JPH1164204A - Thermal deformation measuring apparatus - Google Patents

Thermal deformation measuring apparatus

Info

Publication number
JPH1164204A
JPH1164204A JP22379397A JP22379397A JPH1164204A JP H1164204 A JPH1164204 A JP H1164204A JP 22379397 A JP22379397 A JP 22379397A JP 22379397 A JP22379397 A JP 22379397A JP H1164204 A JPH1164204 A JP H1164204A
Authority
JP
Japan
Prior art keywords
linear expansion
coefficient
measured
thermal deformation
test temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22379397A
Other languages
Japanese (ja)
Inventor
Masayuki Nakai
雅之 中井
Hisashi Ito
久 伊藤
Fukuhiko Kataoka
福彦 片岡
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22379397A priority Critical patent/JPH1164204A/en
Publication of JPH1164204A publication Critical patent/JPH1164204A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To fix an object to be measured in an ambience of a test temperature, prevent influences of a surrounding ambience of a room temperature and make correct measurements, by constituting a supporting stage of a material which has a coefficient of linear expansion not larger than a specific fraction of a coefficient of linear expansion of the object to be measured. SOLUTION: An object 1 to be measured is restrained from shifting and fixed by a fixing bolt 3 to a supporting stage 2 constituted of a material having a smaller coefficient of linear expansion than 1/5 of a coefficient of linear expansion of a material constituting the object 1. The object 1 to be measured and the supporting stage 2 are surrounded by an insulating material 5 and kept in an ambience of a test temperature. A strain gauge 4 is set to the object 1 to be measured, and a thermal deformation strain is measured. When the object 1 to be measured is formed of steel, the object has the coefficient of linear expansion of 1.5×10<-5> . In this case, invar (Fe-36.5Ni, coefficient of linear expansion of 1.2×10<-6> ), super invar (Fe-32Ni, 5Co, coefficient of linear expansion of 0.1×10<-6> ), 42Ni alloy (coefficient of linear expansion of 2.4×10<-6> ), etc., can be used for the supporting stage 2 of the material having the smaller coefficient of linear expansion than 1/5 of the coefficient of linear expansion of the steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低温および高温雰囲
気における熱変形を計測する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring thermal deformation in low-temperature and high-temperature atmospheres.

【0002】[0002]

【従来の技術】熱変形計測装置の従来例を図4に示す。
試験温度雰囲気の外で室温雰囲気にあり熱変形しない定
盤12に固定された支持台8に計測対象物7を試験温度雰
囲気内で変位拘束して固定し、計測対象物7の熱変形歪
みを歪みゲ−ジ10により計測し、熱変形量を求めるもの
である。支持台8と計測対象物7を試験温度に保持する
ために、断熱材11により周囲を囲んでいる。ここで、支
持台8は室温雰囲気から試験温度雰囲気内にまで貫通し
ているため、支持台8の周囲を断熱材13により断熱処理
している。
2. Description of the Related Art FIG. 4 shows a conventional example of a thermal deformation measuring device.
The object 7 to be measured is fixed to the support table 8 fixed to the surface plate 12 which is in a room temperature atmosphere and is not thermally deformed outside the test temperature atmosphere in the test temperature atmosphere by displacing and restraining the object 7 to be thermally deformed. The amount of thermal deformation is measured by measuring with the strain gauge 10. In order to keep the support 8 and the measuring object 7 at the test temperature, the surroundings are surrounded by a heat insulating material 11. Here, since the support 8 penetrates from the room temperature atmosphere to the test temperature atmosphere, the periphery of the support 8 is heat-insulated by the heat insulating material 13.

【0003】[0003]

【発明が解決しようとする課題】熱変形計測において計
測対象物の熱変形量を正確に計測するために、温度分布
の均一さが極めて重要である。従来の技術では、支持台
が室温雰囲気から試験温度雰囲気内にまで貫通している
ため、熱伝導により、試験温度雰囲気内の支持台の温度
が試験温度と異なり、支持台に固定した計測対象物の温
度も固定点付近では、試験温度とは異なり、熱変形量を
正確に計測することが困難となっている。また、支持台
周囲を断熱処理することが必要となっている。
In order to accurately measure the amount of thermal deformation of an object to be measured in thermal deformation measurement, uniformity of temperature distribution is extremely important. In the conventional technology, the temperature of the support in the test temperature atmosphere differs from the test temperature due to heat conduction because the support penetrates from the room temperature atmosphere to the test temperature atmosphere. In the vicinity of the fixed point, unlike the test temperature, it is difficult to accurately measure the amount of thermal deformation. In addition, it is necessary to heat-insulate the periphery of the support.

