JPS58128487A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS58128487A
JPS58128487A JP948282A JP948282A JPS58128487A JP S58128487 A JPS58128487 A JP S58128487A JP 948282 A JP948282 A JP 948282A JP 948282 A JP948282 A JP 948282A JP S58128487 A JPS58128487 A JP S58128487A
Authority
JP
Japan
Prior art keywords
bypass
rotary compressor
spool
hole
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP948282A
Other languages
Japanese (ja)
Other versions
JPH024796B2 (en
Inventor
Mitsuo Inagaki
光夫 稲垣
Masaatsu Ito
正篤 伊東
Yoshio Kurokawa
黒川 喜生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP948282A priority Critical patent/JPS58128487A/en
Publication of JPS58128487A publication Critical patent/JPS58128487A/en
Publication of JPH024796B2 publication Critical patent/JPH024796B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid

Abstract

PURPOSE:To simplify the consturction of a volume controlling device for a vane type compressor by providing a plurality of bypass holes in a compressor body to sequentially open and close the bypass hole group with a spool provided slidably in a cylinder hole intersecting the bypass hole. CONSTITUTION:In a side plate 120 are provided in parallel three bypass wedges 122-124 causing a working chamber 140 entering the volume reducing step to communicate to an intake pressure chamber 151, and provided a cylinder hole 170 intersecting these bypass holes. In the cylinder hole 170 is slidably provided a spool 180 which moves in the cylinder hole 170 to sequentially open and close the bypass holes 122-124 so that the construction of volume controlling device for a vane type compressor can be simplified.

Description

【発明の詳細な説明】 本発明は、回転圧縮機、特に、自動車用クーラシステム
の冷媒圧縮機として有用な可弯容量型の回転圧縮機に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary compressor, and particularly to a flexible capacity rotary compressor useful as a refrigerant compressor for an automobile cooler system.

自動車用クー2システムに用いられる冷媒圧縮用の回転
圧縮機は、一般に電磁クラッチを介してエンジンのり2
ンクプーリに連結される。このため、圧縮機は7OO〜
6000rpmという広範囲の回転数域で使用される。
A rotary compressor for compressing refrigerant used in an automobile cooling system generally compresses engine fuel through an electromagnetic clutch.
connected to the link pulley. For this reason, the compressor is 7OO~
It is used in a wide rotation speed range of 6000 rpm.

しかし、圧縮llO容量は主として低回転時に十分な冷
房能力を発揮するように設計される丸め、高回転時又は
低熱負荷時Ka冷房能力が過大に々〉がちとなる。
However, the compressed IO capacity is mainly designed to exhibit sufficient cooling capacity at low speeds, and the Ka cooling capacity tends to be excessive at high speeds or low heat loads.

このように、冷房能力が過大に壜ると、圧縮機OWk人
圧力が低下するため、圧縮比が大となりて圧縮機の効率
が低下し、ひいては自動車の燃費が悪くなるという問題
が生じる。
As described above, if the cooling capacity is excessively high, the pressure of the compressor decreases, causing a problem that the compression ratio becomes large and the efficiency of the compressor decreases, resulting in poor fuel efficiency of the automobile.

このため、従来は、車室温度岬を検出して電磁クラッチ
をオン・オフさせることによって冷房の加減を行表うよ
うKしてい九が、運転中に電磁クラッチがオン・オフを
繰返すため、エンジンに加わる負荷が変動して自動車に
加減速が生じ、運転フィーリングが悪くなるという問題
が生じていた。
For this reason, in the past, the cooling was controlled by detecting the cabin temperature peak and turning on and off the electromagnetic clutch, but since the electromagnetic clutch repeatedly turned on and off during driving, The problem has been that the load applied to the engine fluctuates, causing the vehicle to accelerate or decelerate, resulting in a poor driving feeling.

また、電磁クラッチのオン・オフによってターラシステ
ムを起動・停止させるため、被冷却空気の温度変動が大
きくなシ、冷房、フィーリングが悪化するという問題が
生じていた。
In addition, since the Tala system is started and stopped by turning on and off the electromagnetic clutch, there has been a problem in that the temperature of the air to be cooled fluctuates greatly and the cooling and cooling sensation deteriorates.

このため、自動車のクーラシステム用として、容量調整
装置の組込壕れ九回転圧縮機が提案されつつあるが、自
動車用クークシステムの使用状況が広範囲の回転数域K
及び、また、熱負荷が真夏の高熱負荷時から春先等の低
熱負荷時まで大幅に変動することから、吐出容量の可変
範囲が広範囲で、できゐだけ連続的に容量を変化させる
ことができ、しかも、小型で構造の簡単な可変容量型の
回転圧縮機が要望されている。
For this reason, a nine-turn compressor with a built-in capacity adjustment device is being proposed for use in automobile cooler systems.
In addition, since the heat load varies greatly from high heat load in midsummer to low heat load in early spring, the discharge capacity can be varied over a wide range, and the capacity can be changed as continuously as possible. Moreover, there is a demand for a variable capacity rotary compressor that is small and has a simple structure.

