JPH1180749A - Separation of oil and apparatus therefor - Google Patents

Separation of oil and apparatus therefor

Info

Publication number
JPH1180749A
JPH1180749A JP9235247A JP23524797A JPH1180749A JP H1180749 A JPH1180749 A JP H1180749A JP 9235247 A JP9235247 A JP 9235247A JP 23524797 A JP23524797 A JP 23524797A JP H1180749 A JPH1180749 A JP H1180749A
Authority
JP
Japan
Prior art keywords
pipe
temperature
gas
primary
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9235247A
Other languages
Japanese (ja)
Inventor
Katsuaki Matsuzawa
克明 松澤
Junya Nishino
順也 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9235247A priority Critical patent/JPH1180749A/en
Publication of JPH1180749A publication Critical patent/JPH1180749A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate misty oil in a hot gas by introducing a hot gas generated in a gas generation source into a primary flow-down pipe, condensing high- boiling components, allowing the condensed liquid to flow down and discharging the non-condensed gas. SOLUTION: A hot gas generated in a gas generation source G is introduced into a primary flow-down pipe 11 to descend the hot gas and condense the high-boiling components in the hot gas by setting the inner temperature of the primary flow-down pipe. The condensed liquid is allowed to flow down along the primary flow-down pipe 11. The non-condensed gas is introduced into a riser pipe 14, the high-boiling components existing inner non-condensed gas are condensed by setting the in the temperature of the riser pipe 14 and the condensed liquid is allowed to flow down along the riser pipe 14 and discharged from the system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油分の分離方法お
よびその装置に係わり、高温ガス中に含まれるミスト状
の油分を分離する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for separating oil, and more particularly to a technique for separating mist-like oil contained in high-temperature gas.

【0002】[0002]

【従来の技術】石炭のガス化技術例として、実開平5−
62554号公報「石炭ガス化炉」が提案されている。
この技術では、石炭(あるいはゴミ)などのガス化プロ
セス等から発生したミスト状の油分を、高沸点成分と低
沸点成分とに分離するものであり、例えば蒸留器の温度
制御を行って、加温または冷却することにより、高沸点
成分と低沸点成分とに分離するようにしている。
2. Description of the Related Art As an example of coal gasification technology, Japanese Utility Model Application Laid-open No.
No. 62554, "Coal gasifier" has been proposed.
In this technology, mist-like oil generated from a gasification process of coal (or refuse) or the like is separated into high-boiling components and low-boiling components. By heating or cooling, a high-boiling component and a low-boiling component are separated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、沸点の
差を利用して、高沸点成分と低沸点成分とを分離しよう
とすると、分離装置が大がかりなものとなる。また、ゴ
ミや石炭の熱分解ガスには、固体粒子等が多く含まれて
いるため、分離装置の構造が複雑になり、そのメンテナ
ンス性が低下する。
However, if a high boiling point component and a low boiling point component are to be separated by utilizing the difference in boiling points, the size of the separating apparatus becomes large. Further, the pyrolysis gas of garbage and coal contains a large amount of solid particles and the like, so that the structure of the separation device is complicated, and the maintainability thereof is reduced.

【0004】本発明は、このような課題に鑑みてなされ
たものであり、以下の目的を達成するものである。 ミスト状油分の凝縮温度を任意にコントロールし
て、所望の種類の油分を分離すること。 ミスト状油分を確実に凝縮して捕集すること。 分離装置の構造の単純化を図り、経済性を高めるこ
と。 高沸点成分,低沸点成分の収率および分離効率を向
上させること。 都市ゴミのガス化溶融プロセスへの適用を可能にす
ること。
[0004] The present invention has been made in view of such problems, and has the following objects. The desired type of oil is separated by arbitrarily controlling the condensation temperature of the mist-like oil. Ensure that mist oil is condensed and collected. To simplify the structure of the separation device and increase economic efficiency. To improve the yield and separation efficiency of high boiling components and low boiling components. To enable the application of municipal waste to the gasification and melting process.

