JPS58115812A - Gas supply device for manufacturing semiconductor device - Google Patents

Gas supply device for manufacturing semiconductor device

Info

Publication number
JPS58115812A
JPS58115812A JP21123281A JP21123281A JPS58115812A JP S58115812 A JPS58115812 A JP S58115812A JP 21123281 A JP21123281 A JP 21123281A JP 21123281 A JP21123281 A JP 21123281A JP S58115812 A JPS58115812 A JP S58115812A
Authority
JP
Japan
Prior art keywords
pressure
gas supply
correction
gas
correction amounts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21123281A
Other languages
Japanese (ja)
Other versions
JPS622699B2 (en
Inventor
Kanetake Takasaki
高崎 金剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21123281A priority Critical patent/JPS58115812A/en
Publication of JPS58115812A publication Critical patent/JPS58115812A/en
Publication of JPS622699B2 publication Critical patent/JPS622699B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To constantly maintain pressure in a reaction container with high accuracy while constantly maintaining the mixing ratio of each gas even when a plurality of gases are used by a method wherein correction amounts are calculated at eight or more stages for control. CONSTITUTION:Pressure P in a reaction container 5 is detected by a pressure sensor 7 and is fed into a comparator 8 to compare the pressure 7 with pressures P1,...P7 set with a setter 9 and correction amounts DELTAQ1-DELTAQ7 are supplied in accordance with each pressure range. The correction amounts DELTAQ1-DELTAQ7 are fed into an operator 10 and are multiplied between the feed ratio alphaa, alphab, alphac, of gases set with a setter 11 to divide proportionately into the correction amounts DELTAQa, DELTAQb, DELTAQc of each gas to add to a flow setter 4 and to perform flow correction. The sampling of the pressure 7 is done by applying timing pulses supplied by a timing generator 12 to the comparator 8.

Description

【発明の詳細な説明】 (1)  発明の技術分野 CVD装置、ドライエツチング装置、スパッタリング装
置、熱酸化または熱窒化装置等の半導体製造装置へのガ
ス供給装置に係り、特に、複数ガスを供給して半導体装
置を製造する場合に、その製造装置の動作を安定にする
ξとが出来るガス供給装置に関する。
Detailed Description of the Invention (1) Technical Field of the Invention This invention relates to a gas supply device for semiconductor manufacturing equipment such as a CVD device, dry etching device, sputtering device, thermal oxidation or thermal nitridation device, etc. The present invention relates to a gas supply device that can stabilize the operation of a manufacturing device when manufacturing a semiconductor device.

(2)従来技術と問題点 従来、単一ガスによるスパッタリングに於てはスパッタ
リングチャンバー内のガス圧を検出し、サーボメカニズ
ムによってバリアプルリークバルブをコントロールし、
チャンバー内の圧力を一定に保つ方法が用いられていた
が、各種CVD、ドライエツチング、リアクテブスパッ
タリング、および熱酸化、熱窒化等に於て複数のガスを
使用する場合には、反応容器内の圧力をフィードバック
技術によって一定に保つ方法は開発されていない、この
ような複数ガスの場合には、各ガスの供給系で独立して
マスプローデチクター、サーボメカニズム、およびバリ
アプルリークバルブによってそのガスの流量を一定に保
つ技術が用いられていた。この場合には、反応容器を排
気するポンプの排気速度の変動等により、流入量とのバ
ランス点が変動し、反゛応容器内の圧力が変動するとい
5問題を持っていた。
(2) Prior art and problems Conventionally, in sputtering using a single gas, the gas pressure in the sputtering chamber was detected and the barrier pull leak valve was controlled by a servo mechanism.
A method of keeping the pressure inside the chamber constant was used, but when using multiple gases in various CVD, dry etching, reactive sputtering, thermal oxidation, thermal nitridation, etc. No method has been developed to keep the pressure constant through feedback techniques. A technique was used to maintain a constant flow rate. In this case, there are five problems in that the balance point with the inflow amount fluctuates due to fluctuations in the pumping speed of the pump that evacuates the reaction vessel, and the pressure inside the reaction vessel fluctuates.

