JPH1172564A - Gamma camera system - Google Patents

Gamma camera system

Info

Publication number
JPH1172564A
JPH1172564A JP23487497A JP23487497A JPH1172564A JP H1172564 A JPH1172564 A JP H1172564A JP 23487497 A JP23487497 A JP 23487497A JP 23487497 A JP23487497 A JP 23487497A JP H1172564 A JPH1172564 A JP H1172564A
Authority
JP
Japan
Prior art keywords
detectors
gamma rays
detector
gamma
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23487497A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamakawa
勉 山河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23487497A priority Critical patent/JPH1172564A/en
Publication of JPH1172564A publication Critical patent/JPH1172564A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To secure a sufficiently wide effective visual field even in PET shoot ing by preventing the visual field angle for simultaneously measuring a pair of gamma rays from changing much between a position near a rotary center and a position away from it. SOLUTION: Energy signals from a pair of detectors that are subjects each other are subjected to a waveheight analysis for screening only gamma rays with 511 kev caused by positron nuclide and for measuring whether or not the time deviation between the detectors of the timing signal of gamma rays is, for example, within a time window of 10-20 nsec, and then for outputting a signal for indicating that a coincidence occurred when the time deviation is within the time window to a three-dimensional direct nucleus reconfiguration unit 44 exclusively for PET nuclide. The unit 44 counts the coincidence for each combination of incidence positions (XY signals) according to detection signals from waveheight analysis/detection circuits 41-43. The effective visual field can be expanded if a visual field angle that is near or is equivalent to the visual field angle near a rotary center can be secured at a position away from a point near a rotary center.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体に投与され
た放射性同位元素(RI)から放射されるガンマ線を検
出し、体内のRI濃度分布を画像化するガンマカメラシ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gamma camera system for detecting gamma rays emitted from a radioisotope (RI) administered to a subject and imaging an RI concentration distribution in the body.

【0002】[0002]

【従来の技術】近年、RIの濃度分布を一方向へ投影し
たようなプレーナ画像だけでなく、X線コンピュータ断
層撮影装置のようなRIの断層面内の濃度分布を撮影で
きるガンマカメラシステムが多く市販されている。この
RIの断層面内の濃度分布の撮影技法は、使用する核種
の違いで、SPECT(single photon emission comput
ed tomography)とPET(positron emission computed
tomography) とに大別されている。
2. Description of the Related Art In recent years, there have been many gamma camera systems capable of capturing not only a planar image obtained by projecting an RI density distribution in one direction but also an RI density distribution in a tomographic plane such as an X-ray computed tomography apparatus. It is commercially available. The technique of imaging the concentration distribution in the tomographic plane of RI is based on the SPECT (single photon emission comput
ed tomography) and PET (positron emission computed)
tomography).

【0003】SPECTは、シングルフォトン核種を被
検体に投与し、それから崩壊時に放出されるガンマ線を
体外から計測し、その核種の断層面内の濃度分布を再構
成するという技法である。また、PETは、ポジトロン
核種を被検体に投与し、それから放出されるポジトロン
が近傍の陰電子と結合して消滅する際に互いに反対方向
に発生する2個のフォトンを同時計数して、その核種の
断層面内の濃度分布を再構成するという技法である。
[0003] SPECT is a technique in which a single photon nuclide is administered to a subject, gamma rays emitted from the decay are then measured from outside the body, and the concentration distribution of the nuclide in the tomographic plane is reconstructed. In addition, PET is configured to administer a positron nuclide to a subject, simultaneously count two photons generated in opposite directions when the positron emitted from the positron is combined with a nearby negative electron and annihilated, and the nuclide is counted. Is a technique of reconstructing the concentration distribution in the tomographic plane.

【0004】最近、これら2種類の撮影技法を兼用でき
るものが登場してきた。兼用機は、対向2検出器タイプ
のSPECT機を基本としている。しかし、この兼用機
では、SPECTの有効視野に対して、PETの有効視
野が著しく狭くなるといった不具合がある。
[0004] Recently, those which can share these two types of photographing techniques have appeared. The dual-purpose machine is based on a two-detector type SPECT machine. However, this dual-purpose machine has a problem that the effective visual field of PET is significantly narrower than the effective visual field of SPECT.