【0005】[0005]

【課題を解決するための手段】ゴミや石炭等の熱分解も
しくはガス化プロセスのガス発生源によって生成された
高温ガスを複数段の凝縮手段に送り込んで、複数種類の
凝縮液を分離する技術が採用される。高温ガスを1次凝
縮手段における1次流下管に導いて、高温ガスを下降さ
せるとともに、温度設定手段における給電手段から1次
流下管の回りのヒータに給電し、1次流下管の内部温度
を設定して高温ガス中の高沸点成分を凝縮させ、凝縮液
を流下させて高沸点液貯留部に貯留する。高沸点成分と
分離された非凝縮状態の非凝縮ガスは、1次流下管の下
部に連通状態でかつ前上がりの状態の前上がり傾斜管を
介してライザ管に送り込んで上昇させるとともに、ライ
ザ管の内部温度を1次流下管の内部温度に合わせて設定
しておき、ライザ管の内部で生成された凝縮液を、ライ
ザ管および前上がり前上がり傾斜管を経由して高沸点液
貯留部に流下させて貯留し、非凝縮ガスを、2次凝縮手
段に送り込む。2次凝縮手段には、ライザ管の上部に連
通状態の前下がり接続管を介して2次流下管が配され、
非凝縮ガスを下降させながら冷却することにより、低沸
点成分を凝縮させ、生成された凝縮液を流下させて低沸
点液貯留部に貯留する。低沸点成分と分離された非凝縮
ガスは、2次流下管の下部に連通状態でかつ前上がり状
態の前上がり傾斜管を介してライザ管に送り込んで上昇
させるとともに、ライザ管の内部で生成された凝縮液
を、ライザ管および前上がり傾斜管を経由して低沸点液
貯留部に流下させて、低沸点液貯留部に貯留する。温度
設定手段は、1次流下管およびライザ管の内部に配され
管内の温度を検出する温度センサと、温度センサの検出
信号を受けてこれに基づいて演算処理を行い所望設定温
度との比較を行う温度計測部と、該温度計測部での温度
比較結果に基づいて温度設定を行うコントローラと、該
コントローラからの指示に基づいて給電を行う給電手段
と、該給電手段から給電することにより1次流下管およ
びライザ管の内部温度を設定するヒータとから構成され
ている。
SUMMARY OF THE INVENTION A technique for separating a plurality of types of condensed liquid by feeding high-temperature gas generated by a gas generating source in a pyrolysis or gasification process of refuse or coal to a plurality of stages of condensing means. Adopted. The high-temperature gas is led to the primary down-flow pipe in the primary condensing means to lower the high-temperature gas, and power is supplied from the power supply means in the temperature setting means to the heater around the primary down-flow pipe, thereby controlling the internal temperature of the primary down-flow pipe. The high-boiling point component in the high-temperature gas is set and condensed, and the condensate is allowed to flow down and stored in the high-boiling point liquid storage section. The non-condensed non-condensable gas separated from the high-boiling component is sent to the riser pipe via a forward rising inclined pipe which is in communication with the lower part of the primary downcomer pipe and rises, and rises. Of the condensate generated inside the riser pipe to the high boiling point liquid storage section via the riser pipe and the forward rising / falling inclined pipe. It is stored by flowing down, and the non-condensable gas is sent to the secondary condensing means. In the secondary condensing means, a secondary downflow pipe is disposed at an upper portion of the riser pipe via a forwardly-downward connecting pipe in a communicating state,
By cooling while lowering the non-condensable gas, low-boiling components are condensed, and the generated condensate flows down and is stored in the low-boiling liquid storage section. The non-condensable gas separated from the low-boiling component is sent to the riser pipe through a forward rising inclined pipe in a state of being communicated with the lower part of the secondary downflow pipe and rising forward, and is generated inside the riser pipe. The condensed liquid flows down to the low-boiling-point liquid storage section via the riser pipe and the forward-inclined pipe, and is stored in the low-boiling-point liquid storage section. The temperature setting means is provided inside the primary downcomer pipe and the riser pipe and detects a temperature in the pipe. The temperature sensor receives a detection signal of the temperature sensor, performs arithmetic processing based on the signal, and compares the signal with a desired set temperature. A temperature measuring unit for performing the temperature setting, a controller for setting a temperature based on a temperature comparison result in the temperature measuring unit, a power supply unit for supplying power based on an instruction from the controller, and a primary unit for supplying power from the power supply unit. And a heater for setting the internal temperature of the downflow pipe and the riser pipe.

【0006】[0006]

【発明の実施の形態】以下、本発明に係る油分の分離方
法およびその装置の一実施形態について、図1を参照し
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a method and an apparatus for separating oil according to the present invention will be described with reference to FIG.