【0004】本発明は上記課題を解決するためになされ
たものであり、計測対象物を固定する際に、試験温度雰
囲気内で固定し、周囲の室温雰囲気の影響を受けない計
測装置を提供することにより、熱変形計測を正確に行う
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a measuring apparatus which is fixed in a test temperature atmosphere when fixing an object to be measured, and which is not affected by a surrounding room temperature atmosphere. By doing so, it is intended to accurately measure the thermal deformation.

【0005】[0005]

【課題を解決するための手段】本発明は計測対象物を試
験温度雰囲気内で変位拘束して固定する支持台を備えた
熱変形計測装置において、この支持台は線膨脹係数が計
測対象物の線膨脹係数の1/5より小さい材料で構成さ
れ、全体が試験温度雰囲気内に備えられ、試験温度雰囲
気外と隔絶されていることを特徴とする熱変形計測装置
である。
SUMMARY OF THE INVENTION The present invention relates to a thermal deformation measuring apparatus having a support for fixing an object to be measured in a test temperature atmosphere by displacing and restraining the object. A thermal deformation measuring device comprising a material having a coefficient of linear expansion smaller than 1/5 and entirely provided in a test temperature atmosphere and isolated from the outside of the test temperature atmosphere.

【0006】[0006]

【発明の実施の形態】本発明では、計測対象物を固定す
る際に、線膨脹係数が計測対象物の線膨脹係数の1/5
より小さい材料で構成され、全体が試験温度雰囲気内に
ある支持台により、試験温度雰囲気内で固定することに
より、室温雰囲気から隔離しているので、計測対象物は
試験温度雰囲気でのみ熱変形するため、熱変形量を正確
に計測できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, when an object to be measured is fixed, the linear expansion coefficient is 1/5 of the linear expansion coefficient of the object to be measured.
The measurement object is thermally deformed only in the test temperature atmosphere because it is isolated from the room temperature atmosphere by being fixed in the test temperature atmosphere by the support stand composed entirely of the smaller material and entirely in the test temperature atmosphere. Therefore, the amount of thermal deformation can be accurately measured.

【0007】計測対象物が鋼製の場合には、その線膨脹
係数が1.5×10-5であるが、線膨脹係数が鋼の1/
5より小さい材料として、インバ−(Fe-36.5Ni 、線膨
脹係数1.2×10-6)、ス−パ−インバ−(Fe-32Ni,
5Co 、線膨脹係数0.1×10-6)、42Ni合金(線膨
脹係数2.4×10-6)、Fe-B合金(線膨脹係数−0.
1×10-6)などを、計測対象物の支持台として用いる
ことができる。
When the object to be measured is made of steel, its coefficient of linear expansion is 1.5 × 10 -5 , but its coefficient of linear expansion is 1/10 that of steel.
Invar (Fe-36.5Ni, linear expansion coefficient 1.2 × 10 -6 ) and superinvar (Fe-32Ni,
5Co, linear expansion coefficient 0.1 × 10 −6 ), 42Ni alloy (linear expansion coefficient 2.4 × 10 −6 ), Fe-B alloy (linear expansion coefficient −0.
1 × 10 −6 ) can be used as a support for the object to be measured.