本発明は上記要望に応え得る回転圧縮機を提供すること
を目的とするもので、圧縮機本体に、容積減少段階に入
りた作動室と吸入王室とを連通させる豪数個のバイパス
孔を並列状態で設け、これらバイパス孔に交叉させてシ
リンダ六を設け、該シリンダ大KfII動可能に般社た
スグールによシ、バイパス孔群を順次開閉できるように
構成することによシ、小型かつ簡単な構成では埋連続的
にかつ広範囲に吐出容量を変化させることができるよう
にしたことを特徴とする。
The purpose of the present invention is to provide a rotary compressor that can meet the above-mentioned demands.The present invention has several bypass holes arranged in parallel in the compressor body to communicate the working chamber that has entered the volume reduction stage with the suction chamber. A cylinder 6 is provided to intersect with these bypass holes, and the large KfII cylinder is movable.By configuring the bypass holes to be opened and closed in sequence, the cylinder is small and simple. This configuration is characterized by being able to vary the discharge volume continuously and over a wide range.

以下、1面を参照して本発明の実施例を説明すゐ。Hereinafter, embodiments of the present invention will be described with reference to the first page.

第1Ii!I及び第2開拡本発IjIo第1爽施例を示
すもので、図において、100は圧縮機本体で、該圧縮
機本体100は、シリンダ状の内11111を有するシ
イナ110を備えておル、該シイナno cottJ後
開口端Fi2つの側[120,130によってそれぞれ
覆われている。ライナ110内にはシリンダ状のロータ
200が偏心状態で回転自在に設けられておシ、ロータ
200と一体に作られた回転軸210はベアリング22
0,230を介して側板120,130に回転自在に支
持されている。
1st Ii! This figure shows the first embodiment of the present invention. In the figure, 100 is a compressor main body, and the compressor main body 100 is equipped with a cylinder 110 having a cylindrical inner part 11111. , the rear opening end Fi is covered by the two sides [120, 130, respectively. A cylindrical rotor 200 is installed in the liner 110 so as to be rotatable eccentrically, and a rotating shaft 210 formed integrally with the rotor 200 has a bearing 22.
It is rotatably supported by the side plates 120 and 130 via 0 and 230.

ロータ200にはここでは4つのスリブ)201が略放
射状に形成きれておシ、各スリット201内にベーン2
40が進退動可能に挿入されている。ライナ110とロ
ータ200との間の空間は、4つのべ一7240によっ
て4つの作動室140 K分けられており、各作動室1
40はロータ200の回転に伴って移動しつつ容積変動
をするようになりているう側板120には、容積増加段
階にある作動1ii140に向けて10する吸入口12
1が形成されており、ライナ110には、容積最小の段
階に達した作動室140に向けて開口する吐出口111
が形成されている。
The rotor 200 has four slits 201 formed approximately radially, and a vane 2 in each slit 201.
40 is inserted so that it can move forward and backward. The space between the liner 110 and the rotor 200 is divided into four working chambers 140K by four bars 7240, and each working chamber 1
Reference numeral 40 indicates a suction port 12 on the side plate 120 which changes its volume while moving with the rotation of the rotor 200.
1 is formed, and the liner 110 has a discharge port 111 that opens toward the working chamber 140 that has reached the minimum volume stage.
is formed.

側板120の外側面には、ハウジング150が密着配置
されてお夛、ハウジング15Gと側、1120.130
とライナ110とは図示しないlルトで一体に固定され
ている。ハウジング150と側板120との間に吸入圧
11151が形成されており、吸入圧室15!は吸入口
121を介して客積増加段階の作動室140に連通され
るようになっている。ハウジング150には吸入圧室1
51と連通する吸入ポート152が形成されている。ロ
ータ2000回転軸210の一端はハウジング150を
貫通して外部に延びてお)、図示しない電磁クラッチを
介して自動車走行用エンジンの駆動力を受けるようKな
っている。回転軸210とハウジング15Gとの間には
、被圧縮流体や潤滑油が回転軸210 K沿って外部に
流出するのを防止する丸めのシール部材153が配設さ
れている。
A housing 150 is disposed in close contact with the outer surface of the side plate 120.
and liner 110 are fixed together by a bolt (not shown). A suction pressure 11151 is formed between the housing 150 and the side plate 120, and a suction pressure chamber 15! is communicated via the suction port 121 with the operating chamber 140 in the customer volume increase stage. The housing 150 has a suction pressure chamber 1
A suction port 152 communicating with 51 is formed. One end of the rotating shaft 210 of the rotor 2000 extends to the outside through the housing 150), and is adapted to receive the driving force of the automobile engine through an electromagnetic clutch (not shown). A round seal member 153 is provided between the rotating shaft 210 and the housing 15G to prevent compressed fluid and lubricating oil from flowing out along the rotating shaft 210K.

シイナ110にはハウジング160が取付けられておシ
、該ハウジング160内に吐出圧IE 161が形成さ
れていゐつ該吐出圧室161は、吐出口111を介して
容積最小段階に達した作動1! 140 K連通される
ようになりてお如、吐出圧室161内には吐出弁162
と#i土出弁162の開会ストロークを規制するストツ
バ163とが設けられている。ハウジング160KFi
吐出圧富16!と連通する吐出ボート164が形成され
ている。
A housing 160 is attached to the housing 110, and a discharge pressure IE 161 is formed in the housing 160.The discharge pressure chamber 161 reaches the minimum volume stage through the discharge port 111 during operation 1! 140K, there is a discharge valve 162 in the discharge pressure chamber 161.
and a stop collar 163 for regulating the opening stroke of the #i unloading valve 162. Housing 160KFi
Discharge pressure 16! A discharge boat 164 is formed which communicates with the discharge boat 164 .