このような圧力変動は、半導体装置の特性の再現性に大
きな影響を与え、特にグロー放電を用いたプラズマCV
D、プラズマエツチング、およびリアクテブスパッタリ
ング等においてその影響が顕著であった。
Such pressure fluctuations greatly affect the reproducibility of semiconductor device characteristics, especially in plasma CVD using glow discharge.
The influence was remarkable in D, plasma etching, reactive sputtering, etc.

(8)発明の目的 本発明の目的は、前記のような複数のガスを必要とする
半導体製造装置に於てもその反応容器内の圧力を一定に
保ち、且つ各ガスの混合比を乱さないガス供給装置を提
供するこ1           とにある。
(8) Purpose of the Invention The purpose of the present invention is to maintain the pressure in the reaction vessel constant even in semiconductor manufacturing equipment that requires a plurality of gases as described above, and to not disturb the mixing ratio of each gas. The purpose of the present invention is to provide a gas supply device.

(4)発明の構成 本発明は反応容器内の圧力を検出する検出器と、所定圧
力を設定する設定器と、前記検出器と設定器の値を比較
し、その偏差に応じて8段階またはそれ以上の段階で補
正量を算出するコンパレータと、その補正量を複数ガス
の所定流量比に按分し、各ガスの流量を制御しているマ
ス70−コントローラに補正を加える演算器と、以上の
各要素をコントロールするタイ12フ発生器とから成る
圧力制御系を付加したことを特徴とする半導体装置製造
用ガス供給装置である。
(4) Structure of the Invention The present invention includes a detector for detecting the pressure inside the reaction vessel, a setting device for setting a predetermined pressure, and a comparison between the values of the detector and the setting device, and depending on the deviation, the A comparator that calculates the correction amount in the steps above, a calculator that divides the correction amount into a predetermined flow rate ratio of multiple gases and applies correction to the mass 70-controller that controls the flow rate of each gas; This gas supply apparatus for manufacturing semiconductor devices is characterized in that it has an additional pressure control system consisting of a tie generator for controlling each element.

(ω 発明の実施例 第1図および第2図は本発明に於て、供給ガスがム、B
、Cの三種で、補正量が7段階の場合の実施例を示す図
である。各ガスの供給系には、マス70−デテクタ−1
とバルブ制御回路2とバリアプルリークバルブ8によっ
て設定器4に設定された値にガス流量を保持する従来の
制御系が付加されている。これら三種のガスは反応容器
6に流入し、同時に排気ポンプ6により排気される0反
応容815内の圧力はガスの流入速度と排気速度のバラ
ンスで定まるが、その圧力Pは圧力センサー7によって
検出される。この圧力センサーには各種のものがあるが
、耐蝕性のダイヤプラムを持ったキャパシタンスメータ
が絶対圧を検出する要求に合致し、また、高感度、高信
頼性を持っている点で好ましい。
(ω) Embodiments of the invention FIGS. 1 and 2 show that in the present invention, the supply gas is
, C, and seven levels of correction amount. Each gas supply system includes a mass 70-detector 1
A conventional control system for maintaining the gas flow rate at the value set in the setting device 4 by means of the valve control circuit 2 and the barrier pull leak valve 8 is added. These three types of gases flow into the reaction vessel 6 and are simultaneously exhausted by the exhaust pump 6. The pressure inside the reaction volume 815 is determined by the balance between the gas inflow speed and the exhaust speed, and the pressure P is detected by the pressure sensor 7. be done. There are various types of pressure sensors, but a capacitance meter with a corrosion-resistant diaphragm is preferred because it meets the requirements for detecting absolute pressure and has high sensitivity and reliability.

