JPH1197443A - Method for filling material into microscopic hollows and equipment using the same - Google Patents

Method for filling material into microscopic hollows and equipment using the same

Info

Publication number
JPH1197443A
JPH1197443A JP26934197A JP26934197A JPH1197443A JP H1197443 A JPH1197443 A JP H1197443A JP 26934197 A JP26934197 A JP 26934197A JP 26934197 A JP26934197 A JP 26934197A JP H1197443 A JPH1197443 A JP H1197443A
Authority
JP
Japan
Prior art keywords
filling
fine
compression member
dent
filling material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26934197A
Other languages
Japanese (ja)
Inventor
Naoaki Kogure
直明 小榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26934197A priority Critical patent/JPH1197443A/en
Publication of JPH1197443A publication Critical patent/JPH1197443A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a desired material to be readily and surely injected into hollows of a substrate having microscopic hollows on the surface. SOLUTION: A compression member 50 is positioned through a filling material 40 on the surface of a substrate 30 having microscopic hollows on the surface. The substrate 30 and the compression member 50 are dipped into a liquid 11. An electrode 61 is positioned in the liquid 11 and a current supply circuit 60 is provided with which electrical discharge coating can be performed by applying high voltage between the electrode 61 and the compression member 50. A region between the substrate 30 and the compression member 50 is strongly compressed by strongly rising liquid pressure by Joule heat generated by the electrical discharge in the liquid, and thus the filling material 40 is pushed in to fill into the microscopic hollows 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体ウエハ等の基
材表面に設けた微細窪み内部へ所望の充填材料を充填す
るのに好適な材料充填方法及び装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material filling method and apparatus suitable for filling a desired filling material into a fine recess provided on the surface of a base material such as a semiconductor wafer.

【0002】[0002]

【従来の技術】従来例えば半導体ウエハ表面に設けた窪
み内に各種処理を行なうために、該窪み内に所望の物質
を充填させたい場合がある。
2. Description of the Related Art Conventionally, for example, in order to perform various processes in a dent provided on the surface of a semiconductor wafer, there is a case where it is desired to fill the dent with a desired substance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら窪みの幅
が半導体素子の集積化による微細化のため小さくなっ
て、例えば0.18μmから0.13μm程度の幅にな
ってくると、前記所望の物質を微細な窪みの隅々まで確
実に充填するには、その変形抵抗と表面張力に打ち勝た
なければならないため、非常に大きな力が必要となって
しまい、その充填が困難となっていた。
However, when the width of the depression becomes smaller due to the miniaturization due to the integration of the semiconductor element, and becomes, for example, about 0.18 μm to about 0.13 μm, the desired substance is removed. In order to reliably fill every corner of the fine depression, it is necessary to overcome the deformation resistance and the surface tension, so that a very large force is required, making the filling difficult.