側板120には、容積減少段階に入った作動室140と
吸入正置151とを連通させる3つのバイパス孔122
,123,124が並列状態で設けられておシ、壕九、
側板120にはこれらバイパス孔122゜123.12
4と交叉するシリンダ穴170が設けられている。
The side plate 120 has three bypass holes 122 that communicate the working chamber 140, which has entered the volume reduction stage, with the suction position 151.
, 123 and 124 are provided in parallel.
These bypass holes 122°123.12 are provided in the side plate 120.
A cylinder hole 170 intersecting with 4 is provided.

シリンダ穴170内にはスプール180が摺動可能に設
けられておシ、皺スプール180がシリンダ穴170内
で移動することによ〉、バイパス孔122゜123.1
24が順次開閉されるようになうている。
A spool 180 is slidably provided in the cylinder hole 170, and as the wrinkled spool 180 moves within the cylinder hole 170, the bypass hole 122° 123.1
24 are opened and closed in sequence.

ここでは、バイパス孔t22,12L124t)孔径若
しくは断面積はロータ200の回転方向に順次大きくな
ってお夛、これKより、スプール18Gでバイパス孔1
22,123,124を順次開閉させ丸場合に、作動*
14Gの有効圧縮容積がは埋勢量ずり減増されるように
なっているう スプール180 Kはロッド181を介してピストン1
82が一体に結合されておシ、ピストン182の外周溝
にはシール用の0−リング183が装着されている。?
/リンダ六170の一端とスプール180との間には吸
入圧導入室171が形成され、この吸入圧導入室171
は図示しない通路を介して吸入圧室151に連通されて
いる。一方、シリンダ穴170の他端には大気連通孔を
備え九キャップ172が取付ゆられてお〉、キャップ1
72とピストン182との関に大気導入1!173が形
成されている。tた、中ヤッグ172とピストン182
との間には圧縮ばね174が配設されておシ、ζOばね
174のばね力によつて、スプール180はバイパス孔
122〜124を開く方向に付勢されている。
Here, the diameter or cross-sectional area of the bypass holes t22, 12L124t) gradually increases in the rotational direction of the rotor 200.
When 22, 123, and 124 are opened and closed in sequence, it is activated*
A spool 180K is connected to the piston 1 through a rod 181, and the effective compression volume of 14G is increased or decreased by the buried volume.
82 are integrally connected, and an O-ring 183 for sealing is installed in the outer peripheral groove of the piston 182. ?
A suction pressure introduction chamber 171 is formed between one end of the cylinder 6 170 and the spool 180, and this suction pressure introduction chamber 171
is communicated with the suction pressure chamber 151 via a passage (not shown). On the other hand, the other end of the cylinder hole 170 has an atmosphere communication hole and a nine cap 172 is attached to it.
An atmosphere inlet 1!173 is formed between the piston 72 and the piston 182. t, middle yag 172 and piston 182
A compression spring 174 is disposed between them, and the spring force of the ζO spring 174 biases the spool 180 in the direction of opening the bypass holes 122-124.

次に第3図■〜(ロ)を参照して上記構成の回転圧縮機
の作動を説明する。なお、第3図(2)〜@においてロ
ータ200は時計方向(矢印方向)に回転するものとす
る。
Next, the operation of the rotary compressor having the above structure will be explained with reference to FIGS. In addition, in FIG. 3(2) to @, the rotor 200 is assumed to rotate clockwise (in the direction of the arrow).

H−)2001!ンジン出力等にようて回転させると、
吸入口121から作動室140内に被圧縮流体が吸込ま
れ、一方、圧縮された被圧縮流体は吐出0111から吐
出される。      、第38!!1(A)K示すよ
うに、スプール180が全てのバイパス孔122〜12
4を閉じているときは1.被圧縮流体の吐出量はぺ一7
240が吸入口121を通過し走置後の作動室140内
に閉じ込、められ走破圧縮流体の量vlとなる。
H-)2001! When rotated according to the engine output, etc.
Compressed fluid is sucked into the working chamber 140 from the suction port 121, while the compressed fluid is discharged from the discharge port 0111. , No. 38! ! 1(A)K, the spool 180 connects all the bypass holes 122 to 12.
1 when 4 is closed. The discharge amount of compressed fluid is 17
240 passes through the suction port 121 and is confined in the working chamber 140 after traveling, becoming the amount vl of the traveling compressed fluid.

一方、第3図(B)K示すように、バイパス孔122か
開き、バイパス孔123,124が閉じていゐ状態のと
きは、被圧縮流体の実際の吐出量社、ベーン240がバ
イパス孔122を通過した直後の作動空間140内に閉
じ込められ走破圧縮流体の量V、となる。
On the other hand, as shown in FIG. 3(B)K, when the bypass hole 122 is open and the bypass holes 123 and 124 are closed, the actual discharge amount of the fluid to be compressed and the vane 240 exceed the bypass hole 122. Immediately after passing through, the amount of compressed fluid trapped in the working space 140 becomes V.

