JPS581319A - Switched capacitor type electronic circuit - Google Patents

Switched capacitor type electronic circuit

Info

Publication number
JPS581319A
JPS581319A JP9821881A JP9821881A JPS581319A JP S581319 A JPS581319 A JP S581319A JP 9821881 A JP9821881 A JP 9821881A JP 9821881 A JP9821881 A JP 9821881A JP S581319 A JPS581319 A JP S581319A
Authority
JP
Japan
Prior art keywords
frequency
switch
capacitor
frequency divider
type electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9821881A
Other languages
Japanese (ja)
Inventor
Shuzo Matsumoto
松本 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9821881A priority Critical patent/JPS581319A/en
Publication of JPS581319A publication Critical patent/JPS581319A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks

Abstract

PURPOSE:To fix the transfer characteristics of a switched capacitor type electronic circuit on the basis of a frequency division ratio logically determined by varying a period when a sitch is turned on and off at the same rate for every switch through a clock frequency divider. CONSTITUTION:Switches 5 and 6 are controlled by clock pulses of frequency fc generated by a clock generator 14, and swichers 8 and 9 are controlled by pulses of fc/N obtained by passing said pulses through a clock frequency divider 15. Therefore, the equivalent resistance Rs of the circuit consisting of the switches 5 and 6 and a capacitor 10 is 1/fcCs, and the equivalent resistance Rf of the circuit consisting of the switches 8 and 9 and a capacitor 12 is N/fcCf. Consequently, the circuit shown in the figure has such transfer characteristics that V2/V1=Rf/Fs=NCs/Cf, and they are fixed by selecting the capacity ratio of those two capacitors and the frequency division ratio of the frequency divider. In addition, when the capacity ratio of the capacitors is set to 1, the transfer characteristics depend only upon the frequency division ratio of the frequency divider.

Description

【発明の詳細な説明】 本発明はスイッチ、コンデンサ、演算増幅器などから構
成されてなるスイッチト・キャパシタ形電子回路に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a switched capacitor type electronic circuit comprised of switches, capacitors, operational amplifiers, and the like.

まず一般的なスイッチト・キャパシタが等価抵抗とみな
せる原理を説明する。
First, we will explain the principle by which a general switched capacitor can be regarded as an equivalent resistance.

基本構成を第1図に示す。第1図において3は周期Tc
で切り換るスイッチ、4は容量値Cのコンデンサ、lは
電圧ηの入力端子、2は電圧V、の出力端子である。
The basic configuration is shown in Figure 1. In Figure 1, 3 is the period Tc
4 is a capacitor with a capacitance value C, l is an input terminal for voltage η, and 2 is an output terminal for voltage V.

時刻t;OVcおいて、入力端子1からコンデンサ4の
電荷がα、となるように充電され、次に時刻t−Tc、
/2においてコンデンサ4の電荷がGとなるように放電
する。
At time t; OVc, the capacitor 4 is charged from the input terminal 1 so that the charge becomes α, and then at time t-Tc,
/2, the capacitor 4 is discharged so that the charge becomes G.

したがってスイッチが往復するクロック周期Tcの関に
入力端子1から出力端子2の方に与、えられた電荷量は
ΔQ x c(v、 −V、 )となる。
Therefore, the amount of charge applied from the input terminal 1 to the output terminal 2 with respect to the clock period Tc during which the switch reciprocates is ΔQ x c(v, −V, ).

したがって周期Tcの間に流れた平均電流Iは、 1−Q/Tc−0(v、 v* )4゜= C(u 描
)fcここでスイッチング周波数”  ’/Tc トす
る。
Therefore, the average current I flowing during the period Tc is: 1-Q/Tc-0(v, v*)4°=C(u drawn)fc where the switching frequency ``'/Tc.

ゆえに等価的な抵抗は となり、コンデンサの容量値とスイッチング周波数に逆
比例する。
Therefore, the equivalent resistance is, and is inversely proportional to the capacitance value of the capacitor and the switching frequency.

この原理に基づいた従来技術のスイッチト・キャパシタ
形増幅器を第2図に示す。第2図において5,6,8.
9はM)8 FBTにより構成したスイッチ、10は入
力用;ンデンサ、12は帰還用コンデンサ、11は演算
増幅器、13はクロックインバータでスイッチ5,8が
オン時スイッチ6.9をオフ、またはその逆の作用をす
る。 14は周波数fcのクロック発生器、7は電荷吸
取用コンデンサである。
A prior art switched capacitor amplifier based on this principle is shown in FIG. 5, 6, 8 in Figure 2.
9 is a switch constituted by M) 8 FBT, 10 is for input; It has the opposite effect. 14 is a clock generator with frequency fc, and 7 is a charge absorbing capacitor.