このような、圧力センサーで検出された圧力値Pはコン
パレータ8に入り、設定器9に設定された圧力Pr、P
g、Ps、−−−Ptと比較され、各圧力筒i!1ζζ
応じて補正量ΔQt〜△Q1を出力する。圧力設定値と
補正量の関係は1112図に示すようにP1以下ではΔ
Q1の補正量とし、PlとPlの闇は△Q・、PgとP
sの問はΔQi%PsとP4の間およびP4とPsの聞
はΔQ4、PiとP・の間は△Qs、PsとPtの閤は
△Qz、Pt以上はΔQ1の補正量とする。ここで、P
s−PyHAσΔQ1〜Δq1は制御対象によって異な
り、多値が独立して設定されることが必要であるが、本
実施例に於ては次表のような値が使われ、好結果を得て
いる。
The pressure value P detected by the pressure sensor enters the comparator 8, and the pressure value Pr, P set in the setting device 9 is input to the comparator 8.
g, Ps, ---Pt, each pressure cylinder i! 1ζζ
Correspondingly, correction amounts ΔQt to ΔQ1 are output. As shown in Figure 1112, the relationship between the pressure setting value and the correction amount is Δ below P1.
Let the correction amount be Q1, and the darkness of Pl and Pl is △Q・, Pg and P
The correction amount for s is ΔQi% between Ps and P4 and between P4 and Ps, ΔQs is between Pi and P, ΔQz is the difference between Ps and Pt, and ΔQ1 is the correction amount for Pt or more. Here, P
s-PyHAσΔQ1 to Δq1 vary depending on the controlled object, and it is necessary to set multiple values independently, but in this example, the values shown in the following table were used and good results were obtained. .

なお、Ps NPsの範囲のよ5に補正量が零であるデ
ッドバンドが制御系のハンチングを起させないために必
要である。従って、補正の段階は8以上の奇数とし、プ
ラス補正の段階数とマイナス補正の段階数とを等しくす
ることが好ましい、但し、前記段階数を等しくせず、補
正の段階を4以上の偶数とすることも制御系に非直線性
がある場合には可能である。また、補正の段階数が2の
場合は半導体製造装置に使用されるような高精度制御は
困難である。また、制御系に非直線性がある場合には補
正量を画表のようにΔQl=−△Qγ。
Note that a dead band in which the correction amount is zero in the range of Ps NPs is necessary to prevent hunting in the control system. Therefore, it is preferable that the number of correction stages is an odd number of 8 or more, and that the number of positive correction stages and the number of negative correction stages are equal. This is also possible if the control system has nonlinearity. Further, when the number of correction stages is two, it is difficult to perform high-precision control such as that used in semiconductor manufacturing equipment. Also, if there is non-linearity in the control system, the correction amount is ΔQl=-ΔQγ as shown in the chart.

ΔQ1=−ΔQJ1.△Qs=−ΔQFIとしない方が
良い場合がある。
ΔQ1=−ΔQJ1. In some cases, it is better not to set ΔQs=−ΔQFI.

以上のようにして得られた補正量ΔQ1〜△Q1は演算
器10に入り、設定W11に設定された三種ガスの流量
比am、ab、asとの間で乗算され、各ガスの補正量
△Qa、△Qb。
The correction amounts ΔQ1 to △Q1 obtained as described above enter the calculator 10, and are multiplied by the flow rate ratios am, ab, and as of the three gases set in the setting W11, and the correction amounts △ Qa, △Qb.

ΔQ6 に按分して、それぞれのガス制御系の流量設定
器4に加えられ、流量補正が行われる。ココで、a m
=Qa/(Qa+Qb+Qa )。
It is added to the flow rate setter 4 of each gas control system in proportion to ΔQ6, and the flow rate correction is performed. Here, am
=Qa/(Qa+Qb+Qa).

ab=Qb/(Qa+Qb+Qs )、ae−Q@/(
Qa+Qb+QI)であり、Qおよびαの添字a、b、
 ・はそれぞれガスA、B、Cの流量および流量比を表
わしている。
ab=Qb/(Qa+Qb+Qs), ae-Q@/(
Qa+Qb+QI), and the subscripts a, b, of Q and α are
* represents the flow rate and flow rate ratio of gases A, B, and C, respectively.