【0005】この理由としては、図6に示すように、対
向2検出器で一対のフォトンを拾える範囲(視野角F,
G)は、回転中心付近の位置(P)よりも、回転中心か
ら外れた位置(Q)で著しく狭くなってしまい、感度む
らが生じてしまう。この問題を軽減するために、ある程
度以上の視野角が確保できる回転中心寄りの範囲に限定
して計数を行うことが行われている。このため、PET
の有効視野が著しく狭くなるといった不具合が生じるの
である。
The reason for this is that, as shown in FIG. 6, a pair of photons can be picked up by two opposing detectors (viewing angles F,
G) becomes significantly narrower at a position (Q) deviating from the center of rotation than at a position (P) near the center of rotation, resulting in uneven sensitivity. In order to alleviate this problem, counting is performed only in a range near the rotation center where a certain or more viewing angle can be secured. For this reason, PET
However, there arises a problem that the effective field of view becomes extremely narrow.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、PE
T撮影時にも十分広い有効視野を確保できるガンマカメ
ラシステムを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide PE
An object of the present invention is to provide a gamma camera system capable of securing a sufficiently wide effective field of view even during T imaging.

【0007】[0007]

【課題を解決するための手段】本発明によるガンマカメ
ラシステムは、被検体の近傍に分散して配置される第1
乃至第3つの検出器と、被検体に投与されたポジトロン
核種から放出されたポジトロンが崩壊する時に発生する
一対のガンマ線が、前記第1の検出器と第2の検出器と
に、所定の時間窓以内の時間差で入射するという第1の
事象を検出する手段と、前記一対のガンマ線が、前記第
1の検出器と第3の検出器とに前記所定の時間窓以内の
時間差で入射するという第2の事象を検出する手段と、
前記一対のガンマ線が、前記第2の検出器と第3の検出
器とに、前記所定の時間窓以内の時間差で入射するとい
う第3の事象を検出する手段と、前記第1乃至第3の事
象をそれぞれの入射位置の組み合わせごとに計数し、こ
の計数結果に基づいて、前記ポジトロン核種に関する断
層面内の濃度分布を再構成する手段とを具備する。
SUMMARY OF THE INVENTION A gamma camera system according to the present invention comprises a first gamma camera system dispersedly disposed near a subject.
To a third detector and a pair of gamma rays generated when the positron emitted from the positron nuclide administered to the subject decays, the first detector and the second detector are applied for a predetermined time. Means for detecting a first event of being incident with a time difference within a window, and said pair of gamma rays being incident on the first and third detectors with a time difference within the predetermined time window. Means for detecting a second event;
Means for detecting a third event in which the pair of gamma rays is incident on the second detector and the third detector with a time difference within the predetermined time window; and the first to third gamma rays. Means for counting events for each combination of incident positions and reconstructing a concentration distribution in the tomographic plane for the positron nuclide based on the counting result.

【0008】本発明によると、一対のガンマ線を同時計
測できる視野角が回転中心付近の位置とそれから外れた
位置との間でそれほど変化しないので、PET撮影時に
も十分広い有効視野を確保できるようになる。
According to the present invention, since the viewing angle at which a pair of gamma rays can be measured simultaneously does not change so much between a position near the center of rotation and a position deviating therefrom, a sufficiently wide effective field of view can be ensured even during PET imaging. Become.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して、本発明を
実施形態により説明する。図1に、本実施形態に係るガ
ンマカメラシステムの構成を示している。このガンマカ
メラシステムは、3つの検出器1,2,3を装備してい
る。これら3つの検出器1,2,3は、図2に示すよう
に、支持機構に支持されて、被検体の周囲に互いに12
0゜づつずれたトライアングルな状態にセッティングで
き、さらにこの状態を保ったままで被検体の周囲を断続
的又は定速で連続的に周回できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a gamma camera system according to the present embodiment. This gamma camera system is equipped with three detectors 1,2,3. As shown in FIG. 2, these three detectors 1, 2, and 3 are supported by a support mechanism so that they are 12 around each other around the subject.
It can be set to a triangle state deviated by 0 °, and it is possible to continuously orbit around the subject intermittently or at a constant speed while maintaining this state.