この増幅器の動作を以下説明する。スイッチ5がオン、
スイッチ6がオフの状態で入力電圧η、からコンデンサ
10へ電荷が充電される。その電荷はスイッチ5がオフ
、スイッチ6がオyの状態で、演算増幅器11の作用に
よりその増幅器の入力端子は仮想アースとみなせるので
、全てコンデンt7へ移る。またスイッチ8がオフ。
The operation of this amplifier will be explained below. switch 5 is on,
When the switch 6 is off, the capacitor 10 is charged from the input voltage η. When the switch 5 is off and the switch 6 is on, the input terminal of the operational amplifier 11 can be regarded as a virtual ground due to the action of the operational amplifier 11, so all of the charge is transferred to the capacitor t7. Switch 8 is also off.

スイッチ9がオンの状態で出力電圧ηからコンデンサ1
2へ電荷が充電され、その電荷はスイッチ8がオン、ス
イッチ9がオ、フで全【コンデンサ7へ移動する。した
が9てこの動作を繰返すと前述のスイッチとコンデンサ
により等価的な抵抗となる。
When switch 9 is on, output voltage η is applied to capacitor 1.
When the switch 8 is turned on and the switch 9 is turned off, all of the electric charge is transferred to the capacitor 7. However, if the nine lever operations are repeated, an equivalent resistance will be obtained by the above-mentioned switch and capacitor.

つまりスイッチ5.6.コンデンサ10からとなる等価
抵抗Rs、スイッチ8,9.コンデンサ12から となる等優砥抗Rfとみなせる。その結果この増幅器は
等価的に入力抵抗Rs 、帰還抵抗I’Lfの演算増幅
器とみなせ、その伝達特性はおおむねここで8は周波数
を表わす演算子 で表わされ、と(に扱5周波数を 1/2πC,Rfな
る周波数より十分低く選ぶと となり、2つのコンデンサの比により決定される。この
ことは集積化半導体装置で本増幅器を構成する場合法の
点で有利となる。MO8FIT Kより容易にスイッチ
が構成できることと、製造工程がフォトマスクを用いた
一括処理のため容量の比Cs/Cfの精度はよい。した
がって増幅器の伝達特性も精度よく製造でき性能がよい
、とくに′MDS形集積化半導体装置では抵抗素子が占
める面積は割合大きいので、このスイッチとコンデンサ
からなる等価抵抗を用いると、集積面積を少なくでき、
経済的でもある。
In other words, switch 5.6. Equivalent resistance Rs consisting of capacitor 10, switches 8, 9 . It can be regarded as a superior abrasive resistor Rf consisting of the capacitor 12. As a result, this amplifier can be equivalently regarded as an operational amplifier with an input resistance Rs and a feedback resistance I'Lf, and its transfer characteristic is approximately expressed by an operator representing the frequency, where 8 is an operator representing the frequency. /2πC, Rf, which is determined by the ratio of the two capacitors.This is advantageous when constructing this amplifier with an integrated semiconductor device.Easier than MO8FIT K The accuracy of the capacitance ratio Cs/Cf is good because the switch can be configured and the manufacturing process is a batch process using a photomask.Therefore, the transfer characteristics of the amplifier can also be manufactured with high precision and the performance is good, especially when using 'MDS type integrated semiconductors. Since the resistance element occupies a relatively large area in a device, using an equivalent resistance consisting of a switch and a capacitor can reduce the integrated area.
It's also economical.

しかし此の精度がよいのはCs/Cfが1に近い場合に
限られている。そのため例えばCs/Cf−1αとする
kは、Cfと同じ形状のコンデンサを10個設けて、そ
れらを並列接続しCmとして用いて精度を向上させよう
としている。しかしその結果として集積面積が増大し、
不経済となるばかりか精度も1:IK比べて悪化するき
らいかあム本発明の目的は、上記した従来技術の欠点を
なくシ、経済的に、かつ精度がよい高性能な増幅器を提
供するKある。
However, this accuracy is good only when Cs/Cf is close to 1. Therefore, for example, when k is Cs/Cf-1α, ten capacitors having the same shape as Cf are provided, and these are connected in parallel and used as Cm to improve accuracy. However, as a result, the accumulation area increases,
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a high-performance amplifier that is economical and has good precision. There is K.