【0008】計測対象物を構成する材料の線膨脹係数を
α1、支持台に用いられている材料の線膨脹係数をα2
とし、熱変形を計測した実測歪みをε0とすると、ε0
にはα2の影響が及んでいるので、完全に変位を拘束し
た場合の熱変形から生じる歪みε1は1次元であれば
(1)式で与えられる。 ε1=ε0×α1/(α1−α2) (1) 計測対象物を構成する材料が鉄鋼である場合には、線膨
脹係数が1.5×10-5であり、支持台としてインバ−
を用いた場合に、線膨脹係数は1.2×10-6であり、
計測対象物の線膨脹係数の1/12.5である。この
時、熱変形歪みはε1=ε0×1.09と表され、イン
バ−の組成成分により線膨脹係数に10%のばらつきが
ある場合には、熱変形歪みε1に生じる誤差は1%とな
り、比較的小さな誤差である。
The coefficient of linear expansion of the material constituting the object to be measured is α1, and the coefficient of linear expansion of the material used for the support is α2.
And ε0 is the measured strain obtained by measuring the thermal deformation, ε0
Is affected by α2, the strain ε1 resulting from thermal deformation when the displacement is completely constrained is given by equation (1) if it is one-dimensional. ε1 = ε0 × α1 / (α1-α2) (1) When the material constituting the object to be measured is steel, the coefficient of linear expansion is 1.5 × 10 -5 , and an inverting support is used.
Is used, the coefficient of linear expansion is 1.2 × 10 -6 ,
It is 1 / 12.5 of the linear expansion coefficient of the measurement object. At this time, the thermal deformation strain is expressed as ε1 = ε0 × 1.09. If the linear expansion coefficient varies by 10% due to the composition of the invar, the error generated in the thermal deformation strain ε1 is 1%, A relatively small error.

【0009】支持台に用いられる材料の線膨脹係数が計
測対象物の線膨脹係数の1/5である時、支持台材料の
組成成分により線膨脹係数に10%のばらつきがある場
合には、熱変形歪みε1に生じる誤差は3%となり、許
容できる程度の小さな誤差である。
When the coefficient of linear expansion of the material used for the support is 1/5 of the coefficient of linear expansion of the object to be measured, if the coefficient of linear expansion varies by 10% due to the composition of the material of the support, The error that occurs in the thermal deformation strain ε1 is 3%, which is an acceptable small error.

【0010】これに対して、支持台に用いられる材料の
線膨脹係数が計測対象物の線膨脹係数の1/2のように
線膨脹係数が1/5より大きい場合では、支持台の材料
の成分により線膨脹係数に10%のばらつきがある場合
には、熱変形歪みε1には10%の誤差が生じることと
なり、正確な熱変形歪みの計測が行えない。
On the other hand, when the coefficient of linear expansion of the material used for the support is larger than 1/5, such as 1/2 of the coefficient of linear expansion of the object to be measured, the material of the support is If the coefficient of linear expansion has a variation of 10% due to the component, an error of 10% occurs in the thermal deformation strain ε1, and accurate measurement of the thermal deformation strain cannot be performed.

【0011】[0011]

【実施例】本発明の第一実施例の熱変形計測装置の側面
図を図1に示す。計測対象物1を計測対象物を構成する
材料の線膨脹係数の1/5より小さい線膨脹係数の材料
で構成された支持台2に固定ボルト3により変位拘束し
て固定する。計測対象物1と支持台2を断熱材5で囲
い、試験温度雰囲気に保持する。計測対象物1に歪みゲ
−ジ4を取り付け、熱変形歪みを計測する。
FIG. 1 is a side view of a thermal deformation measuring apparatus according to a first embodiment of the present invention. The measurement object 1 is fixed to a support 2 made of a material having a linear expansion coefficient smaller than 1/5 of a linear expansion coefficient of a material constituting the measurement object by a displacement bolt with a fixing bolt 3. The measurement object 1 and the support base 2 are surrounded by a heat insulating material 5 and are kept in a test temperature atmosphere. The strain gauge 4 is attached to the measurement object 1 and the thermal deformation strain is measured.