【0010】これら検出器1、2,3には、図3に斜視
図で、図4に断面図で示すように、入射ガンマ線をその
エネルギーに応じた波高の電気信号に変換するCZT
(Cadmium Zinc Telluride)あるいはCdTe(Cadmiu
m Telluride )の半導体検出素子11,21,31が2
次元状に配列されている素子アレイ6が装備されてい
る。半導体検出素子12,22は例えば3mm×3mm
の面積を有し厚みは7mmのCZTがちょう密に配置さ
れており、有効視野が50cm×40cmの大視野検出
器を想定した場合、約20000素子(500×400
/9=22222)が必要になる。
As shown in the perspective view of FIG. 3 and the cross-sectional view of FIG. 4, these detectors 1, 2, and 3 have CZTs for converting incident gamma rays into electric signals having wave heights corresponding to the energies.
(Cadmium Zinc Telluride) or CdTe (Cadmiu
m Telluride) semiconductor detection elements 11, 21, 31 are 2
An element array 6 arranged in a dimension is provided. The semiconductor detection elements 12 and 22 are, for example, 3 mm × 3 mm
CZT having an area of 7 mm and a thickness of 7 mm are densely arranged, and assuming a large visual field detector having an effective visual field of 50 cm × 40 cm, about 20,000 elements (500 × 400
/ 9 = 22222).

【0011】この素子アレイ6の背面側には、複数の半
導体検出素子11,21,31に対して1つずつ設けら
れている複数のプリアンプ12,22,32やリードア
ウト回路14,24,34、さらにコインシデンス検出
/除去回路13,23,33が形成された回路基板5が
重ねられている。これら素子アレイ6や回路基板5は、
背面や側面からの外乱線の誤検出を防止するためにシー
ルドケース7に収納されている。
On the back side of the element array 6, a plurality of preamplifiers 12, 22, 32 and readout circuits 14, 24, 34 provided one for each of the plurality of semiconductor detection elements 11, 21, 31 are provided. Further, the circuit board 5 on which the coincidence detection / removal circuits 13, 23, 33 are formed is overlaid. These element array 6 and circuit board 5
It is housed in a shield case 7 to prevent erroneous detection of disturbance lines from the back and side surfaces.

【0012】このような検出器1,2,3に、ガンマ線
が入射すると、その都度、そのガンマ線のエネルギーに
応じた信号(Z信号)と、当該アレイ上での当該ガンマ
線の入射位置を表す信号(XY信号)と、ガンマ線の入
射タイミングを表すタイミング信号とをPET撮影ユニ
ット4に出力する。
Each time a gamma ray is incident on such a detector 1, 2, 3, a signal (Z signal) corresponding to the energy of the gamma ray and a signal indicating the incident position of the gamma ray on the array are provided. (XY signal) and a timing signal indicating the timing of gamma ray incidence are output to the PET imaging unit 4.

【0013】上述したように被検体に投与されたポジト
ロン核種から放出されたポジトロンが近傍の陰電子と結
合して消滅する際に、一対のガンマ線が互いに反対方向
に同時に発生する。このような一対のガンマ線の一部
は、2つの検出器(1と2,2と3,1と3)に非常に
短い時間差でもって入射する。このような2つの検出器
に短い時間差でもって2つのガンマ線が入射したという
事象(以下、コインシデンスと称する)を拾い出すため
に、PET撮影ユニット4には、3系統の波高分析/コ
インシデンス検出回路41,42,43が設けられてい
る。
As described above, when a positron emitted from a positron nuclide administered to a subject is annihilated by binding to a nearby negative electron, a pair of gamma rays are simultaneously generated in opposite directions. A part of such a pair of gamma rays enters the two detectors (1 and 2, 2 and 3, 1 and 3) with a very short time difference. In order to pick up such an event that two gamma rays are incident on the two detectors with a short time difference (hereinafter referred to as coincidence), the PET imaging unit 4 includes three systems of wave height analysis / coincidence detection circuits 41. , 42, 43 are provided.

【0014】波高分析/コインシデンス検出回路41は
第1検出器1と第2検出器2との間での上記コインシデ
ンスを検出し、また波高分析/コインシデンス検出回路
42が第2検出器2と第3検出器3との間での上記コイ
ンシデンスを検出し、そして波高分析/コインシデンス
検出回路43が第1検出器1と第3検出器2との間での
上記コインシデンスを検出するために設けられている。
A wave height analysis / coincidence detection circuit 41 detects the above-mentioned coincidence between the first detector 1 and the second detector 2, and a wave height analysis / coincidence detection circuit 42 detects the coincidence between the second detector 2 and the third detector 2. A coincidence detection circuit 43 is provided for detecting the coincidence with the detector 3 and detecting the coincidence between the first detector 3 and the third detector 2. .