同様に、第3図1)及び第4図(2)の状態のときは被
圧縮流体の実際の吐出量はそれぞれぺ一7240がバイ
パス孔123,124を適過し走置後の作動室140内
に閉じ込められ走破圧縮流体の量V、 # V4とな・
る。
Similarly, in the states shown in FIG. 3 1) and FIG. 4 (2), the actual discharge amount of the compressed fluid is as follows. The amount of compressed fluid trapped inside and traveling through V, # V4, etc.
Ru.

第3図(4)〜(2)から明らか表ように、バイパス孔
122〜124が順次開くに従つて、被圧縮流体の実、
際の吐出量、杜順次減少する(Vt>Va>Vm>Va
 )。
As is clear from FIG. 3 (4) to (2), as the bypass holes 122 to 124 open sequentially, the amount of compressed fluid increases.
The discharge amount decreases gradually (Vt>Va>Vm>Va
).

本実施例において、バイパス孔122〜124の位置及
び孔径を適宜に決宵することができるが、例えば第41
1に示す千5に、113図(2)の状態のときの吐出量
(最大吐出量)Vsを1とした場合に1第3図伽)O状
態のと愈の吐出量V、を4、第3図(C)の状態のとき
の吐出量V、を1/、1第3図(2)の状lll0とき
の吐出量v4をし4とすることができる。し九がりて、
スプール1800移動に伴って被圧縮流体0fi1.出
量を#を埋連続的にかつ大幅な範Hにわ九って変化させ
ることができる。
In this embodiment, the positions and hole diameters of the bypass holes 122 to 124 can be determined as appropriate;
If the discharge amount (maximum discharge amount) Vs in the state of 113 (2) is set to 1, then the discharge amount V in the O state (Fig. 3) is 4, The discharge amount V in the state of FIG. 3(C) can be set to 1/1, and the discharge amount v4 in the state of FIG. 3(2) to be 4. I felt embarrassed,
As the spool 1800 moves, the compressed fluid 0fi1. The output amount can be changed continuously and over a wide range H.

スツール180 a吸入圧導入@ 171内に導−か、
れる吸入圧の変化に応じて移動する。すなわち、吸入圧
が一定以上のときは、スプール18Gはばね174を圧
縮して全てのバイパス孔122〜124を閉じた状11
1JK保えれ、吸入圧1が減少するに従って、スプール
18Gはバイパス孔122〜124を順次開く。
Stool 180 a Suction pressure introduced @ 171,
It moves in response to changes in suction pressure. That is, when the suction pressure is above a certain level, the spool 18G compresses the spring 174 to close all the bypass holes 122 to 124.
1JK is maintained, and as the suction pressure 1 decreases, the spool 18G sequentially opens the bypass holes 122 to 124.

11本実施例に係ゐ回転圧縮機を自動車用クーラシステ
ムの冷媒圧縮機として用い九場合、クーラシステムの熱
負荷が高い場合すなわち車室内温度が高い場合には、図
示しない蒸発器内の圧力が高くなるために1回転圧縮機
の吸入圧力も高くなる。
11 When the rotary compressor according to this embodiment is used as a refrigerant compressor for an automobile cooler system, when the heat load of the cooler system is high, that is, when the temperature inside the vehicle is high, the pressure inside the evaporator (not shown) will decrease. As the pressure increases, the suction pressure of the single-rotation compressor also increases.

この丸め、スプール180ハパイバス孔124〜122
 を順次閉じ、圧縮−からの吐出量が増大して冷房能力
が増す。一方、熱負荷が低下した場合、又は、圧縮機が
高回転て運転されているときは、蒸発器内の圧力は低下
し、圧縮lie@入圧も低下する。このため、スプール
180Fiバイパス孔122〜124を順次開き、圧縮
機からの吐出量が減少して冷房能力が低下する。
This rounding, spool 180 Hapai bus hole 124-122
are sequentially closed, the discharge amount from the compressor increases, and the cooling capacity increases. On the other hand, when the heat load decreases or when the compressor is operated at high speed, the pressure inside the evaporator decreases and the compression lie@input pressure also decreases. For this reason, the bypass holes 122 to 124 of the spool 180Fi are sequentially opened, and the discharge amount from the compressor decreases, resulting in a decrease in cooling capacity.

70ンR12を冷媒とするクーラシステムにおいては、
蒸発器内の圧力は蒸発器の凍結防止の上から約1.8K
t151”以上で使用するのが望tL<、少なくとも約
1.7 Kg/cs”以下に低下するヒとを+ilする
べきである。それ故、本実施例においては、吸入圧力が
1.7に4/am”以下の場合には全てのバイパス孔1
22〜124が開き、1.8□51”以上のときは全て
のバイパス孔122〜124が閉じるように1ばね17
4のばね荷重中、スプール180及びピストン1820
受圧面積などが設定されている。
In a cooler system that uses 70 N R12 as a refrigerant,
The pressure inside the evaporator is approximately 1.8K above the evaporator's freeze protection.
It is preferable to use it at t151'' or higher, but it should be used at least when it falls below about 1.7 Kg/cs''. Therefore, in this embodiment, when the suction pressure is 1.7 to 4/am'' or less, all the bypass holes 1
1 spring 17 so that all bypass holes 122 to 124 are opened and all bypass holes 122 to 124 are closed when the diameter is 1.8□51" or more.
During the spring load of 4, the spool 180 and the piston 1820
Pressure receiving area etc. are set.