また、圧力Pのサンプリングはタイ疋ング発生1111
1によって出されるタイミングパルスをコンパレータ8
に加えることによって行われる。コンパレータ8および
演算器lOはそこで得られるそれぞれの補正量を次のサ
ンプリングまで保持する機能を持っている。なお、サン
プリング周期は〔反応容器の容積〕/〔排気速度〕を目
安とすればよい。本実施例では、18jの容積と860
7/wimの排気速度で8秒のサンプリング周期とし、
良好な結果を得ている。
In addition, sampling of pressure P was performed at 1111 when a tie occurred.
The timing pulse issued by comparator 8
This is done by adding to. The comparator 8 and the arithmetic unit 10 have a function of holding the respective correction amounts obtained there until the next sampling. Note that the sampling period may be determined based on [volume of reaction vessel]/[pumping speed]. In this example, the volume of 18j and 860
The sampling period is 8 seconds with an exhaust speed of 7/wim,
We are getting good results.

(6)発明の効果 本発明によれば、複数のガスを使用する場合に於ても各
ガスの混合比を一定に保ちながら反応容器内の圧力を高
精度で一定に保つことが出来るので、このガス供給装置
をCVD装置、ドライエツチング装置、スパッタリング
装置、熱酸化・熱窒化装置等に使用すればそれら装置の
動作は極めて安定となり、それによって製造された半導
体装置の特性の再現性が大きく向上する。
(6) Effects of the Invention According to the present invention, even when a plurality of gases are used, the pressure inside the reaction vessel can be kept constant with high precision while keeping the mixing ratio of each gas constant. If this gas supply device is used in CVD equipment, dry etching equipment, sputtering equipment, thermal oxidation/thermal nitridation equipment, etc., the operation of these equipment will become extremely stable, thereby greatly improving the reproducibility of the characteristics of manufactured semiconductor devices. do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示す図である
。ここで、1はマスフリーデテクタ、2はバルブ制御回
路、8はバリアプルリークバルブ、4は流量設定器、6
は反応容器、6は排気ホンプ、7は圧力センサー、8は
コンパレータ、9は圧力設定器、1Gは演算器、11は
流量比設定器、12はタイミング発生器である。 第 1 図 第 2 図 Q
FIG. 1 and FIG. 2 are diagrams showing one embodiment of the present invention. Here, 1 is a mass free detector, 2 is a valve control circuit, 8 is a barrier pull leak valve, 4 is a flow rate setting device, 6
1 is a reaction vessel, 6 is an exhaust pump, 7 is a pressure sensor, 8 is a comparator, 9 is a pressure setting device, 1G is a computing device, 11 is a flow ratio setting device, and 12 is a timing generator. Figure 1 Figure 2 Figure Q

Claims (1)