【0015】具体的には、まず、それぞれが対象として
いるペアの検出器からのエネルギー信号を波高分析にか
けて当該ポジトロン核種に起因する511keVのガン
マ線だけを選別し、そして選別したガンマ線のタイミン
グ信号の検出器間での時間的なズレが例えば10nse
c〜20nsecという時間窓以内に収まっているか否
かを測定し、収まっていれば上記コインシデンスが起こ
ったことを表すコインシデンス検出信号をPET核種専
用3次元直接再構成ユニット44に出力する。
Specifically, first, energy signals from a pair of detectors of interest are subjected to wave height analysis to select only gamma rays of 511 keV caused by the positron nuclide, and detection of a timing signal of the selected gamma rays For example, the time difference between the instruments is 10 ns.
It is measured whether or not the time is within a time window of c to 20 nsec. If the time is within the time window, a coincidence detection signal indicating that the coincidence has occurred is output to the PET nuclide dedicated three-dimensional direct reconstruction unit 44.

【0016】なお、このような検出器間のコインシデン
スは、検出器1,2,3それぞれに、上記時間窓以内の
時間差で2つのガンマ線が入射した場合には振り分けで
きないので、このような事象を除去するためにコインシ
デンス検出/除去回路13,23,33が検出器1,
2,3それぞれに設けられている。
Such coincidence between the detectors cannot be sorted out when two gamma rays are incident on the detectors 1, 2, 3 with a time difference within the above-mentioned time window. In order to remove, the coincidence detection / removal circuits 13, 23, 33
It is provided in each of 2 and 3.

【0017】PET核種専用3次元直接再構成ユニット
44は、波高分析/コインシデンス検出回路41,4
2,43からのコインシデンス検出信号に従って、コイ
ンシデンスを入射位置(XY信号)の組み合わせごとに
計数する。そして、このような計数を、被検体に対する
方向を変えながら繰り返し、これにより得られた計数デ
ータ(投影データセット)に基づいてポジトロン核種の
断層面内の濃度分布(PET画像)を再構成する。な
お、ウインドウ解析ユニット45は、波高分析/コイン
シデンス検出回路41,42,43で最初に行った波高
分析と同様のエネルギーによる選別をより詳細に行っ
て、選別精度を向上させるために設けられている。
The PET nuclide-dedicated three-dimensional direct reconstruction unit 44 comprises a peak height analysis / coincidence detection circuit 41,4.
The coincidence is counted for each combination of the incident position (XY signal) in accordance with the coincidence detection signal from 2, 43. Then, such counting is repeated while changing the direction with respect to the subject, and the concentration distribution (PET image) of the positron nuclide in the tomographic plane is reconstructed based on the counting data (projection data set) obtained thereby. Note that the window analysis unit 45 is provided in order to perform more detailed sorting using the same energy as that used in the wave height analysis first performed by the wave height analysis / coincidence detection circuits 41, 42, and 43 to improve the sorting accuracy. .