【0004】本発明は上述の点に鑑みてなされたもので
ありその目的は、表面に微細な窪みを持つ基材の該窪み
内部に所望の充填材料を容易且つ確実に注入することが
できる微細窪み内部への材料充填方法及び装置を提供す
ることにある。
[0004] The present invention has been made in view of the above points, and an object thereof is to provide a base material having a fine depression on its surface, which can easily and surely inject a desired filling material into the depression. It is an object of the present invention to provide a method and an apparatus for filling a material into a recess.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
め本発明は、表面に微細な窪みを持つ基材の該窪み内部
に所望の充填材料を注入する微細窪み内部への材料充填
方法において、前記基材の表面上に充填材料を介してそ
の上に圧縮部材を配置し、基材と圧縮部材間が圧縮され
る方向に瞬間的な衝撃力を加えることによって該基材と
圧縮部材間を衝撃的に圧縮し、これによって基材表面の
微細な窪み内に充填材料を押し込んで充填するように構
成した。また本発明は、表面に微細な窪みを持つ基材の
該窪み内部に所望の充填材料を注入する微細窪み内部へ
の材料充填装置において、前記基材の表面に充填材料を
介在して対向する位置に配置される圧縮部材と、該圧縮
部材と基材の間を圧縮する方向に衝撃力を加える衝撃発
生手段とを具備し、前記衝撃発生手段によって基材と圧
縮部材間を衝撃的に圧縮することで基材表面の微細な窪
み内に充填材料を押し込んで充填するように構成した。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method for filling a material into a fine dent by injecting a desired filling material into the dent of a substrate having a fine dent on the surface. Placing a compression member on the surface of the base material via a filler material and applying an instantaneous impact force in a direction in which the base material and the compression member are compressed, thereby forming a gap between the base material and the compression member. Was shock-compressed, whereby the filling material was pushed into the fine depressions on the surface of the base material and filled. Also, the present invention provides a device for filling a material into a fine dent in which a desired filling material is injected into the dent of a substrate having a fine dent on the surface, wherein the material is opposed to the surface of the base material with a filling material interposed therebetween. A compression member disposed at a position, and impact generating means for applying an impact force in a direction of compressing the space between the compression member and the base material. By doing so, the filling material was pushed into the fine dents on the surface of the base material to be filled.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。 〔第一実施形態〕図1は本発明の第一実施形態にかかる
微細窪み内部への材料充填装置を示す全体概略断面図で
ある。同図に示すようにこの装置は、液槽10内の底に
台20を固定し、台20の上に半導体ウエハ等の基材3
0を載せ、該基材30表面全体にペースト状の充填材料
40を塗布し、その上に圧縮板(圧縮部材)50を載せ
た上でこの液槽10内に水等の液11を入れ、さらに液
11中の圧縮板50の真上の位置に電極61を設置する
と共に該電極61と圧縮板50間に電流供給回路60を
取り付けて構成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. [First Embodiment] FIG. 1 is an overall schematic sectional view showing a device for filling a material into a fine recess according to a first embodiment of the present invention. As shown in the figure, this apparatus fixes a base 20 to the bottom in a liquid tank 10 and places a base material 3 such as a semiconductor wafer on the base 20.
0, a paste-like filling material 40 is applied to the entire surface of the base material 30, a compression plate (compression member) 50 is placed thereon, and a liquid 11 such as water is put into the liquid tank 10. Further, an electrode 61 is provided at a position directly above the compression plate 50 in the liquid 11, and a current supply circuit 60 is attached between the electrode 61 and the compression plate 50.

【0007】ここで基材30の表面には多数の微細な窪
み31が形成されている。微細な窪み31の幅は50Å
乃至10,000Åで、幅と深さの比(幅/深さ)は
0.1乃至1.0であることが好ましい。
Here, a large number of fine depressions 31 are formed on the surface of the substrate 30. The width of the fine depression 31 is 50 °
It is preferable that the ratio of width to depth (width / depth) is 0.1 to 1.0.

【0008】また圧縮板50はその外周全体に縁部51
が設けられており、該縁部51が基材30の外周側面に
上下動自在に密着することで、前記充填材料40を基材
30と圧縮板50間に封止している。なお圧縮板50は
金属等の導電材料で構成されている。
The compression plate 50 has an edge 51 on the entire outer periphery thereof.
The filling material 40 is sealed between the base material 30 and the compression plate 50 by the edge portion 51 being closely attached to the outer peripheral side surface of the base material 30 so as to be vertically movable. The compression plate 50 is made of a conductive material such as a metal.

【0009】また充填材料40としては、例えば微細窪
み31内を充填するために必要な物質を含むペースト材
料(充填したい物質の微粉末を水や油脂、溶剤で練った
半流動体)である。なお充填材料40としては、他の目
的に用いる各種物質からなるペースト材料であっても良
く、例えば金属,合金,セラミックス,化合物,非晶質
等、種々のものであっても良い。
The filling material 40 is, for example, a paste material containing a substance necessary for filling the inside of the fine recess 31 (semi-fluid body obtained by kneading a fine powder of a substance to be filled with water, oil or a solvent). The filling material 40 may be a paste material composed of various substances used for other purposes, for example, various materials such as metals, alloys, ceramics, compounds, and amorphous materials.