【0007】図1において、符号Gはガス発生源、Pは
ガス移送管、1は1次凝縮手段、2は2次凝縮手段、3
は温度設定手段、11は1次流下管、12は高沸点成分
貯留部、13は前上がり傾斜管、14はライザ管、21
は前下がり接続管、22は2次流下管、23は低沸点成
分貯留部、24は前上がり傾斜管、25はライザ管、3
1は温度センサ、32は温度計測部、33はコントロー
ラ、34は給電手段、35はヒータ、Eは排ガス処理
系、Qはガス排出管、Hは高沸点液回収系、Lは低沸点
液回収系である。
In FIG. 1, reference numeral G denotes a gas generating source, P denotes a gas transfer pipe, 1 denotes primary condensing means, 2 denotes secondary condensing means, 3
Is a temperature setting means, 11 is a primary down pipe, 12 is a high boiling point component storage section, 13 is a forward rising inclined pipe, 14 is a riser pipe, 21
Is a forward-downward connecting pipe, 22 is a secondary downstream pipe, 23 is a low-boiling-point component storage section, 24 is a forward-inclined inclined pipe, 25 is a riser pipe,
1 is a temperature sensor, 32 is a temperature measuring unit, 33 is a controller, 34 is a power supply means, 35 is a heater, E is an exhaust gas treatment system, Q is a gas exhaust pipe, H is a high boiling liquid recovery system, and L is a low boiling liquid recovery. System.

【0008】ガス発生源Gにあっては、ゴミや石炭等の
熱分解もしくはガス化プロセス等の高温ガスを生成し
て、供給または排出する能力を有するものであり、以
下、高温ガスを1次凝縮手段1および2次凝縮手段2に
送り込んで分離し、それぞれを凝縮させて凝縮液を生
成,貯留,回収することが行われる。
The gas generating source G has a capability of generating and supplying or discharging a high-temperature gas such as a pyrolysis or gasification process of refuse or coal, etc. The condensed liquid is sent to the condensing means 1 and the secondary condensing means 2 to be separated and condensed to generate, store, and recover condensed liquid.

【0009】前記1次凝縮手段1は、高温ガスを誘導し
て下降させこの誘導中に高温ガス中の高沸点成分を凝縮
させ凝縮液を生成し該凝縮液を流下させる1次流下管1
1と、該1次流下管11の下端部に配され凝縮液を貯留
する高沸点成分貯留部12と、1次流下管11の下部近
傍に連通状態にかつ前上がり状態に配される前上がり傾
斜管13と、該前上がり傾斜管13の上端部に連通状態
に配され高沸点成分と分離された非凝縮状態の非凝縮ガ
スを誘導して上昇させ非凝縮ガス中に残存する高沸点成
分を凝縮させて凝縮液を生成し、かつ該凝縮液を高沸点
成分貯留部12に流下させるライザ管14とから構成さ
れる。
The primary condensing means 1 guides and descends a high-temperature gas, condenses high-boiling components in the high-temperature gas during the induction, generates a condensate, and flows down the condensate.
1, a high-boiling-point component storage unit 12 disposed at a lower end portion of the primary downflow pipe 11 for storing condensate, and a forward rise disposed in a communicating state and a forward rise state near a lower portion of the primary downflow pipe 11 A high-boiling component remaining in the non-condensable gas by inducing the non-condensable gas in a non-condensed state, which is disposed in communication with the inclined pipe 13 and the upper end of the inclined pipe 13 and is separated from the high-boiling component; Is condensed to generate a condensed liquid, and the condensed liquid flows down to the high-boiling-point component storage unit 12.

【0010】前記2次凝縮手段2は、ライザ管14の上
端部に連通状態にかつ前下がり状態に配される前下がり
接続管21と、該前下がり接続管21に接続され非凝縮
ガス温ガスを誘導して下降させかつその途中で非凝縮ガ
スを冷却し低沸点成分を凝縮させ凝縮液を生成し該凝縮
液を流下させる2次流下管22と、該2次流下管22の
下端部に配され凝縮液を貯留する低沸点成分貯留部23
と、2次流下管22の下部近傍に連通状態にかつ前上が
り状態に配される前上がり傾斜管24と、該前上がり傾
斜管24の上端部に連通状態に配され低沸点成分と分離
された非凝縮状態の非凝縮ガスを誘導して上昇させ、非
凝縮ガス中に残存する低沸点成分を凝縮させて凝縮液を
生成しかつ該凝縮液を低沸点成分貯留部23に流下させ
るライザ管25とから構成される。
[0010] The secondary condensing means 2 includes a forward-downward connecting pipe 21 arranged in a state of communicating with the upper end of the riser pipe 14 and in a forward-downward state, and a non-condensable gas hot gas connected to the forward-downward connecting pipe 21. And a secondary down-flow pipe 22 for cooling the non-condensable gas and condensing the low-boiling components to produce a condensed liquid and flowing down the condensed liquid. Low-boiling-point component storage unit 23 for storing condensed liquid
And a forward-inclined pipe 24 arranged in a communicating state near the lower portion of the secondary downflow pipe 22 and in a front-up state, and arranged in a communicating state at an upper end portion of the forward-inclined pipe 24 to be separated from a low boiling point component. Riser pipe for inducing and raising the non-condensed gas in the non-condensed state, condensing low-boiling components remaining in the non-condensed gas to generate a condensed liquid, and flowing the condensed liquid down to the low-boiling-component storage unit 23 25.