以上の結果、本実施例においては、吸入圧力の微少変動
1.8〜1.71cf/as” K対して吐出容量を1
〜1/4と広範INK且つはぼ連続的に変化させること
ができ、運転フィーリング中冷房フィーリングを低下さ
せるととなく熱負荷に見合った冷房を行なわせることか
で11ゐようになる。
As a result of the above, in this example, the discharge capacity is reduced to 1 for small fluctuations in suction pressure of 1.8 to 1.71 cf/as''K.
It is possible to change the INK over a wide range of ~1/4 and almost continuously, and by performing cooling commensurate with the heat load without reducing the cooling feeling during driving, it becomes 11 degrees.

なお、複数Oバイパス孔122〜124を並列に配設す
る代fiK%ンりンダ穴170に沿り九1つのスリット
状のバイパス孔を設けるととも考えられるが、このスリ
ット状バイパス孔を用い九場合には、該スリット状バイ
パス孔をベーンが通過する際に、誼ベーンの高圧側の作
動室内の冷媒が皺スリット状パイパヌ孔を通ってぺ一7
0低圧側の作動室内に多量に洩れてしまう丸め、回転圧
縮機の圧縮効率が大きく低下してし壕う。しかしながら
、本発明においては、複数のバイパス孔を並列に配設し
ていゐ九め、このような問題は生じない。
In addition, although it is also possible to provide 91 slit-shaped bypass holes along the fiK% cylinder hole 170 for arranging the plurality of O bypass holes 122 to 124 in parallel, it is possible to use this slit-shaped bypass hole to In some cases, when the vane passes through the slit-like bypass hole, the refrigerant in the working chamber on the high-pressure side of the vane passes through the wrinkled slit-like bypass hole and flows through the slit-like bypass hole.
If a large amount leaks into the working chamber on the low pressure side, the compression efficiency of the rotary compressor will be greatly reduced. However, in the present invention, such a problem does not occur because a plurality of bypass holes are arranged in parallel.

一方、バイパス孔0孔径な大きくして1箇所だけ設ける
ことも考えられるが、この場合、上述のスリット状バイ
パス孔の場合と同様に圧縮効率が低下するばかシでなく
、スプールの微小表移動量に対して容量便化が大きくな
る丸め制御性が極めて悪くなってしまう。しかしながら
、本実W14においては、このような問題は生じない。
On the other hand, it is also possible to make the bypass hole 0 diameter larger and provide only one location, but in this case, the compression efficiency will not be reduced as in the case of the slit-shaped bypass hole described above, and the minute surface movement of the spool will be avoided. However, the rounding controllability becomes extremely poor as the capacity saving increases. However, in the actual W14, such a problem does not occur.

第5図は本発明の館2実施例を示すものである。FIG. 5 shows a second embodiment of the present invention.

この図において、上記実施例の構成要素と同様の構成要
素には同一〇参照符号が付されている。
In this figure, the same reference numerals are attached to the same components as those in the above embodiment.

本実施例においては、シリンダ穴170の開口端部はめ
くらa 17!Sで閉塞されてお夛、シリンダ穴170
内はスプール180によって吸入圧導入室176と吐出
圧導入室177とに区画されてお夛、吸入圧導入室17
6内にはバイパス孔122〜124を開く方向にスプー
ル18Gを付勢するための圧縮ばね178が配設されて
いる。なおスプール180の外層とシリンダ穴170と
の聞には、吐出圧導入室177から吸入圧導入室176
への被圧縮流体の洩れを許容する隙間が存在している。
In this embodiment, the open end of the cylinder hole 170 is blind a17! Cylinder hole 170 is closed with S.
The interior is divided by a spool 180 into a suction pressure introduction chamber 176 and a discharge pressure introduction chamber 177.
A compression spring 178 is disposed within 6 for biasing the spool 18G in the direction of opening the bypass holes 122-124. Note that between the outer layer of the spool 180 and the cylinder hole 170, there is a passage from a discharge pressure introduction chamber 177 to a suction pressure introduction chamber 176.
A gap exists that allows leakage of the compressed fluid to.

吐出口111と吐出圧導入室177とが導圧通路179
を介して連通されてお〉、導圧通路171の途中には制
御弁としてのソレノイド弁300が設けられている。
The discharge port 111 and the discharge pressure introducing chamber 177 form a pressure guiding passage 179.
A solenoid valve 300 as a control valve is provided in the middle of the pressure guiding passage 171.

本実施例においては、ソレノイド弁300を作動させて
導圧通路179を開くと、吐出圧導入室177に吐出圧
が導入され、スプール1110がばね178に抗して移
動し、これによつてバイパス孔124〜122を順次閉
じる。一方、ソレノイド弁300によりて導圧通路17
9を閉じると、吐出圧導入* 177内の圧力はスプー
ル18Gとシリンダ穴170との隙間を迩りて吸入圧導
入室176傭に洩れ、吸入圧に近づく。このため、スプ
ール18Gはばね178で押されて移動し、バイパス孔
122〜124を順次開く。
In this embodiment, when the solenoid valve 300 is operated to open the pressure guiding passage 179, discharge pressure is introduced into the discharge pressure introduction chamber 177, and the spool 1110 moves against the spring 178, thereby creating a bypass. Holes 124-122 are closed in sequence. On the other hand, the pressure guiding passage 17 is
9 is closed, the pressure in the discharge pressure introduction*177 leaks into the suction pressure introduction chamber 176 through the gap between the spool 18G and the cylinder hole 170, and approaches the suction pressure. Therefore, the spool 18G is pushed by the spring 178 and moves to sequentially open the bypass holes 122 to 124.