【0010】電流供給回路60は、電極61と圧縮板5
0間を電源に接続すると共に、コンデンサ65を並列に
接続し、スイッチ67を取り付けて構成されている。
The current supply circuit 60 includes an electrode 61 and a compression plate 5.
A power supply is connected between the zeros, a capacitor 65 is connected in parallel, and a switch 67 is attached.

【0011】なお液槽10内の液11と電極61と電流
供給回路60とによって衝撃発生手段が構成されてい
る。
The liquid 11 in the liquid tank 10, the electrode 61, and the current supply circuit 60 constitute an impact generating means.

【0012】次にこの装置の操作手順を説明する。即ち
まず図1に示す状態で、スイッチ67をオフしてコンデ
ンサ65に充電する。
Next, the operation procedure of this device will be described. That is, in the state shown in FIG. 1, the switch 67 is turned off and the capacitor 65 is charged.

【0013】次にスイッチ67をオンすることでコンデ
ンサ65に蓄えられていた電荷を電極61と圧縮板50
間で水中高電圧放電させる。
Next, when the switch 67 is turned on, the electric charge stored in the capacitor 65 is transferred to the electrode 61 and the compression plate 50.
Underwater high voltage discharge between

【0014】これによって液11に瞬時にジュール熱が
発生して急膨張を生じ、液圧が衝撃的に上昇し、その圧
力が圧縮板50に作用してこれを衝撃的に押し下げ、基
材30と圧縮板50間が衝撃的に圧縮されて充填材料4
0が加圧され、一瞬のうちに基材30表面の微細な窪み
31内に充填材料40が押し込まれて充填される。
As a result, Joule heat is instantaneously generated in the liquid 11 to cause rapid expansion, and the liquid pressure rises suddenly, and the pressure acts on the compression plate 50 to push it down, and the base plate 30 is pressed down. Between the compression plate 50 and the filling material 4
0 is pressurized, and the filling material 40 is pressed and filled into the minute depression 31 on the surface of the base material 30 in an instant.

【0015】なお上記圧縮力は、蓄積された電気エネル
ギーを瞬間的に開放するものであるため短時間ではあっ
ても極めて大きな力を発生することができる。しかも瞬
間的な現象なので、静的に同じ大きさの力を発生すると
きに比べて格段に小規模且つ低強度の装置で対応でき
る。
Since the above-mentioned compressive force instantaneously releases the stored electric energy, an extremely large force can be generated even for a short time. Moreover, since it is an instantaneous phenomenon, it is possible to cope with a significantly smaller and lower-strength device than when statically the same force is generated.

【0016】〔第二実施形態〕図2は本発明の第二実施
形態にかかる微細窪み内部への材料充填装置を示す全体
概略斜視図(斜線の部分は断面を示す)である。同図に
示すようにこの装置は、収縮リング70内に、半円柱状
の上部ダイ(圧縮部材)80及び下部ダイ85と、半導
体ウエハ等の基材90と充填材料95とを収納し、また
収縮リング70の外周にコイル100を巻き回し、コイ
ル100の両端に電流供給回路110を取り付けて構成
されている。
[Second Embodiment] FIG. 2 is an overall schematic perspective view (a hatched portion shows a cross section) showing a device for filling a material into the fine pit according to a second embodiment of the present invention. As shown in the drawing, this apparatus stores a semi-cylindrical upper die (compression member) 80 and a lower die 85, a base material 90 such as a semiconductor wafer, and a filling material 95 in a shrink ring 70. The coil 100 is wound around the outer circumference of the contraction ring 70, and current supply circuits 110 are attached to both ends of the coil 100.