【0018】上述したように各半導体検出素子11,2
1,31には、それぞれ個々にプリアンプ12,22,
32が接続されている。プリアンプ12,22,32の
機能としては、半導体検出素子11,21,31内でガ
ンマ線に起因して発生したチャージを積分する積分機能
と、その出力をシェイピング(通常は2μsec)する
シェイピング機能と、シェイピングされたパルスのピー
クを検出するピークゲート機能とを有している。このピ
ーク信号がエネルギーに比例するZ信号に相当する。通
常のアンガー型のシンチレーションカメラでは、上記プ
リアンプは、1つの検出器につき1つあるいは2〜3個
設けられているに過ぎないので、カウントレートは約3
00Kcpsであり、PET撮影のための同時計測処理
をするために十分なレート(一般的にはコリメータが装
着されていない状態では、ランダムコインシデンスの中
に埋もれる真のコインシデンスは1パーセント前後であ
り、例えば25Kcps程度のポジトロン核種の同時計
測を行うためには、2500Kcps程度の最大計数能
力が必要)を得ることはできなかったが、半導体検出素
子のアレイを採用した本実施形態では、1つの半導体検
出素子を最小単位とする1チャンネルの計数能力が低く
ても、約20000チャンネルを平行処理することが可
能で、これによりPET撮影に必要なカウントレートを
実現するのは比較的容易である。
As described above, each of the semiconductor detecting elements 11 and
1, 31 respectively have preamplifiers 12, 22,.
32 are connected. The functions of the preamplifiers 12, 22, 32 include: an integration function for integrating charges generated due to gamma rays in the semiconductor detection elements 11, 21, 31; a shaping function for shaping the output (usually 2 μsec); A peak gate function for detecting the peak of the shaped pulse. This peak signal corresponds to the Z signal proportional to the energy. In a normal Anger-type scintillation camera, only one or two or three preamplifiers are provided for one detector.
00Kcps, which is a rate sufficient for performing simultaneous measurement processing for PET imaging (generally, when no collimator is attached, the true coincidence buried in the random coincidence is about 1%, for example, In order to simultaneously measure about 25 Kcps of positron nuclides, a maximum counting capacity of about 2500 Kcps was required), but in this embodiment employing an array of semiconductor detection elements, one semiconductor detection element was used. Even if the counting capability of one channel having a minimum unit is low, approximately 20,000 channels can be processed in parallel, and it is relatively easy to realize the count rate required for PET imaging.

【0019】次の本実施形態によるPET撮影時の有効
視野拡大効果について説明する。従来説明でも述べたと
おり、視野狭窄は、検出器の回転中心付近とそれから外
れた位置との間で、視野角が大きく相違して感度むらを
起こしてしまうことが原因とされる。従って、回転中心
付近から外れた位置で、回転中心付近の視野角に近い又
は同等の視野角を確保できれば、有効視野を従来より拡
大できるのである。なお、視野角とは、正反対方向に同
時に発生する一対のガンマ線を2つの検出器で検出でき
る最大角度範囲である。
Next, the effect of enlarging the effective visual field during PET imaging according to the present embodiment will be described. As described in the description of the related art, the field narrowing is caused by a large difference in the viewing angle between the vicinity of the rotation center of the detector and a position deviated from the center, thereby causing sensitivity unevenness. Therefore, if a viewing angle close to or equal to the viewing angle near the rotation center can be secured at a position deviated from the vicinity of the rotation center, the effective field of view can be expanded as compared with the related art. The viewing angle is the maximum angle range in which a pair of gamma rays generated simultaneously in the opposite directions can be detected by two detectors.

【0020】図4には回転中心付近の視野角を示し、図
5には回転中心付近から外れた位置の視野角を示してい
る。まず、回転中心付近では、検出器1と2のペアによ
る視野角は2Cであり、検出器2と3のペアによる視野
角は2Aであり、検出器1と3のペアによる視野角は2
Bであり、トータルの視野角としては2A+2B+2C
となる。
FIG. 4 shows the viewing angle near the rotation center, and FIG. 5 shows the viewing angle at a position deviated from the vicinity of the rotation center. First, near the center of rotation, the viewing angle of the pair of detectors 1 and 2 is 2C, the viewing angle of the pair of detectors 2 and 3 is 2A, and the viewing angle of the pair of detectors 1 and 3 is 2C.
B, and the total viewing angle is 2A + 2B + 2C
Becomes

【0021】一方、回転中心から大きく外れた位置(こ
こでは検出器1,2のペアではコインシデンスを検出で
きないような最も視野角が狭くなるであろう状況を想定
している)では、検出器2と3のペアによる視野角は2
Eであり、検出器1と3のペアによる視野角は2Dであ
り、トータルの視野角としては2D+2Eとなる。
On the other hand, at a position far from the center of rotation (here, it is assumed that the viewing angle will be narrowest so that coincidence cannot be detected with the pair of detectors 1 and 2). The viewing angle by the pair of and 3 is 2
E, the viewing angle of the pair of detectors 1 and 3 is 2D, and the total viewing angle is 2D + 2E.