【特許請求の範囲】[Claims] 半導体装置製造用反応容器への複数のガス供給系を持ち
、該ガス供給系がそれぞれにマス70−コントローラに
よって流量制御されているガス供給装置において、該反
応容器内の複数ガス混合体の圧力を検出する検出器と、
該反応容器内の圧力の所定値を設定する設定器と、該検
出器より得られる値と該設定器より得られる値とを比較
し、その偏差に応じて8段階またはそれ以上の段階で補
正量を算出するコンパレータと、該補正量を前記複数の
ガスの所定流量比に按分し、前記マスフローコントロー
ラに補正を加える演算器と、以上の各構成要素をコント
ロールするタイミング発生−とから成る圧力制御系を付
加したことを特徴とする半導体装置製造用ガス供給装置
In a gas supply apparatus having a plurality of gas supply systems to a reaction vessel for semiconductor device manufacturing, each of which is controlled in flow rate by a mass 70-controller, the pressure of the plurality of gas mixtures in the reaction vessel is controlled. a detector to detect;
A setting device that sets a predetermined value of the pressure in the reaction vessel, and a value obtained from the detector is compared with a value obtained from the setting device, and correction is made in eight or more steps according to the deviation. Pressure control comprising a comparator that calculates the amount, a computing unit that proportionally divides the correction amount into a predetermined flow rate ratio of the plurality of gases and applies correction to the mass flow controller, and a timing generator that controls each of the above components. A gas supply device for semiconductor device manufacturing, characterized in that a gas supply system is added thereto.
JP21123281A 1981-12-28 1981-12-28 Gas supply device for manufacturing semiconductor device Granted JPS58115812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21123281A JPS58115812A (en) 1981-12-28 1981-12-28 Gas supply device for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21123281A JPS58115812A (en) 1981-12-28 1981-12-28 Gas supply device for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS58115812A true JPS58115812A (en) 1983-07-09
JPS622699B2 JPS622699B2 (en) 1987-01-21

Family

ID=16602468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21123281A Granted JPS58115812A (en) 1981-12-28 1981-12-28 Gas supply device for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPS58115812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428227A (en) * 1990-05-23 1992-01-30 Mitsubishi Electric Corp Substrate processing
EP0623381A1 (en) * 1993-05-07 1994-11-09 Teisan Kabushiki Kaisha Mixed gas supply system
JPH08227879A (en) * 1995-12-18 1996-09-03 Hitachi Ltd Dry-processing method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428227A (en) * 1990-05-23 1992-01-30 Mitsubishi Electric Corp Substrate processing
EP0623381A1 (en) * 1993-05-07 1994-11-09 Teisan Kabushiki Kaisha Mixed gas supply system
JPH08227879A (en) * 1995-12-18 1996-09-03 Hitachi Ltd Dry-processing method and device

Also Published As

Publication number Publication date
JPS622699B2 (en) 1987-01-21

Similar Documents

Publication Publication Date Title
US4767279A (en) Fluid composition and volumetric delivery control
EP1643218A1 (en) Differential pressure type flowmeter and differential pressure type flowmeter controller
EP0666340A1 (en) Method for in-situ liquid flow rate estimation and verification
JPH1145122A (en) Dynamic gas flow controller
JPS6151940B2 (en)
EP0086816B1 (en) Plasma etching apparatus and method including end point detection
US4201645A (en) Closed-loop sputtering system and method of operating same
JPS5854253B2 (en) Kuunenpiseigiyosouchi
JPS58115812A (en) Gas supply device for manufacturing semiconductor device
US5754452A (en) Method and apparatus for increasing update rates in measurement instruments
JP2000322130A (en) Method for variable fluid flow rate control by flow factor and its device
US6047719A (en) Method and device for production of high-precision, continuous streams of mixed gas
JP3367292B2 (en) Gas chromatograph
US11326914B2 (en) Flow rate measurement apparatus and method for more accurately measuring gas flow to a substrate processing system
KR102162312B1 (en) Method of performing calibration of mass flow and apparatus therefor
JPS60138291A (en) Pressure control device of gas
JP2637248B2 (en) Control device for gas valve device
US11899476B2 (en) Method and apparatus for measuring gas flow
SU659897A1 (en) Pneumatic device for measuring linear dimensions
SU1522174A1 (en) Device for regulating ratio of gases in mitxture
JP3206684B2 (en) Paint flow control device
RU2209158C1 (en) Method of identification of arbitrary time of combustion of cryogenic stage mass
SU1305404A1 (en) Regulator of air flow rate in bench for checking and setting mine methane alarms
RU2209157C1 (en) System of identification of arbitrary time of combustion of cryogenic stage mass
JPH0523317B2 (en)