287356B1 (en) Rotor bearing device, motor and polygon mirror motor
JPS585518A (en) Dynamic pressure spindle apparatus
JPS58134217A (en) Dynamic pressure gas bearing device for rotary unit
JP2624264B2 (en) Laser beam scanner motor
JPS58200816A (en) Dynamic pressure gas bearing device for rotary unit
JPH0651224A (en) Optical scanning device
JP3431723B2 (en) Dynamic pressure bearing device
JP2790446B2 (en) Laser beam scanner motor
JPH01234616A (en) Dynamic pressure pneumatic bearing device for rotor
JPS631053Y2 (en)
JPH0316530B2 (en)
JPH11117935A (en) Bearing device
JPS6319621Y2 (en)
JPS62231922A (en) Dynamic pressure fluid bearing type scanner unit
JP2000092773A (en) Disk driving device
KR940000809Y1 (en) Bearing device
JPH0324319A (en) Gas bearing device
JPH09189876A (en) Rotary polygon mirror driving motor
JPH0623021U (en) Rotating body support device for polygon mirror
KR20010038339A (en) Spindle motor
JPH0781584B2 (en) Bearing device