第6図は第6図に示す圧縮−を自動車用クーラシステム
に適用し九例を示す4ので、図において、圧縮機本体1
00の吐出ボー)164から吐出された冷媒は凝縮−3
10を連通する際に熱を敢出し、次いで、受液11B2
G及び膨張弁330を経て蒸発器340内に人〉、蒸発
器340内で外部の熱を吸収して圧縮機本体1000@
入ポー)152へと導かれる。
FIG. 6 shows nine examples of applying the compression shown in FIG. 6 to an automobile cooler system.
The refrigerant discharged from 164 is condensed -3
Heat is generated when communicating 10, and then the receiving liquid 11B2
G and expansion valve 330 into the evaporator 340>, the evaporator 340 absorbs external heat and the compressor body 1000@
152.

蒸発器340 t)近傍には、蒸発器340を通過した
被冷却空気の温度(吹出口側温度)を検出する温度セン
ナ350が設けられておシ、このセンt350からの信
号を受また制御回路360によってソレノイド弁300
がオン・オフ制御される。すなわち、クーランステムの
熱負荷が高く、蒸発器3400吹出口側温度が設定値よ
〉高いときは、センサ350からの信号を受けた制御回
路360によ)、ソレノイド弁300がオンとなって導
圧通路179を開き、吐出圧導入室177に吐出圧が導
入される。とれによシ、スプール180がばね178を
圧縮させる方向に移動してバイパス孔124〜122を
順次閉じる。
A temperature sensor 350 is provided near the evaporator 340 to detect the temperature of the air to be cooled that has passed through the evaporator 340 (temperature on the outlet side). solenoid valve 300 by 360
is controlled on and off. That is, when the heat load on the coolant stem is high and the temperature on the outlet side of the evaporator 3400 is higher than the set value, the solenoid valve 300 is turned on and the control circuit 360 (which receives the signal from the sensor 350) turns on the The pressure passage 179 is opened and discharge pressure is introduced into the discharge pressure introduction chamber 177. When this happens, the spool 180 moves in a direction that compresses the spring 178, sequentially closing the bypass holes 124-122.

このため、圧縮機は最大吐出容量で運転される。Therefore, the compressor is operated at maximum displacement.

一方、蒸発器3400吹出口個温度が設定温度以下にな
ると、ソレノイド弁300がオフとなりて導圧通路17
9を閉じる九め、吐出圧導入室177内の圧力は徐々に
吸入圧に近づき、スプール180がばね178に押され
て移動しつつバイパス孔122〜124を徐々に開く、
このため、圧縮機の吐出容量は減少する。こうして、圧
縮機の吐出容量が減少すると、比較的短時間のうちに吹
出口側温度が上昇して設定値以上となるため、圧縮機の
吐出容量は再び増加する。
On the other hand, when the temperature of the outlet of the evaporator 3400 becomes lower than the set temperature, the solenoid valve 300 is turned off and the pressure guiding passage 17 is turned off.
9, the pressure in the discharge pressure introducing chamber 177 gradually approaches the suction pressure, and the spool 180 is pushed by the spring 178 and moves, gradually opening the bypass holes 122 to 124.
Therefore, the discharge capacity of the compressor decreases. In this way, when the discharge capacity of the compressor decreases, the temperature on the outlet side rises within a relatively short period of time and becomes equal to or higher than the set value, so that the discharge capacity of the compressor increases again.

以上のサイクルは実際には短時間で繰返される九め、本
実施例による圧縮機においても、熱負荷に見合9た冷房
を行なわせることができる。
The above-described cycle is actually repeated in a short period of time, and the compressor according to this embodiment can also perform cooling commensurate with the heat load.

なお、本発明の以上2つの実施例においては、3つのバ
イパス孔を並設したが、場合によりては2つ又は4つ以
上のバイパス孔を並設するようにしてもよい。
In the above two embodiments of the present invention, three bypass holes are arranged in parallel, but depending on the case, two or four or more bypass holes may be arranged in parallel.

を九、バイパス孔は横断面円形の4のが加工性の点で好
ましいが、円形以外の横断面形状のバイパス孔でありて
も同様の効果が得られる。
(9) It is preferable that the bypass hole has a circular cross section in terms of workability, but the same effect can be obtained even if the bypass hole has a cross section other than circular.

更に、圧縮機の最小吐出容量は学大吐出容量の−に限ら
れず、例えば込又は4としてもよい。要するに、クーラ
システムの使用状況に応じて任意に決定できる。
Further, the minimum discharge capacity of the compressor is not limited to -, but may be, for example, inclusive or 4. In short, it can be arbitrarily determined depending on the usage status of the cooler system.