【0011】前記温度設定手段3は、1次流下管11お
よびライザ管14の内部に配され管内の温度を検出する
温度センサ31と、検出された温度検出データを受けて
演算処理を行い所望設定温度との比較を行う温度計測部
32と、該温度計測部32での温度比較結果に基づいて
温度調節を指示するコントローラ33と、該コントロー
ラ33からの指示に基づいて給電を行う給電手段34
と、1次流下管11およびライザ管14の回りに例えば
巻回状態に配され、給電手段34からの給電によって各
管の加熱を行うヒータ35とから構成される。
The temperature setting means 3 is provided inside the primary downcomer pipe 11 and the riser pipe 14 and detects a temperature in the pipe. The temperature sensor 31 receives the detected temperature detection data and performs arithmetic processing to perform desired setting. A temperature measuring unit 32 for comparing with a temperature; a controller 33 for instructing temperature adjustment based on a temperature comparison result in the temperature measuring unit 32; and a power supply unit 34 for supplying power based on an instruction from the controller 33
And a heater 35 disposed around the primary downflow pipe 11 and the riser pipe 14 in a wound state, for example, and heating each pipe by power supply from the power supply means 34.

【0012】次に、上記のように構成されている油分の
分離装置による油分の分離状況について説明する。
Next, the situation of oil separation by the oil separation device configured as described above will be described.

【0013】ガス発生源Gにおいて発生したガス(高温
ガス)は、およそ300〜350℃の高温の状態を保持
したまま、ガス移送管Pから1次流下管11に供給され
る。1次流下管11において、温度設定手段3により、
内部温度を例えば105℃に設定しておくと、高温ガス
が1次流下管11の中で徐々に冷却され液化が促進さ
れ、高温ガス中に含まれる高沸点成分がミスト(霧)状
となって1次流下管11の内壁に付着し、該内壁に沿っ
て流下させられる。前記の内部温度が105℃である場
合、液体成分は、主に炭素数が5〜16以上の高沸点成
分からなる凝縮液(油分)であり、1次流下管11の内
壁を伝わって流下して、高沸点成分貯留部12に貯留さ
れる。一方、1次流下管11の内部において高沸点成分
と分離させられた非凝縮ガスは、図1に1点鎖線で示す
ように、前上がり傾斜管13を経由してライザ管14に
送り込まれて上昇し、2次凝縮手段2に引き継がれる。
The gas (high-temperature gas) generated in the gas generating source G is supplied from the gas transfer pipe P to the primary down pipe 11 while maintaining a high temperature state of about 300 to 350 ° C. In the primary down pipe 11, the temperature setting means 3
When the internal temperature is set to, for example, 105 ° C., the high-temperature gas is gradually cooled in the primary downcomer 11 to promote liquefaction, and the high-boiling components contained in the high-temperature gas become mist (mist). And adheres to the inner wall of the primary downflow pipe 11 and flows down along the inner wall. When the internal temperature is 105 ° C., the liquid component is a condensed liquid (oil component) mainly composed of a high-boiling component having 5 to 16 or more carbon atoms, and flows down along the inner wall of the primary down pipe 11. Thus, it is stored in the high boiling point component storage unit 12. On the other hand, the non-condensed gas separated from the high-boiling components in the primary down-flow pipe 11 is fed into the riser pipe 14 via the forward-inclined pipe 13 as shown by the one-dot chain line in FIG. Ascends and is taken over by the secondary condensing means 2.

【0014】ライザ管14では、温度設定手段3によっ
て、管内部の温度が1次流下管11の内部温度と同温と
なるように設定されており、1次流下管11において分
離しきれなかった非凝縮ガス中に残存する高沸点成分
を、ここで凝縮させるようにする。ここで生成された凝
縮液は、1次流下管11と同様に、ライザ管14の内壁
を伝わって流下した後、前上がり傾斜管13を逆流して
高沸点成分貯留部12に貯留される。
In the riser pipe 14, the temperature inside the pipe is set by the temperature setting means 3 so as to be the same as the internal temperature of the primary downstream pipe 11, and the riser pipe 14 cannot be separated completely in the primary downstream pipe 11. The high-boiling components remaining in the non-condensable gas are condensed here. The condensed liquid generated here flows down the inner wall of the riser pipe 14 like the primary down pipe 11, and then flows backward through the upwardly inclined pipe 13 to be stored in the high boiling point component storage section 12.