本発明は前記スイッチとコンデンサからなる等価抵坑に
おいて、コンデンサの容量比から、所望の抵抗値を得る
のではなく、論理的に定まるクロック周波数から、抵抗
値を得るところに特徴がある。
The present invention is characterized in that, in the equivalent resistance composed of the switch and the capacitor, a desired resistance value is not obtained from the capacitance ratio of the capacitors, but from a logically determined clock frequency.

以下本発明の実施例を第3図を用いて詳細に説明する。Embodiments of the present invention will be described in detail below with reference to FIG.

菖2図と同一部品には同一番号を付しである。15はり
四ツク分周器な示し、該分局器はクロック発生器14か
らのパルスをNll針Mする毎K1回パルスを生じる。
The same parts as in Diagram 2 are given the same numbers. 15 is shown as a four-way frequency divider, which produces a pulse every K1 times the pulses from the clock generator 14.

つまり周波数fcのクロックパルスを入力として周波数
fcハのクロックパルスを出力とする。またスイッチ8
と9は分周w!15からの出力によりて制御されるスイ
ッチであり、スイッチ5と6はり四ツク発生器14の出
力によって制御される。それゆえ、スイッチ5,6.コ
ンデytloからなる等価抵抗9、コンデンサ12から
なる等価抵抗Rfは器の伝達特性は前述と同じ条件では デンナの容量比と分周器の分局比を選ぶことにより、必
要な伝達特性を容易に得ることができる。ここで容量比
0s10fは製造上のバラツキが少なく精度が最もよい
1:IK選択すると、伝達特性は分周比のみで決定する
。つまり分局比は、論理的に決まるもので誤差が全くな
いので、精度は極めてよい特性を得る。また論理木子か
らなるクロック分周器を集積化半導体装置で構成すると
僅かな占有面積で実現できるため問題とならない。
That is, a clock pulse of frequency fc is input, and a clock pulse of frequency fc is output. Also switch 8
And 9 is frequency division lol! 15, and switches 5 and 6 are controlled by the output of the four-stroke generator 14. Therefore, switches 5, 6 . The transfer characteristics of the device are the equivalent resistance 9 consisting of a capacitor ytlo and the equivalent resistance Rf consisting of a capacitor 12. Under the same conditions as described above, the necessary transfer characteristics can be easily obtained by selecting the capacitance ratio of Denna and the division ratio of the frequency divider. be able to. Here, if the capacitance ratio 0s10f is selected as 1:IK, which has the least manufacturing variation and the highest precision, the transfer characteristic is determined only by the frequency division ratio. In other words, since the division ratio is determined logically and has no errors, extremely high precision characteristics can be obtained. Furthermore, if the clock frequency divider consisting of a logic tree is constructed using an integrated semiconductor device, this problem does not arise because it can be realized with a small occupied area.

第4図は本発明の他の実施例な示す回路図である。ll
X3図と同一部品には同一符号を付しである。18は分
周比Mの新らたな分周器5,6は分周器18の出力によ
って制御されるM)8 Fliplミルスイッチ。
FIG. 4 is a circuit diagram showing another embodiment of the present invention. ll
The same parts as in Figure X3 are given the same symbols. 18 is a new frequency divider with a frequency division ratio M; M)8 Flipl mill switch in which the frequency dividers 5 and 6 are controlled by the output of the frequency divider 18;

第4図の回路構成において、コンデンサlOと12の容
量比を精度が最もよくできる1:1とすると、この、増
幅器の伝達特性は η    N /V、−/M となることは明白である。これにより伝
達特性を精度よ(実現すると伴に、2つの分局器の分周
比により決まるので設計上の自由度が増える利点もある
In the circuit configuration shown in FIG. 4, if the capacitance ratio of the capacitors IO and 12 is set to 1:1, which gives the best accuracy, it is clear that the transfer characteristic of the amplifier becomes η N /V,−/M. This not only makes the transfer characteristics more accurate, but also has the advantage of increasing the degree of freedom in design since it is determined by the frequency division ratio of the two dividers.