【0017】ここで収縮リング70は金属等の導電材料
を円筒状に形成して構成されている。また上部,下部ダ
イ80,85は何れも半円柱状に形成されており、その
寸法形状は、これら上部,下部ダイ80,85を収縮リ
ング70内に挿入した際に、その外周が収縮リング70
の内周面に密着した状態で両者間に平板状の基材90と
充填材料95が収納できる隙間が形成されるように形成
されている。基材90の表面には第一実施形態の場合と
同様に多数の微細な窪み91が形成されている。また充
填材料95としては、例えば微細窪み91内を充填する
ために必要な物質を含むペースト材料である。
Here, the shrink ring 70 is formed by forming a conductive material such as metal into a cylindrical shape. Each of the upper and lower dies 80 and 85 is formed in a semi-cylindrical shape, and its dimensions are such that when the upper and lower dies 80 and 85 are inserted into the shrink ring 70, the outer circumference thereof is reduced.
Are formed in such a manner that a gap is formed between them so that the flat base material 90 and the filling material 95 can be accommodated therebetween in a state in which they are in close contact with the inner peripheral surface. Many fine depressions 91 are formed on the surface of the base material 90 as in the case of the first embodiment. The filling material 95 is, for example, a paste material containing a substance necessary for filling the inside of the fine depression 91.

【0018】電流供給回路110は、コイル100の両
端に接続される電源と、コイル100に並列に接続され
るコンデンサ115と、スイッチ117とによって構成
されている。
The current supply circuit 110 includes a power supply connected to both ends of the coil 100, a capacitor 115 connected in parallel to the coil 100, and a switch 117.

【0019】なお収縮リング70とコイル100と電流
供給回路110とによって衝撃発生手段が構成されてい
る。
The shrinking ring 70, the coil 100, and the current supply circuit 110 constitute an impact generating means.

【0020】次にこの装置の操作手順を説明する。即ち
まず図2に示すように各部材をセットした後に、スイッ
チ117をオフしてコンデンサ115に充電する。
Next, the operation procedure of this apparatus will be described. That is, after setting each member as shown in FIG. 2, the switch 117 is turned off and the capacitor 115 is charged.

【0021】次にスイッチ117をオンすることでコン
デンサ115に蓄えられた電荷をコイル100に放電す
れば、パルス状の強い磁界がコイル100と収縮リング
70の間に発生し、収縮リング70に生ずる誘導電流と
磁界とによって生じる瞬時的な過大電磁力によって収縮
リング70は内側に向かって収縮するように変形しよう
とする。
Next, when the switch 117 is turned on to discharge the electric charge stored in the capacitor 115 to the coil 100, a strong pulsed magnetic field is generated between the coil 100 and the contraction ring 70, and is generated in the contraction ring 70. The shrink ring 70 attempts to deform so as to shrink inward due to the instantaneous excessive electromagnetic force generated by the induced current and the magnetic field.

【0022】収縮リング70の1cm2当たりに働く力は
表面の磁界のエネルギ密度に等しく、磁束密度をBガウ
スとするときB2/8π〔dyne/cm2〕となる。磁束密度
が30万ガウスであれば、それによって生じる圧力P
は、P=36.5〔kgf/mm2〕となる。
The force acting per cm 2 of the shrink ring 70 is equal to the energy density of the magnetic field on the surface, and when the magnetic flux density is B gauss, it becomes B 2 / 8π [dyne / cm 2 ]. If the magnetic flux density is 300,000 gauss, the resulting pressure P
Is P = 36.5 [kgf / mm 2 ].

【0023】そしてこのように収縮リング70が衝撃的
に収縮しようとすることによって、上部,下部ダイ8
0,85が衝撃的に接近し、これによって基材90に対
して充填材料95が衝撃的に加圧されて一瞬のうちに基
材90表面の微細な窪み91内に充填材料95が押し込
まれて充填される。
When the shrink ring 70 shrinks in an impact manner, the upper and lower dies 8 are shrunk.
0, 85 comes into contact with impact, whereby the filling material 95 is impact-pressed against the base material 90, and the filling material 95 is pressed into the minute depression 91 on the surface of the base material 90 in an instant. Filled.