【0015】ライザ管14を経由した非凝縮ガスは、前
下がり接続管21を介して2次流下管22を下降するよ
うに誘導される。なお、前下がり接続管21の内部で凝
縮液が生成された場合には、その傾斜により2次流下管
22に流下することにより除去される。2次流下管22
は、例えば常温雰囲気中に設置されており、管内の温度
が、1次流下管11およびライザ管14の内部温度より
も相対的にかつ徐々に低くなるように設定されている。
このため、例えば105℃の温度であった非凝縮ガス
が、2次流下管22の内部で徐々に冷却されて液化が促
進され、非凝縮ガス中に含まれている液体成分がミスト
状となって液化し、2次流下管22の管内壁に付着す
る。この場合、液体成分は、主に炭素数が4以下のガス
成分または水(水蒸気)からなる低沸点成分の凝縮液で
あり、2次流下管22の内壁を伝わって流下して、低沸
点成分貯留部23に貯留される。一方、2次流下管22
の内部において低沸点成分と分離させられた非凝縮ガス
は、図1に2点鎖線で示すように、前上がり傾斜管24
を経由してライザ管25に送り込まれて上昇し、排ガス
処理系Eに引き継がれて必要な処理がなされる。
The non-condensed gas that has passed through the riser pipe 14 is guided to descend through the secondary downcomer pipe 22 through the forward descending connection pipe 21. When condensed liquid is generated inside the front-down connection pipe 21, it is removed by flowing down to the secondary down-flow pipe 22 due to its inclination. Secondary down pipe 22
Is set, for example, in a normal temperature atmosphere, and is set so that the temperature in the pipe becomes relatively and gradually lower than the internal temperatures of the primary downflow pipe 11 and the riser pipe 14.
For this reason, the non-condensable gas having a temperature of, for example, 105 ° C. is gradually cooled inside the secondary downcomer 22 to promote liquefaction, and the liquid component contained in the non-condensable gas becomes a mist. And is liquefied and adheres to the inner wall of the secondary downflow pipe 22. In this case, the liquid component is a low-boiling component condensate mainly composed of a gas component having 4 or less carbon atoms or water (steam), and flows down the inner wall of the secondary downflow pipe 22 to flow down. It is stored in the storage unit 23. On the other hand, the secondary down pipe 22
The non-condensed gas separated from the low-boiling components in the inside of the pipe is, as shown by a two-dot chain line in FIG.
, Is sent to the riser pipe 25 and rises, and is taken over by the exhaust gas treatment system E to perform necessary processing.

【0016】ライザ管25は、2次流下管22と同様に
常温雰囲気中に設置されており、2次流下管22におい
て分離しきれなかった非凝縮ガス中に残存する低沸点成
分を、ここで凝縮させるようにしている。ここで生成さ
れた凝縮液は、2次流下管22と同様に、ライザ管25
の内壁を伝わって流下し、低沸点成分貯留部23に貯留
される。
The riser pipe 25 is installed in a normal temperature atmosphere in the same manner as the secondary downflow pipe 22. The riser pipe 25 removes low boiling components remaining in the non-condensable gas that cannot be separated in the secondary downflow pipe 22 here. I try to condense. The condensate generated here is supplied to the riser pipe 25 similarly to the secondary downflow pipe 22.
The water flows down the inner wall of the tank and is stored in the low-boiling-point component storage unit 23.

【0017】1次凝縮手段1に貯留された高沸点成分、
および2次凝縮手段2に貯留された低沸点成分にあって
は、図1に示すように、それぞれ高沸点液回収系Hおよ
び低沸点液回収系Lに送り込まれて回収される。
A high-boiling component stored in the primary condensing means 1;
The low-boiling components stored in the secondary condensing means 2 are sent to the high-boiling liquid recovery system H and the low-boiling liquid recovery system L, respectively, as shown in FIG.