以上のように、本発明は、圧縮機本体に、容積減少段階
に入りた作動室と吸入王室とを連通させる豪数個のバイ
パス孔を並列状態で敗け、これらバイパス孔に交Xさせ
てシリンダ大を般社、該シリング六に摺動可能に設は九
スプールによシ、ノ(イパス孔群を順次開閉できるよう
に構成したものであるから、小聾かつ簡単な構成では埋
連続的Kかつ広範囲に吐出容量を変化させることができ
る回転型圧縮機を提供できるようになる。し九がって、
自動車用クーラシステムの冷媒圧縮機として用いれば、
省エネルギで快適表冷房フィーリング及び運転フィーリ
ングが得られることと表る。
As described above, the present invention provides several bypass holes in parallel in the compressor body that communicate the working chamber that has entered the volume reduction stage with the suction chamber, and connects these bypass holes to the cylinder. The large part is slidable on the six spools, and the nine spools are arranged so that the pass holes can be opened and closed sequentially. Moreover, it becomes possible to provide a rotary compressor that can change the discharge capacity over a wide range.
If used as a refrigerant compressor for an automobile cooler system,
This means that you can save energy and get a comfortable cooling and driving feeling.

【図面の簡単な説明】[Brief explanation of the drawing]

嬉1図は本発明に係る回転型圧縮機の第1実施例を示す
もので、第2図の線1−1についての断面図、 第2図は第1図の纏1−1についての断面図、第3図(
4)〜(ロ)はそれぞれ#i1実施例の作動状態を示す
第1図と同様の概略断面図、 第4図は第1実施例の作動特性を示す線図、第5図は本
発明に係る回転型圧縮機の第2実施例を示すもので、l
Ih1図と同様の断面図、第6図は本発明の第2実施例
に係る圧縮機を自動車用クーラシステムに適用した例を
示す構成図であるっ 100−・・圧縮一本体、11G−・・ライナ、120
.130−・・側板、 122.123.124−・・バイパス孔、140−・
・作動室、15G−・ハウジング、151・−吸入圧室
、161−吐出圧室、170−・・シリンダ大、180
−スプール、200−・・ロータ、240−ベーン、3
00・・・ソレノイド弁(制御弁)。 特許出願人 株式会社日本自動車部品総合研究所 日本電装株式査社 特許出願式雇人 弁理士 青 木   朗 弁理士 °西 舘 和 之 弁理士西岡邦昭 弁理士山口昭之 第1図 1■ 第2図 72 0 第31!I (A)              (B)(C)  
            (D)504− 第41!l 1A)    (B)    (C)    (Dl第
5図 第6図 lU
Figure 1 shows a first embodiment of the rotary compressor according to the present invention, and is a cross-sectional view taken along line 1-1 in Figure 2. Figure 2 is a cross-sectional view taken along line 1-1 in Figure 1. Figure, Figure 3 (
4) to (b) are schematic sectional views similar to FIG. 1 showing the operating state of the #i1 embodiment, respectively, FIG. 4 is a diagram showing the operating characteristics of the first embodiment, and FIG. This shows a second embodiment of the rotary compressor, and l
A sectional view similar to Fig. Ih1, and Fig. 6 are configuration diagrams showing an example in which the compressor according to the second embodiment of the present invention is applied to an automobile cooler system.・Raina, 120
.. 130--Side plate, 122.123.124--Bypass hole, 140--
- Working chamber, 15G - Housing, 151 - Suction pressure chamber, 161 - Discharge pressure chamber, 170 - Cylinder size, 180
-Spool, 200-...Rotor, 240-Vane, 3
00... Solenoid valve (control valve). Patent applicant Japan Auto Parts Research Institute Co., Ltd. Nippondenso Co., Ltd. Patent application ceremony Patent attorney for hire Akira Aoki Patent attorney Kazuyuki Nishioka Patent attorney Kuniaki Nishioka Patent attorney Akiyuki Yamaguchi Figure 1 1 ■ Figure 2 72 0 31st! I (A) (B) (C)
(D) 504- 41st! l 1A) (B) (C) (DlFigure 5Figure 6lU

Claims (1)

【特許請求の範囲】 1、圧縮機本体内に10−タの回転に伴りて移動しつつ
容積変化を繰返す作動室と、客積増加のR階に入り九作
動室に連通される吸入圧室と、容積最小の段11に達し
九作動1[K連通される吐出圧室とを形威し九回転圧縮
機において、 前記圧縮機本体に1容積減少の段階に入った作動室と前
記吸入王室とを連通させる複数個のバイパス孔を並列状
態で設け、 これらバイパス孔群に交叉させてシリンダ穴を設け、 該シリンダ穴に摺動可能に設けたスプールによシ、前記
バイパス孔群を順次開閉できるようにしたことを特徴と
する回転圧縮機。 2、前記バイパス孔群の断面積はロータの回転方向に順
次大きくなってs’ b 、前記スプールで該バイパス
孔群を順次lIw5させた場合に、前記作動室の有効圧
縮客積がは埋勢量ずつ減増するようになりているととを
特徴とする特許請求の範囲第1項記載O圧転圧縮機。 3、前記スプール紘、回転圧縮機の吸入圧の変化に応じ
てシリンダ穴内を移動するようになっているととを特徴
とする特許請求の範囲第1項記載の回転圧縮機。 Kなっておp1前記吐出圧は制御弁を介してスプールに
導かれるようkなっていることを特徴とする特許請求の
範囲第1項記載の回転圧縮機。
[Scope of Claims] 1. A working chamber that repeatedly changes volume while moving as the compressor rotates with 10-ta rotation, and a suction pressure that enters the R floor where the number of customers increases and is communicated with the 9th working chamber. In a nine-rotary compressor, the working chamber reaches the stage 11 with the smallest volume and communicates with the discharge pressure chamber. A plurality of bypass holes are provided in parallel to communicate with the royal family, cylinder holes are provided intersecting these bypass hole groups, and a spool slidably provided in the cylinder hole is used to sequentially connect the bypass hole groups. A rotary compressor characterized by being able to open and close. 2. The cross-sectional area of the bypass hole group gradually increases in the rotational direction of the rotor, and when the bypass hole group is sequentially lIw5 with the spool, the effective compression volume of the working chamber increases. 2. The O-press rotary compressor according to claim 1, wherein the O-pressure rotary compressor is configured to increase and decrease in quantity. 3. The rotary compressor according to claim 1, wherein the spool hole is adapted to move within a cylinder hole in accordance with changes in suction pressure of the rotary compressor. 2. The rotary compressor according to claim 1, wherein the discharge pressure is guided to the spool via a control valve.
JP948282A 1982-01-26 1982-01-26 Rotary compressor Granted JPS58128487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP948282A JPS58128487A (en) 1982-01-26 1982-01-26 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP948282A JPS58128487A (en) 1982-01-26 1982-01-26 Rotary compressor