【0024】この実施形態においても第一実施形態の場
合と同様に、小規模且つ低強度の装置で対応しても極め
て大きな力を発生することができる。
In this embodiment, as in the case of the first embodiment, an extremely large force can be generated even if a small-scale and low-strength apparatus is used.

【0025】今一例として、図3に示す寸法形状の微細
な窪み91内に水を出入りする場合、水と壁面との界面
エネルギだけに打ち勝つことを考えると、総界面エネル
ギEはγを単位面積当たりの界面エネルギとすると、 E=(π/4)(0.15/1032×(1.5/10
3)×γ となり、γ=0.73〔erg/mm2〕 とすると、E=
1.935/1018〔J〕となる。
As an example, when water enters and exits into the fine recess 91 having the dimensions and shape shown in FIG. 3, considering that only the interface energy between the water and the wall surface is overcome, the total interface energy E is represented by γ per unit area. E = (π / 4) (0.15 / 10 3 ) 2 × (1.5 / 10
3 ) × γ, and γ = 0.73 [erg / mm 2 ], E =
1.935 / 10 18 [J].

【0026】一方前記P=36.5〔kgf/mm2〕による
一定力で微細な窪み91内に水を押し込む仕事Wは、W
=〔36.5×(π/4)(0.15/1032〕×g
×(1.5/106)=9.482/1012〔J〕とな
って、前記Eの値に比べて桁違いに大きい値になる。こ
のWの値は、水と充填材との物性の違いや、変形抵抗を
考慮しても十分なエネルギの大きさと考えられる。従っ
て図3程度の微細な窪み91への材料の充填が十分可能
となる。
On the other hand, the work W for pushing water into the fine dent 91 with a constant force of P = 36.5 [kgf / mm 2 ] is represented by W
= [36.5 × (π / 4) (0.15 / 10 3 ) 2 ] × g
× (1.5 / 10 6 ) = 9.482 / 10 12 [J], which is an order of magnitude larger than the value of E. This value of W is considered to be a sufficient energy even in consideration of the difference in physical properties between water and the filler and the deformation resistance. Therefore, it is possible to sufficiently fill the fine dent 91 of FIG. 3 with the material.

【0027】以上本発明の実施形態を詳細に説明したが
本発明は上記実施形態に限定されず、例えば以下のよう
な種々の変形が可能である。 第一実施形態では電極61と圧縮板50間で液中放電
せしめたが、圧縮板上に2つの電極を設置して該2つの
電極間で液中高圧放電せしめることによって圧縮板を押
し下げるように構成しても良い。また圧縮板上の液中に
金属細線を張り、その両端に電流供給回路60を接続
し、該金属細線に衝撃大電流を流すことによって該金属
細線を爆発的に蒸発させ、発生する衝撃波を液を通じて
圧縮板に作用させてこれを押し下げるように構成しても
良い。さらに放電エネルギを利用して圧縮部材を衝撃的
に駆動するものであれば、その他のどのような構造のも
のであっても良い。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and for example, the following various modifications are possible. In the first embodiment, the submerged discharge is performed between the electrode 61 and the compression plate 50. However, two electrodes are provided on the compression plate and the high pressure discharge in the liquid is performed between the two electrodes to push down the compression plate. You may comprise. Also, a thin metal wire is stretched in the liquid on the compression plate, current supply circuits 60 are connected to both ends of the thin metal wire, and a large impact current is applied to the thin metal wire to vaporize the thin metal wire explosively, thereby generating a shock wave. May act on the compression plate to push it down. Further, any other structure may be used as long as the compression member is driven by using the discharge energy.