【0018】〔他の実施の形態〕 (a) 1次凝縮手段1および2次凝縮手段2を3段以
上設置することや、100℃以上の沸点成分を複数の温
度設定で分流(分離)することにより、分離される油分
の種類を多くすること。 (b) 温度設定手段3を複数設けることや、ヒータ3
5の温度調整を複数段とすること、または温度傾斜状態
とすることにより油分の分離効率をさらに向上させるこ
と。 (c) 凝縮すべき油分の特性に応じて、流下管(1
1,22)およびライザ管(14,25)の管径および
ガス誘導距離を変えること。
[Other Embodiments] (a) The primary condensing means 1 and the secondary condensing means 2 are installed in three or more stages, and a boiling point component of 100 ° C. or more is separated (separated) at a plurality of temperature settings. By increasing the number of types of oil separated. (B) providing a plurality of temperature setting means 3;
5. The oil separation efficiency is further improved by performing the temperature adjustment of 5 in a plurality of stages or in a temperature gradient state. (C) Depending on the characteristics of the oil to be condensed, the downcomer (1
1,2) and the diameter of the riser tubes (14,25) and the gas guiding distance.

【0019】[0019]

【発明の効果】本発明に係る油分の分離方法およびその
装置によれば、以下の効果を奏する。 (1) 1次流下管およびライザ管の温度制御を行うこ
とにより、油分の凝縮温度を任意に設定して、高温ガス
を所望の種類の油分に分離することができる。 (2) 高沸点成分を1次流下管およびライザ管を経由
させることにより凝縮するとともに、低沸点成分を2次
流下管およびライザ管に経由させて分離することによ
り、ミスト状油分を確実に凝縮して捕集することができ
る。 (3) 形状の単純な鋼管を使用して、これにヒータを
巻回する等の構成により、分離装置の構造の単純化を図
り、経済性を高めることができる。 (4) 高沸点成分を、凝縮温度が制御された管内で行
い、低沸点成分の分離を常温雰囲気下の管内で行うこと
により、高沸点成分,低沸点成分の収率および分離効率
を向上させることができる。 (5) 上記により、都市ゴミのガス化溶融プロセスへ
の適用を可能にすることができる。
According to the method and the apparatus for separating oil according to the present invention, the following effects can be obtained. (1) By controlling the temperature of the primary down pipe and the riser pipe, the condensation temperature of the oil can be arbitrarily set, and the high-temperature gas can be separated into a desired type of oil. (2) The high-boiling components are condensed by passing through the primary down pipe and the riser pipe, and the low-boiling components are separated by passing through the secondary down pipe and the riser pipe, whereby the mist-like oil is reliably condensed. And can be collected. (3) By using a simple steel pipe and winding a heater around the steel pipe, the structure of the separation device can be simplified and the economy can be improved. (4) The high boiling point component is carried out in a tube whose condensing temperature is controlled, and the separation of the low boiling point component is carried out in a tube under normal temperature atmosphere, thereby improving the yield and separation efficiency of the high boiling point component and the low boiling point component. be able to. (5) From the above, application to the gasification melting process of municipal waste can be made possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる油分の分離方法およびその装
置の一実施形態を示すブロック図を併記した正断面図で
ある。
FIG. 1 is a front sectional view of a method and an apparatus for separating oil according to an embodiment of the present invention, together with a block diagram showing an embodiment thereof.

【符号の説明】[Explanation of symbols]

G ガス発生源 P ガス移送管 1 1次凝縮手段 2 2次凝縮手段 3 温度設定手段 11 1次流下管 12 高沸点成分貯留部 13 前上がり傾斜管 14 ライザ管 21 前下がり接続管 22 2次流下管 23 低沸点成分貯留部 24 前上がり傾斜管 25 ライザ管 31 温度センサ 32 温度計測部 33 コントローラ 34 給電手段 35 ヒータ E 排ガス処理系 Q ガス排出管 H 高沸点液回収系 L 低沸点液回収系 G Gas generating source P Gas transfer pipe 1 Primary condensing means 2 Secondary condensing means 3 Temperature setting means 11 Primary falling pipe 12 High boiling point component storage unit 13 Forward rising inclined pipe 14 Riser pipe 21 Forward falling connecting pipe 22 Secondary downstream Pipe 23 Low boiling point component storage section 24 Forward rising inclined pipe 25 Riser pipe 31 Temperature sensor 32 Temperature measuring section 33 Controller 34 Power supply means 35 Heater E Exhaust gas treatment system Q Gas exhaust pipe H High boiling point liquid recovery system L Low boiling point liquid recovery system