第5′図は本発明を加算器に適用した実施例を示す回路
図である。第3図、第4図と同一部品には同一符号を付
しである。21は入力用コンデンサ18.22はそれぞ
れ分周比M s Mlの分局器、5.6と19.20は
それぞれ分局器18.21の出力により制御されるスイ
ッチである。この加算器の出力鴇は前述の動作と同様に
考えて、 T、−M、V、十緘が であることは明白である。ただし3つのコンデンサの比
は精度が最もよ(なる Cs : Cs+: Cfwl : 1 : 1と選ん
である。
FIG. 5' is a circuit diagram showing an embodiment in which the present invention is applied to an adder. The same parts as in FIGS. 3 and 4 are given the same reference numerals. 21 is an input capacitor 18.22 is a divider with a dividing ratio M s Ml, and 5.6 and 19.20 are switches each controlled by the output of the divider 18.21. Considering the same operation as described above, it is clear that the output of this adder is T, -M, V, and ten lines. However, the ratio of the three capacitors is selected to have the highest accuracy (Cs: Cs+: Cfwl: 1: 1).

このことは、入力v1とV、を重みMと縞をつけて加え
る加算器を構成している。その重みMと縞は論理的に定
まるので極め1精度がよいものである。
This constitutes an adder that adds inputs v1 and V with weights M and stripes. Since the weight M and the stripes are determined logically, the accuracy is extremely high.

以上の説明では、コンデンサは全て等しく比は1である
としているが、例えば第3図の実施例において伝達特性
V* /V、−100とするKは、分周比N寓10.容
量比Cs/Cf寓10のように、容量比の精度が悪化し
ない範囲で組み合わせ使用することも可能であることは
明白である。またクロック分周器として電圧値などの制
御信号により分周比を変化する分周比可変形を用いて前
記増幅器を構成すると、その分周比を制御して容易に伝
達特性を制御できる。この増幅器を用いて自動利得制御
回路なども構成容易に構成できる。
In the above explanation, it is assumed that all capacitors are equal and have a ratio of 1, but for example, in the embodiment shown in FIG. 3, the transfer characteristic V* /V, K, which is -100, is the frequency division ratio N, which is 10. It is clear that it is also possible to use a combination as in the case of the capacitance ratio Cs/Cf (10), as long as the accuracy of the capacitance ratio does not deteriorate. Further, if the amplifier is configured using a variable frequency division ratio type that changes the frequency division ratio by a control signal such as a voltage value as a clock frequency divider, the transmission characteristics can be easily controlled by controlling the frequency division ratio. Using this amplifier, automatic gain control circuits and the like can be easily configured.

以上述べたように本発明によれば、スイッチト、キャパ
シタ形電子回路において、スイッチが往復する周期を各
々のスイッチ毎にクロック分周器を用いである比率で違
えるととにより、論理的に定まる分周比によりその回路
の伝達特性を定めることができる。したがって従来技術
の欠点であるコンデンサ製造上のバラツキによる伝達特
性のバラツキを少、なくでき、製品の均−性を得るとと
もに歩留向上も期待できるためより経済的となる。
As described above, according to the present invention, in a switched capacitor type electronic circuit, the cycle of the reciprocation of the switch is determined logically by using a clock frequency divider for each switch and varying it by a certain ratio. The frequency division ratio can determine the transfer characteristics of the circuit. Therefore, it is possible to reduce or eliminate variations in transfer characteristics due to variations in capacitor manufacturing, which are the disadvantages of the prior art, and it is possible to obtain product uniformity and improve yield, making it more economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスイッチ)、−?ヤバシタ回路の原理説明図、
第2図は従来のスイッチト、キャパシタ増幅器を示す回
路図、第3図は本発明の一夾施′例を示すスイッチト、
キャパシタ増幅器の回路図、第4図は本発明の他の実施
例を示す増幅器の回路図、第5図は本発明のさらに他の
実施例を示すスイッチトウキャパシタ加算器の回路図で
ある。 lO二二人人力コンデン サ2:帰還用コンデンサ 5.6,8,9 :スイッチ 11:演算増幅器 14:り四ツク発生器 15.18,22 :分周器 才  1  図 才   3  図 才   ヰ  図
Figure 1 shows the switch), -? Diagram explaining the principle of Yabashita circuit,
FIG. 2 is a circuit diagram showing a conventional switched capacitor amplifier, and FIG. 3 is a switched circuit diagram showing one implementation example of the present invention.
FIG. 4 is a circuit diagram of a capacitor amplifier, FIG. 4 is a circuit diagram of an amplifier showing another embodiment of the invention, and FIG. 5 is a circuit diagram of a switched toe capacitor adder showing still another embodiment of the invention. 22 human power capacitors 2: Feedback capacitors 5, 6, 8, 9: Switch 11: Operational amplifier 14: Four-wheel generator 15, 18, 22: Frequency divider 1 Figure 3 Figure

Claims (1)