【0028】第二実施形態ではコイル100の内側に
収縮リング70や基材90等を収納したが、逆にコイル
の外周を円筒状のリング(膨張リング)で囲み、その外
側に圧縮部材や充填材料や基材を配置してコイルに放電
することによる膨張リングの衝撃的な膨張力によって充
填材を基板の窪み内に押し込むように構成しても良い。
さらにコイルへの放電によって生じる高速変化磁界によ
る電磁力を利用して圧縮部材を衝撃的に駆動するもので
あれば、その他のどのような構造のものであっても良
い。
In the second embodiment, the shrinking ring 70 and the base material 90 are housed inside the coil 100. Conversely, the outer periphery of the coil is surrounded by a cylindrical ring (expansion ring), and the outside of the coil is compressed or filled. The filling material may be pushed into the depression of the substrate by a shocking expansion force of an expansion ring caused by disposing a material or a base material and discharging the coil.
Further, any other structure may be used as long as the compression member is driven by using an electromagnetic force generated by a high-speed changing magnetic field generated by discharge to the coil.

【0029】基材、圧縮板、電流供給回路、コイル
等、各部材の構造はその機能が達成される以上、種々の
変形が可能であることは言うまでもない。
Needless to say, the structure of each member such as the base material, the compression plate, the current supply circuit, and the coil can be variously modified as long as the function is achieved.

【0030】ここでさらに本発明の具体的な1使用例を
説明する。即ち上記基材として例えば図4(a)に示す
ようにその表面に溝203やコンタクトホール201等
(これらが微細な窪みに相当する)が形成されている半
導体ウエハ100を用い、これら溝203やコンタクト
ホール201に前記本発明にかかる微細窪み内部への材
料充填方法によってメッキ液(充填材料)を押し込んで
充填し、その後無電解メッキ又は電解メッキによって図
4(b)に示すように銅207をメッキする。そしてメ
ッキが終了した半導体ウエハ100をその後溝203や
コンタクトホール201内に埋め込んだメッキを残して
それ以外の半導体ウエハ100表面の銅メッキ207を
化学機械研摩によって除去することで図4(c)に示す
ように配線211やプラグ213を形成する。なお20
2はSiO2絶縁層、205はバリア層、221は導電
層である。
Here, a specific use example of the present invention will be described. That is, for example, as shown in FIG. 4A, a semiconductor wafer 100 having a groove 203, a contact hole 201, and the like (corresponding to a fine recess) formed on the surface thereof is used as the base material. The contact hole 201 is filled with a plating solution (filling material) by injecting the plating solution (filling material) according to the method of filling a material into the fine recess according to the present invention, and then copper 207 is deposited by electroless plating or electrolytic plating as shown in FIG. Plate. Then, the copper wafer 207 on the surface of the semiconductor wafer 100 is removed by chemical mechanical polishing while leaving the plating buried in the groove 203 and the contact hole 201 in the semiconductor wafer 100 after the plating is completed, as shown in FIG. As shown, the wiring 211 and the plug 213 are formed. 20
2 is a SiO 2 insulating layer, 205 is a barrier layer, and 221 is a conductive layer.

【0031】[0031]

【発明の効果】以上詳細に説明したように本発明によれ
ば、表面に微細な窪みを持つ基材の該窪み内部に所望の
充填材料を容易且つ確実に注入することができるという
優れた効果を有する。
As described above in detail, according to the present invention, an excellent effect that a desired filling material can be easily and surely injected into the inside of a dent of a substrate having a fine dent on the surface. Having.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態にかかる微細窪み内部へ
の材料充填装置を示す全体概略断面図である。
FIG. 1 is an overall schematic cross-sectional view illustrating a device for filling a material into a fine depression according to a first embodiment of the present invention.

【図2】本発明の第二実施形態にかかる微細窪み内部へ
の材料充填装置を示す全体概略断面図である。
FIG. 2 is an overall schematic cross-sectional view showing a device for filling a material into a fine recess according to a second embodiment of the present invention.

【図3】微細な窪み91の1例を示す図である。FIG. 3 is a view showing an example of a fine depression 91;

【図4】半導体ウエハ100表面に配線211とプラグ
213を微細窪み内部へのメッキと化学機械研摩の組合
せで形成する方法を示す図である。
FIG. 4 is a view showing a method of forming wirings 211 and plugs 213 on the surface of a semiconductor wafer 100 by a combination of plating inside a fine recess and chemical mechanical polishing.