Publications (2)

Publication Number Publication Date
JPS58128487A true JPS58128487A (en) 1983-08-01
JPH024796B2 JPH024796B2 (en) 1990-01-30

Family

ID=11721460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP948282A Granted JPS58128487A (en) 1982-01-26 1982-01-26 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS58128487A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176690A (en) * 1987-01-14 1988-07-20 Matsushita Electric Ind Co Ltd Performance control compressor
US4815944A (en) * 1987-02-20 1989-03-28 Matsushita Electric Industrial Co., Ltd. Variable capacity compressor
US4846632A (en) * 1985-09-02 1989-07-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement vane compressor
JPH01162094U (en) * 1988-05-02 1989-11-10
US4890986A (en) * 1986-10-23 1990-01-02 Matsushita Electric Industrial Co., Ltd. Variable capacity compressor
EP0519580A2 (en) * 1988-08-12 1992-12-23 Mitsubishi Jukogyo Kabushiki Kaisha Rotary compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123513U (en) * 1977-03-07 1978-10-02
JPS5475409U (en) * 1977-11-09 1979-05-29
JPS5485409U (en) * 1977-11-29 1979-06-16
JPS5573588U (en) * 1978-11-15 1980-05-21
JPS5569788A (en) * 1978-11-21 1980-05-26 Takao Sakata Cooling medium compressor for vehicle
JPS55142686U (en) * 1978-11-25 1980-10-13
JPS567079A (en) * 1979-06-29 1981-01-24 Toshiba Corp Electronic time-keeper

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123513U (en) * 1977-03-07 1978-10-02
JPS5475409U (en) * 1977-11-09 1979-05-29
JPS5485409U (en) * 1977-11-29 1979-06-16
JPS5573588U (en) * 1978-11-15 1980-05-21
JPS5569788A (en) * 1978-11-21 1980-05-26 Takao Sakata Cooling medium compressor for vehicle
JPS55142686U (en) * 1978-11-25 1980-10-13
JPS567079A (en) * 1979-06-29 1981-01-24 Toshiba Corp Electronic time-keeper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846632A (en) * 1985-09-02 1989-07-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement vane compressor
US4890986A (en) * 1986-10-23 1990-01-02 Matsushita Electric Industrial Co., Ltd. Variable capacity compressor
JPS63176690A (en) * 1987-01-14 1988-07-20 Matsushita Electric Ind Co Ltd Performance control compressor
US4815944A (en) * 1987-02-20 1989-03-28 Matsushita Electric Industrial Co., Ltd. Variable capacity compressor
JPH01162094U (en) * 1988-05-02 1989-11-10
EP0519580A2 (en) * 1988-08-12 1992-12-23 Mitsubishi Jukogyo Kabushiki Kaisha Rotary compressor

Also Published As

Publication number Publication date
JPH024796B2 (en) 1990-01-30

Similar Documents

Publication Publication Date Title
US4147475A (en) Control system for helical screw compressor
US4410299A (en) Compressor having functions of discharge interruption and discharge control of pressurized gas
US4544333A (en) Capability control apparatus for a compressor
US4342199A (en) Screw compressor slide valve engine RPM tracking system
JPH0861269A (en) Scroll type compressor
KR900003099B1 (en) Variable displacement vane compressor
JPH029198B2 (en)
CA1309698C (en) Variable capacity compressor
US3527548A (en) Screw compressor with capacity control
JPS58128487A (en) Rotary compressor
JP3707242B2 (en) Variable capacity compressor
JPH05223064A (en) Variable capacity type rotary vane pump
JPS6172889A (en) Operating shock absorber in compressor
JPH05223062A (en) Rotary vane pump
JP3582917B2 (en) Scroll compressor
JPH0353034Y2 (en)
JPS5874892A (en) Variable capacity type vane compressor
CA1052753A (en) Control system for helical screw compressor
JPH0377394B2 (en)
JP2576583B2 (en) Variable capacity compressor
JPH0129997B2 (en)
JPH038461B2 (en)
JPS5970894A (en) Flow control device for multilobe type vane rotary compressor
JPH05332245A (en) Hydraulic system for vehicle
JPH057558B2 (en)