【0022】ここで、図6を使って従来の対向2検出器
タイプを使ったPET撮影時の視野角と比較してみよ
う。本実施形態の場合の中心視野角(2A+2B+2
C)と辺縁視野角(2D+2E)との差異は、従来の中
心視野角(2F)と辺縁視野角(2G)との差異よりも
著しく小さくなり、大きく改善されていることが理解で
きるであろう。従って、有効視野角は従来よりも大幅に
拡大することが可能となる。
Here, a comparison will be made with the viewing angle at the time of PET photographing using the conventional two-detector type with reference to FIG. In the case of the present embodiment, the central viewing angle (2A + 2B + 2)
It can be understood that the difference between C) and the peripheral viewing angle (2D + 2E) is significantly smaller than the conventional difference between the central viewing angle (2F) and the peripheral viewing angle (2G), and is greatly improved. There will be. Therefore, the effective viewing angle can be greatly increased as compared with the related art.

【0023】例えば、発明者の検証では、回転半径が2
2cmの場合で有効視野が従来の1.7倍、回転半径が
一般的な27cmの場合でも有効視野が従来の1.4
倍、平均しても大体、1.5倍程度有効視野を拡大する
ことができた。
For example, according to the verification by the inventor, the turning radius is 2
In the case of 2 cm, the effective field of view is 1.7 times the conventional one, and when the turning radius is a general 27 cm, the effective field of view is 1.4 in the conventional case.
The effective field of view could be enlarged by a factor of about 1.5 on average.

【0024】このように本実施形態によると、一対のガ
ンマ線を同時計測できる視野角が回転中心付近の位置と
それから外れた位置との間でそれほど変化しないので、
SPECTとPET兼用機でPET撮影を行う時にも十
分広い有効視野を確保できるようになる。本発明は、上
述した実施形態に限定されることなく、種々変形して実
施可能である。
As described above, according to the present embodiment, the viewing angle at which a pair of gamma rays can be measured simultaneously does not change so much between a position near the center of rotation and a position outside the rotation center.
A sufficiently wide effective field of view can be ensured even when PET imaging is performed by a combined SPECT and PET machine. The present invention is not limited to the embodiments described above, and can be implemented with various modifications.

【0025】[0025]

【発明の効果】本発明によると、一対のガンマ線を同時
計測できる視野角が回転中心付近の位置とそれから外れ
た位置との間でそれほど変化しないので、PET撮影時
にも十分広い有効視野を確保できるようになる。
According to the present invention, since the viewing angle at which a pair of gamma rays can be measured simultaneously does not change so much between a position near the center of rotation and a position deviating therefrom, a sufficiently wide effective field of view can be secured even during PET imaging. Become like

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るガンマカメラシステム
のブロック図。
FIG. 1 is a block diagram of a gamma camera system according to an embodiment of the present invention.

【図2】図1の3つの検出器の配置関係を示す図。FIG. 2 is a diagram showing an arrangement relationship between three detectors in FIG. 1;

【図3】図1の検出器の斜視図。FIG. 3 is a perspective view of the detector of FIG. 1;

【図4】フォトン発生点が回転中心付近にあるときの視
野角を示す図。
FIG. 4 is a diagram showing a viewing angle when a photon generation point is near a rotation center.

【図5】フォトン発生点が回転中心から外れた位置にあ
るときの有効角を示す図。
FIG. 5 is a diagram illustrating an effective angle when a photon generation point is at a position deviated from a rotation center.

【図6】従来のSPECT/PET兼用機でのPET撮
影時の視野角がフォトン発生点の位置に依存して変化す
る様子を示す図。
FIG. 6 is a diagram showing a state in which a viewing angle at the time of PET imaging by a conventional combined SPECT / PET machine changes depending on the position of a photon generation point.