【符号の説明】[Explanation of symbols]

10 液槽 11 液(衝撃発生手段) 30 基材 31 微細な窪み 40 充填材料 50 圧縮板(圧縮部材) 60 電流供給回路(衝撃発生手段) 61 電極(衝撃発生手段) 70 収縮リング(衝撃発生手段) 80 上部ダイ(圧縮部材) 85 下部ダイ 90 基材 91 微細な窪み 95 充填材料 100 コイル(衝撃発生手段) 110 電流供給回路(衝撃発生手段) DESCRIPTION OF SYMBOLS 10 Liquid tank 11 Liquid (impact generation means) 30 Substrate 31 Fine recess 40 Filling material 50 Compressed plate (compression member) 60 Current supply circuit (impact generation means) 61 Electrode (impact generation means) 70 Shrink ring (impact generation means) ) 80 Upper die (compression member) 85 Lower die 90 Base material 91 Fine recess 95 Filling material 100 Coil (shock generating means) 110 Current supply circuit (shock generating means)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に微細な窪みを持つ基材の該窪み内
部に所望の充填材料を注入する微細窪み内部への材料充
填方法において、 前記基材の表面上に充填材料を介してその上に圧縮部材
を配置し、 基材と圧縮部材間が圧縮される方向に瞬間的な衝撃力を
加えることによって該基材と圧縮部材間を衝撃的に圧縮
し、これによって基材表面の微細な窪み内に充填材料を
押し込んで充填することを特徴とする微細窪み内部への
材料充填方法。
1. A method for filling a material into a fine dent by injecting a desired filling material into the dent of a substrate having a fine dent on the surface, wherein the material is filled on the surface of the base material through a filling material The compression member is disposed on the base member, and an instantaneous impact force is applied in a direction in which the base member and the compression member are compressed, so that the base member and the compression member are shockedly compressed. A method for filling a material into a fine dent, wherein the filling material is pushed into the dent and filled.
【請求項2】 請求項1に記載の微細窪み内部への材料
充填方法によって、半導体ウエハ表面に設けた微細窪み
内部にメッキ液を充填し、その後該メッキ液にて微細窪
み内部をメッキで埋め、その後該半導体ウエハ表面を化
学機械研摩することによって微細窪み内部のメッキを残
して半導体ウエハ表面のメッキを除去することを特徴と
する微細窪み内部へのメッキ方法。
2. The method according to claim 1, wherein a plating solution is filled in the inside of the fine recess provided on the surface of the semiconductor wafer, and then the inside of the fine recess is filled with the plating solution. And a method of plating the inside of the fine dent by removing the plating on the surface of the semiconductor wafer by leaving the plating inside the fine dent by chemical mechanical polishing the surface of the semiconductor wafer thereafter.
【請求項3】 表面に微細な窪みを持つ基材の該窪み内
部に所望の充填材料を注入する微細窪み内部への材料充
填装置において、 前記基材の表面に充填材料を介在して対向する位置に配
置される圧縮部材と、 該圧縮部材と基材の間を圧縮する方向に衝撃力を加える
衝撃発生手段とを具備し、 前記衝撃発生手段によって基材と圧縮部材間を衝撃的に
圧縮することで基材表面の微細な窪み内に充填材料を押
し込んで充填することを特徴とする微細窪み内部への材
料充填装置。
3. A material filling device for filling a desired filling material into a recess of a base material having a fine recess on a surface, wherein the filling material is opposed to the surface of the base material with a filling material interposed therebetween. A compression member disposed at a position, and an impact generating means for applying an impact force in a direction of compressing the space between the compression member and the base material. An apparatus for filling a material into a fine dent, wherein the filling material is pushed into the fine dent on the surface of the base material to fill the material.
【請求項4】 前記基材と圧縮部材は液中に浸漬され、 且つ前記衝撃発生手段は、液中に電極を設置するととも
に該電極と前記圧縮部材間、又は該電極と他の電極間に
高電圧を印加して液中放電を行なわしめる電流供給回路
を具備して構成されており、該液中放電によって生じる
ジュール熱による液圧の衝撃的な上昇によって前記基材
と圧縮部材間を衝撃的に圧縮することを特徴とする請求
項3記載の微細窪み内部への材料充填装置。
4. The substrate and the compression member are immersed in a liquid, and the impact generating means is provided with an electrode in the liquid and between the electrode and the compression member or between the electrode and another electrode. A current supply circuit for applying a high voltage to perform a submerged discharge is provided, and a shock between the base material and the compression member is caused by a shock increase in liquid pressure due to Joule heat generated by the submerged discharge. 4. The apparatus according to claim 3, wherein the material is filled into the fine recess.
【請求項5】 前記衝撃発生手段は、コイルと、該コイ
ルに高速変化磁束が生ずるような電流を流す電流供給回
路とを具備し、 前記コイルは発生した高速変化磁束によって前記圧縮部
材と基材間を衝撃的に圧縮する方向の電磁力が生じるよ
うに設置されていることを特徴とする請求項3記載の微
細窪み内部への材料充填装置。
5. The shock generating means includes a coil, and a current supply circuit for supplying a current such that a high-speed changing magnetic flux is generated in the coil. 4. The apparatus according to claim 3, wherein the apparatus is provided so as to generate an electromagnetic force in a direction in which the gap is shock-compressed.
JP26934197A 1997-09-16 1997-09-16 Method for filling material into microscopic hollows and equipment using the same Pending JPH1197443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26934197A JPH1197443A (en) 1997-09-16 1997-09-16 Method for filling material into microscopic hollows and equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26934197A JPH1197443A (en) 1997-09-16 1997-09-16 Method for filling material into microscopic hollows and equipment using the same