【特許請求の範囲】 1、 スイッチとコンデンサからなる等価抵抗を複数個
含むスイッチト・キャパシタ形電子回路において、スイ
ッチの切換えを制御するクロック発生器と、前記りpツ
ク発生器の出力の周波数を分局する複数の分局器と、前
記分周器の出力にて制御される複数のスイッチを具備す
ることを特徴とするスイッチト・キャパシタ形電子回路
。 2、 スイッチとコンデンサからなる等価抵抗を複数個
含むスイッチト・キャパシタ形電子回路において、スイ
ッチの切換えを制御するブロック発生器と、前記クロッ
ク発生器の出力の周波数を分周する複数の分局器と、前
記分周器の出力にて制御される複数のスイッチと。 制御信号により分周比を制御する分周器を具備すること
を特徴とするスイッチト・キャパシタ形電子回路
[Claims] 1. In a switched capacitor type electronic circuit including a plurality of equivalent resistances each consisting of a switch and a capacitor, a clock generator for controlling switching of the switch and a clock generator for controlling the frequency of the output of the clock generator are provided. 1. A switched capacitor type electronic circuit comprising a plurality of dividers for dividing stations and a plurality of switches controlled by the output of the frequency divider. 2. In a switched capacitor type electronic circuit that includes a plurality of equivalent resistances each consisting of a switch and a capacitor, a block generator that controls switching of the switch and a plurality of dividers that divide the frequency of the output of the clock generator are provided. , a plurality of switches controlled by the output of the frequency divider. A switched capacitor type electronic circuit characterized by comprising a frequency divider that controls a frequency division ratio by a control signal.
JP9821881A 1981-06-26 1981-06-26 Switched capacitor type electronic circuit Pending JPS581319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9821881A JPS581319A (en) 1981-06-26 1981-06-26 Switched capacitor type electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9821881A JPS581319A (en) 1981-06-26 1981-06-26 Switched capacitor type electronic circuit

Publications (1)

Publication Number Publication Date
JPS581319A true JPS581319A (en) 1983-01-06

Family

ID=14213826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9821881A Pending JPS581319A (en) 1981-06-26 1981-06-26 Switched capacitor type electronic circuit

Country Status (1)

Country Link
JP (1) JPS581319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403263A1 (en) * 1983-03-25 1984-09-27 Hitachi, Ltd., Tokio/Tokyo SIGNAL TRANSFER CIRCUIT AND MAGNETIC TAPE PRODUCED BY USING THIS CIRCUIT
JPS61121611A (en) * 1984-11-19 1986-06-09 Hitachi Ltd Driving method of switched capacitor filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403263A1 (en) * 1983-03-25 1984-09-27 Hitachi, Ltd., Tokio/Tokyo SIGNAL TRANSFER CIRCUIT AND MAGNETIC TAPE PRODUCED BY USING THIS CIRCUIT
JPS61121611A (en) * 1984-11-19 1986-06-09 Hitachi Ltd Driving method of switched capacitor filter

Similar Documents

Publication Publication Date Title
EP0539684B1 (en) Tuning circuit for continuous-time filters and method therefor
Mitra et al. Low sensitivity high-frequency active R filters
US3010078A (en) Voltage controlled frequency circuit
JPS58125909A (en) Switched capacitor filter
US4543546A (en) Switched capacitor circuit with minimized switched capacitance
US6344780B1 (en) Impedance adjusting circuit
JPS581319A (en) Switched capacitor type electronic circuit
US3573647A (en) Electrical impedance converting networks
US3528043A (en) Voltage controllable tuning circuit which responds linearly in frequency with linear dial changes
US4988952A (en) High Q switched capacitor filter having internal thin-film resistors
JPH0336328B2 (en)
Langhammer et al. Novel electronically reconfigurable filter and its fractional-order counterpart
US3544886A (en) Rc phase shift circuit having improved output amplitude stability
Aronhime et al. Realization of current-mode complex pole all-pass networks using a single current conveyor
JPS6276810A (en) Switched capacitor circuit
US4513265A (en) 3-Phase switched capacitor circuit having an inductive characteristic
JPS63116505A (en) Cr oscillator
JPH0460372B2 (en)
US5552648A (en) Method and apparatus for the generation of long time constants using switched capacitors
US3594632A (en) Adjustable attenuators and filter apparatus
US3267355A (en) Multi-range constant current source
US3492606A (en) Transversal filters
JP2000151358A (en) Filter device
JPS60210026A (en) Semiconductor switch circuit
KR0169401B1 (en) Switched capacitor controllable resistance value