【符号の説明】[Explanation of symbols]

1・・・第1検出器、 2・・・第2検出器、 3・・・第3検出器、 4・・・PET撮影ユニット、 5・・・回路基板、 6・・・素子アレイ、 7・・・シールドケース、 11・・・半導体検出素子、 12・・・プリアンプ、 13・・・コインシデンス検出/除去回路、 14・・・リードアウト回路、 21・・・半導体検出素子、 22・・・プリアンプ、 23・・・コインシデンス検出/除去回路、 24・・・リードアウト回路、 31・・・半導体検出素子、 32・・・プリアンプ、 33・・・コインシデンス検出/除去回路、 34・・・リードアウト回路、 41・・・波高分析/コインシデンス検出回路、 42・・・波高分析/コインシデンス検出回路、 43・・・波高分析/コインシデンス検出回路、 44・・・PET撮影専用3次元直接再構成ユニット、 45・・・ウインドウ解析ユニット。 DESCRIPTION OF SYMBOLS 1 ... 1st detector, 2 ... 2nd detector, 3 ... 3rd detector, 4 ... PET imaging unit, 5 ... Circuit board, 6 ... Element array, 7 ... Shield case, 11 ... Semiconductor detection element, 12 ... Preamplifier, 13 ... Coincidence detection / removal circuit, 14 ... Readout circuit, 21 ... Semiconductor detection element, 22 ... Preamplifier, 23: coincidence detection / removal circuit, 24: readout circuit, 31: semiconductor detection element, 32: preamplifier, 33: coincidence detection / removal circuit, 34: readout Circuit 41: Wave height analysis / coincidence detection circuit 42: Wave height analysis / coincidence detection circuit 43: Wave height analysis / coincidence detection circuit 44: PET imaging specialty 3D direct reconstruction unit, 45 ... window analysis unit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被検体の近傍に分散して配置される第1
乃至第3つの検出器と、 被検体に投与されたポジトロン核種から放出されたポジ
トロンが崩壊する時に発生する一対のガンマ線が、前記
第1の検出器と第2の検出器とに、所定の時間窓以内の
時間差で入射するという第1の事象を検出する手段と、 前記一対のガンマ線が、前記第1の検出器と第3の検出
器とに前記所定の時間窓以内の時間差で入射するという
第2の事象を検出する手段と、 前記一対のガンマ線が、前記第2の検出器と第3の検出
器とに、前記所定の時間窓以内の時間差で入射するとい
う第3の事象を検出する手段と、 前記第1乃至第3の事象をそれぞれの入射位置の組み合
わせごとに計数し、この計数結果に基づいて、前記ポジ
トロン核種に関する断層面内の濃度分布を再構成する手
段とを具備することを特徴とするガンマカメラシステ
ム。
1. A first device dispersedly disposed near a subject.
To a third detector, and a pair of gamma rays generated when the positron emitted from the positron nuclide administered to the subject decays, the first detector and the second detector are provided for a predetermined time. Means for detecting a first event of being incident at a time difference within a window, wherein said pair of gamma rays are incident on said first and third detectors at a time difference within said predetermined time window. Means for detecting a second event; and detecting a third event in which the pair of gamma rays enters the second detector and the third detector with a time difference within the predetermined time window. Means for counting the first to third events for each combination of incident positions, and reconstructing a concentration distribution in a tomographic plane for the positron nuclide based on the counting result. Gun characterized by Camera system.
【請求項2】 前記第1乃至第3の検出器にはそれぞれ
ガンマ線をそのエネルギーに応じて電気信号に変換する
複数の半導体素子が配列されていることを特徴とする請
求項1記載のガンマカメラシステム。
2. The gamma camera according to claim 1, wherein each of the first to third detectors includes a plurality of semiconductor elements that convert gamma rays into electric signals in accordance with the energy of the gamma rays. system.
【請求項3】 前記半導体素子はCdZnTe又はCd
Teであることを特徴とする請求項2記載のガンマカメ
ラシステム。
3. The semiconductor device according to claim 1, wherein the semiconductor element is CdZnTe or CdZn.
The gamma camera system according to claim 2, wherein the gamma camera system is Te.
【請求項4】 前記第1乃至第3の検出器それぞれに
は、それぞれの中で前記時間窓以内の時間差でガンマ線
が入射したとき、その事象を計数対象から排除する手段
を有することを特徴とする請求項1記載のガンマカメラ
システム。
4. When each of the first to third detectors receives a gamma ray within a time difference within the time window in each of the first to third detectors, the first to third detectors have means for excluding the event from counting targets. The gamma camera system according to claim 1, wherein
【請求項5】 半導体素子を2次元状に配列した構造を
有する3つの検出器を、互いに接した状態で三角形に配
置して、ファンビームSPECT撮影が可能に構成され
ていることを特徴とするガンマカメラシステム。
5. A method in which three detectors having a structure in which semiconductor elements are arranged two-dimensionally are arranged in a triangular shape in contact with each other to enable fan beam SPECT imaging. Gamma camera system.
JP23487497A 1997-08-29 1997-08-29 Gamma camera system Pending JPH1172564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23487497A JPH1172564A (en) 1997-08-29 1997-08-29 Gamma camera system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23487497A JPH1172564A (en) 1997-08-29 1997-08-29 Gamma camera system