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガス発生源(G)によって生成された高
温ガスから凝縮液を分離する方法であって、高温ガスを
1次流下管(11)に導き、高温ガスを下降させるとと
もに1次流下管の内部温度を設定して高温ガス中の高沸
点成分を凝縮させ、凝縮液を1次流下管に沿って流下さ
せるとともに、非凝縮ガスを1次流下管から排出するこ
とを特徴とする油分の分離方法。
A method for separating a condensate from a high-temperature gas generated by a gas generating source (G), wherein the high-temperature gas is guided to a primary down pipe (11) to lower the high-temperature gas and to perform a primary down flow. An oil component characterized in that a high boiling point component in a high temperature gas is condensed by setting an internal temperature of a pipe, a condensate flows down along a primary down pipe, and a non-condensed gas is discharged from the primary down pipe. Separation method.
【請求項2】 非凝縮ガスをライザ管(14)に導くと
ともに、ライザ管の内部温度を設定して非凝縮ガスに含
有する高沸点成分を凝縮させて、凝縮液をライザ管に沿
って流下させて回収することを特徴とする請求項1記載
の油分の分離方法。
2. A non-condensable gas is guided to a riser pipe (14), and a high boiling point component contained in the non-condensable gas is condensed by setting an internal temperature of the riser pipe, and a condensate flows down along the riser pipe. 2. The method for separating oil according to claim 1, wherein the oil is collected.
【請求項3】 非凝縮ガスを2次流下管(22)に導い
て下降させるとともに、2次流下管の内部温度を1次流
下管(11)の内部温度よりも低く設定して非凝縮ガス
中の低沸点成分を凝縮させ、凝縮液を2次流下管に沿っ
て流下させるとともに、非凝縮ガスを2次流下管から排
出することを特徴とする請求項1または2記載の油分の
分離方法。
3. The non-condensable gas is guided to a secondary down pipe (22) to be lowered, and the internal temperature of the secondary down pipe is set lower than the internal temperature of the primary down pipe (11). 3. The method for separating oil components according to claim 1, wherein the low-boiling components therein are condensed, the condensed liquid flows down along the secondary downcomer, and the non-condensable gas is discharged from the secondary downcomer. .
【請求項4】 ライザ管(14,25)に沿って流下す
る凝縮液をその上流の凝縮液に合流させて回収すること
を特徴とする請求項2または3記載の油分の分離方法。
4. The method for separating oil according to claim 2, wherein the condensate flowing down the riser pipe (14, 25) is combined with the upstream condensate and recovered.
【請求項5】 ガス発生源(G)によって生成された高
温ガスから凝縮液を分離する装置であって、高温ガスを
下降させる1次凝縮手段(1)と、該1次凝縮手段に配
され温度を設定して高温ガス中の高沸点成分を凝縮させ
る温度設定手段(3)とを具備し、該1次凝縮手段に、
高温ガスの下降と凝縮液の流下とを行う1次流下管(1
1)が配されることを特徴とする油分の分離装置。
5. An apparatus for separating a condensed liquid from a high-temperature gas generated by a gas generating source (G), comprising: a primary condensing means (1) for lowering the high-temperature gas; Temperature setting means (3) for setting the temperature to condense the high-boiling components in the high-temperature gas;
A primary down pipe (1) for lowering the hot gas and flowing down the condensate
1) An oil separation device, wherein 1) is disposed.
【請求項6】 1次凝縮手段(1)が、1次流下管(1
1)の下部に接続され、非凝縮ガスを上昇させて排出さ
せるライザ管(14)を具備することを特徴とする請求
項5記載の油分の分離装置。
6. The primary condensing means (1) comprises a primary downcomer (1).
The oil separation device according to claim 5, further comprising a riser pipe (14) connected to a lower part of (1) for raising and discharging the non-condensable gas.
【請求項7】 1次流下管(11)と、ライザ管(1
4)との間に、前上がり状態に配されライザ管を流下す
る凝縮液を1次流下管を流下する凝縮液に合流させる前
上がり傾斜管(13)が介在状態に配されることを特徴
とする請求項6記載の油分の分離装置。
7. A primary down pipe (11) and a riser pipe (1).
4), a front-inclined pipe (13) which is arranged in a front-up state and which condenses the condensate flowing down the riser pipe into the condensate flowing down the primary down-flow pipe is disposed in an interposed state. The oil separation device according to claim 6, wherein
【請求項8】 1次凝縮手段(1)の下流に、非凝縮ガ
スを高沸点成分の凝縮温度よりも低い温度で凝縮させる
2次凝縮手段(2)が接続状態に配され、該2次凝縮手
段に、ライザ管(14)の上端部に連通状態の前下がり
接続管(21)が配されることを特徴とする請求項7記
載の油分の分離装置。
8. A secondary condensing means (2) for condensing the non-condensable gas at a temperature lower than the condensing temperature of the high boiling point component is disposed downstream of the primary condensing means (1), and connected to the secondary condensing means. 8. The oil separating device according to claim 7, wherein the condensing means is provided with a front-down connecting pipe (21) communicating with an upper end of the riser pipe (14).
【請求項9】 温度設定手段(3)が、1次凝縮手段
(1)に配され温度を検出する温度センサ(31)と、
検出された温度検出データを受て演算処理を行い所望設
定温度との比較を行う温度計測部(32)と、該温度計
側部での温度比較結果に基づいて温度調節を指示するコ
ントローラ(33)と、該コントローラからの指示に基
づいて給電を行う給電手段(34)と、該給電手段から
給電することにより1次流下管(11)およびライザ管
(14)の内部温度を設定するヒータ(35)とを具備
することを特徴とする請求項6、7または8記載の油分
の分離装置。
9. A temperature sensor (31) arranged on the primary condensing means (1) for detecting a temperature, wherein the temperature setting means (3) comprises:
A temperature measurement unit (32) that receives the detected temperature detection data and performs an arithmetic process to compare with a desired set temperature, and a controller (33) that instructs temperature adjustment based on the temperature comparison result at the thermometer side. ), A power supply means (34) for supplying power based on an instruction from the controller, and a heater (34) for setting the internal temperature of the primary downstream pipe (11) and the riser pipe (14) by supplying power from the power supply means. 35. The apparatus for separating oil according to claim 6, 7 or 8, comprising:
JP9235247A 1997-08-29 1997-08-29 Separation of oil and apparatus therefor Withdrawn JPH1180749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9235247A JPH1180749A (en) 1997-08-29 1997-08-29 Separation of oil and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9235247A JPH1180749A (en) 1997-08-29 1997-08-29 Separation of oil and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH1180749A true JPH1180749A (en) 1999-03-26