Publications (1)

Publication Number Publication Date
JPH1197443A true JPH1197443A (en) 1999-04-09

Family

ID=17471035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26934197A Pending JPH1197443A (en) 1997-09-16 1997-09-16 Method for filling material into microscopic hollows and equipment using the same

Country Status (1)

Country Link
JP (1) JPH1197443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527224A (en) * 2007-05-09 2010-08-05 フェデラル−モーグル コーポレイション BLDC motor assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527224A (en) * 2007-05-09 2010-08-05 フェデラル−モーグル コーポレイション BLDC motor assembly

Similar Documents

Publication Publication Date Title
KR100579912B1 (en) Manufacture of solid state capacitors
US3180418A (en) Casing descaling method and apparatus
US6849292B1 (en) Manufacture of solid state capacitors
Yatsuzuka et al. Fundamental characteristics of electrostatic wafer chuck with insulating sealant
CN101887801A (en) Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
Korobenko et al. Measurement of the electrical resistivity of hot aluminum passing from the liquid to gaseous state at supercritical pressure
MY124334A (en) Metal to metal capacitor and method for producing same
US2732464A (en) Electrical contacting devices
JPH1197443A (en) Method for filling material into microscopic hollows and equipment using the same
US4791532A (en) Capacitor anode and method
US6756708B2 (en) Electronic circuit incorporating a micro-electromechanical energy storage device
US3890511A (en) Electret pulse generator
WO1998054425A1 (en) Destroying apparatus and method, and holding member for use in that method
EP1010466A1 (en) Breaking apparatus
CN209822637U (en) Surface-mounted component
Joshi et al. Model analysis of breakdown in high-voltage, water-based switches
US3069261A (en) Method of making porous metal bodies
Humphries et al. Large area pulsed electron sources
US11338346B2 (en) Electrohydraulic forming device
JP2007524217A (en) Brazing method for achieving mechanical and electrical connection between two parts
US3891789A (en) Welding method and means using foil electrode
JP2007035861A (en) Solid electrolytic capacitor
JP3404961B2 (en) Aluminum electrolytic capacitor and method of manufacturing the same
JPS6317237Y2 (en)
JPH03268315A (en) Electric double layer capacitor and manufacture thereof