Publications (1)

Publication Number Publication Date
JPH1172564A true JPH1172564A (en) 1999-03-16

Family

ID=16977690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23487497A Pending JPH1172564A (en) 1997-08-29 1997-08-29 Gamma camera system

Country Status (1)

Country Link
JP (1) JPH1172564A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140064A (en) * 2012-01-04 2013-07-18 Toshiba Corp Single photon emission tomographic system and single photon emission tomographic program
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
JP2015520365A (en) * 2012-05-08 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ Image processing system and image processing method
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9370333B2 (en) 2000-08-21 2016-06-21 Biosensors International Group, Ltd. Radioactive-emission-measurement optimization to specific body structures
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
CN106483545A (en) * 2016-09-14 2017-03-08 中国科学院高能物理研究所 Radioactive source monitoring method and system
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US10964075B2 (en) 2004-01-13 2021-03-30 Spectrum Dynamics Llc Gating with anatomically varying durations

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US9370333B2 (en) 2000-08-21 2016-06-21 Biosensors International Group, Ltd. Radioactive-emission-measurement optimization to specific body structures
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US10964075B2 (en) 2004-01-13 2021-03-30 Spectrum Dynamics Llc Gating with anatomically varying durations
US9943278B2 (en) 2004-06-01 2018-04-17 Spectrum Dynamics Medical Limited Radioactive-emission-measurement optimization to specific body structures
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US10136865B2 (en) 2004-11-09 2018-11-27 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
JP2013140064A (en) * 2012-01-04 2013-07-18 Toshiba Corp Single photon emission tomographic system and single photon emission tomographic program
JP2015520365A (en) * 2012-05-08 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ Image processing system and image processing method
CN106483545A (en) * 2016-09-14 2017-03-08 中国科学院高能物理研究所 Radioactive source monitoring method and system

Similar Documents

Publication Publication Date Title
JP6040248B2 (en) Pixel detector, Compton camera, proton therapy device, neutron imaging device, X-ray polarimeter and γ-ray polarimeter
US7321122B2 (en) System for selecting true coincidence events in positron emission tomography
US6943355B2 (en) SPECT gamma camera
US4559597A (en) Three-dimensional time-of-flight positron emission camera system
CA1085974A (en) Positron imaging system with improved count rate and tomographic capability
US6528795B2 (en) Compton scatter imaging instrument
WO2001088493A1 (en) Compton deconvolution camera
WO2003001243A2 (en) Fault-tolerant detector array for gamma ray imaging
US5751000A (en) Prefilter collimator for PET gamma camera
US10390775B2 (en) Inter-detector scatter enhanced emission tomography
JP5283382B2 (en) Nuclear medicine detector
Singh et al. Experimental test-object study of electronically collimated SPECT
JPH1172564A (en) Gamma camera system
EP1548465A1 (en) Gamma-ray detector and gamma-ray image pick-up apparatus
Vaquero et al. Performance characteristics of a compact position-sensitive LSO detector module
JP2000321357A (en) Nuclear medicine diagnostic device
US8809790B2 (en) Method and system for nuclear imaging using multi-zone detector architecture
JP2005208057A (en) Gamma ray detector and gamma ray imaging device
CA1117228A (en) Positron annihilation imaging device using multiple offset rings of detectors
US6512232B2 (en) Method and apparatus for improving the sensitivity of a gamma camera
JPH1172566A (en) Gamma camera system
JP4371723B2 (en) γ-ray activity distribution imaging method and γ-ray activity distribution imaging apparatus
Lee et al. A Dual Modality Gamma Camera Using ${\rm LaCl} _ {3}({\rm Ce}) $ Scintillator
Chmeissani et al. Modeling and simulation of PET scanner based on pixelated solid-state detector
Singh et al. Feasibility of using cadmium-zinc-telluride detectors in electronically collimated SPECT