Family

ID=16983261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9235247A Withdrawn JPH1180749A (en) 1997-08-29 1997-08-29 Separation of oil and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH1180749A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351428B2 (en) 1996-02-16 2008-04-01 Max-Planck-Gesselschaft Zur Forderung Der Wissenschaften E.V. Phosphatidyl oligoglycerols
US7709464B2 (en) 1996-02-16 2010-05-04 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E. V. Phosphatidyl oligoglycerols

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351428B2 (en) 1996-02-16 2008-04-01 Max-Planck-Gesselschaft Zur Forderung Der Wissenschaften E.V. Phosphatidyl oligoglycerols
US7709464B2 (en) 1996-02-16 2010-05-04 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E. V. Phosphatidyl oligoglycerols
US8076520B2 (en) 1996-02-16 2011-12-13 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Phosphatidyl oligoglycerols

Similar Documents

Publication Publication Date Title
SE446633B (en) SET AND DEVICE FOR SEPARATING SOLID MATERIALS AND BATTLES FROM A HEAT STREET
RU2580740C2 (en) Method for cleaning synthesis gas from biomass at negative pressure to obtain oil products and configuration system thereof
BRPI1004399A2 (en) Method and installation for the recovery of coal-fuel oil oleaginous sand
JPH0514755B2 (en)
CN103842624B (en) Gasification reactor
JPH1180749A (en) Separation of oil and apparatus therefor
US9309115B2 (en) Method of purification of biomass syngas under positive pressure
AU2020288027B2 (en) Carbon-based fuel gasification system
CN106281474B (en) A kind of pressurization moving bed coal gasifier high-temperature gas duster and waste-heat recovery device and its method
JPH0631340B2 (en) Fuel gasification method
CN102428161A (en) Process and apparatus for feed preheating with flue gas cooler
KR100864383B1 (en) Apparatus and process for heating steam
CN104498106A (en) Coal pyrolysis gas tar recovery device and method
EP3049741B1 (en) Method and apparatus for cryogenic separation of a mixture containing at least carbon monoxide, hydrogen and nitrogen
CN204311036U (en) A kind of coal pyrolysis gas tar recovery system
CN103528040B (en) Quick boiler starting system and method
CN106178759A (en) A kind of containing dust high-temperature oil gas washing system and washing methods
JP3234929B2 (en) Waste plastic oiling equipment
CN107998689A (en) Become CO in gas acidity lime set in removing2And O2Be thermally integrated rectifying new process
KR102035176B1 (en) Processing apparatus and method for gas
JP3309482B2 (en) Pressurized fluidized bed power generator
TWI498512B (en) Apparatus and treatment procedure of biomass carbonization, and method for suppressing fouling of exhaust duct
TH10827A3 (en) Plastic Waste Oil Machine
CN117327511A (en) Down-flow full waste boiler entrained flow dry ash removal gasification furnace for treating salt-containing wastewater
NO166055B (en) Shooting range.

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102