【0012】計測対象物を構成する材料が鉄鋼である場
合には、線膨脹係数が1.5×10-5であり、支持台と
してインバ−を用いた場合に、線膨脹係数は1.2×1
-6であり、計測対象物の線膨脹係数の1/12.5で
ある。この時、熱変形歪みはε1=ε0×1.09と表
され、インバ−の組成成分により線膨脹係数に10%の
ばらつきがある場合には、熱変形歪みε1に生じる誤差
は1%となり、比較的小さな誤差であり、許容できる。
また、試験対象物1と支持台2の全体が試験温度雰囲気
内にあり室温雰囲気から隔絶されているため、室温の影
響を受けずに、熱変形量を計測できる。
When the material constituting the object to be measured is steel, the coefficient of linear expansion is 1.5 × 10 −5 , and when the support is an invar, the coefficient of linear expansion is 1.2. × 1
0 -6, which is 1 / 12.5 of the linear expansion coefficient of the measurement object. At this time, the thermal deformation strain is expressed as ε1 = ε0 × 1.09. If the linear expansion coefficient varies by 10% due to the composition of the invar, the error generated in the thermal deformation strain ε1 is 1%, Relatively small error is acceptable.
Further, since the entire test object 1 and the support 2 are in the test temperature atmosphere and are isolated from the room temperature atmosphere, the amount of thermal deformation can be measured without being affected by the room temperature.

【0013】本発明の第一実施例の熱変形計測装置の上
面図を図2に示す。計測対象物1の周囲四辺を支持台2
に固定ボルト3により変位拘束して固定したものであ
る。
FIG. 2 is a top view of the thermal deformation measuring apparatus according to the first embodiment of the present invention. Four supporting sides around the object to be measured 1
And is fixed by being displaced and restrained by fixing bolts 3.

【0014】本発明の第二実施例の熱変形計測装置の上
面図を図3に示す。計測対象物1の周囲四辺の内、一方
向の二辺を支持台2に固定ボルト3により変位拘束して
固定したものである。
FIG. 3 is a top view of the thermal deformation measuring apparatus according to the second embodiment of the present invention. Two sides in one direction of the four sides around the measurement object 1 are fixed to the support base 2 by being displaced and restrained by fixing bolts 3.

【0015】従来の装置による比較例を図4に示す。計
測対象物7は定盤12に固定された支持台8に固定ボルト
9により、固定される。計測対象物7と支持台8を断熱
材11で囲い、試験温度に保持する。支持台8は室温雰囲
気から試験温度雰囲気まで貫通しているため、断熱材13
により断熱処理を施している。試験温度を−200 ℃と
し、室温が20℃の場合に、支持台8周囲の計測対象物7
の温度は、定盤12からの熱伝導により−180 ℃となって
おり、試験温度雰囲気の−200 ℃に対して高温になって
おり、熱変形量の計測に誤差が生じることとなる。
FIG. 4 shows a comparative example using a conventional apparatus. The measurement object 7 is fixed to a support 8 fixed to a surface plate 12 by fixing bolts 9. The object 7 to be measured and the support 8 are surrounded by a heat insulating material 11 and maintained at the test temperature. Since the support 8 penetrates from the room temperature atmosphere to the test temperature atmosphere, the heat insulating material 13
For heat insulation treatment. When the test temperature is -200 ° C and the room temperature is 20 ° C, the measurement object 7 around the support 8
Is -180.degree. C. due to heat conduction from the platen 12, which is higher than -200.degree. C. in the test temperature atmosphere, and an error occurs in the measurement of the amount of thermal deformation.

【0016】[0016]

【発明の効果】本発明により、計測対象物と支持台が、
試験温度雰囲気内に設置され、室温雰囲気からの影響を
受けないため、試験温度雰囲気内で熱変形歪みの計測を
正確に行うことができる。
According to the present invention, the object to be measured and the support are
Since it is installed in a test temperature atmosphere and is not affected by a room temperature atmosphere, it is possible to accurately measure thermal deformation strain in the test temperature atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例の熱変形計測装置の側面を
示す図
FIG. 1 is a diagram showing a side view of a thermal deformation measuring device according to a first embodiment of the present invention.

【図2】本発明の第一実施例の熱変形計測装置の上面を
示す図
FIG. 2 is a diagram showing an upper surface of the thermal deformation measuring device according to the first embodiment of the present invention.

【図3】本発明の第二実施例の熱変形計測装置の上面を
示す図
FIG. 3 is a diagram showing an upper surface of a thermal deformation measuring device according to a second embodiment of the present invention.

【図4】従来の熱変形計測装置を示す図FIG. 4 is a diagram showing a conventional thermal deformation measuring device.

【符号の説明】[Explanation of symbols]

1…計測対象物、2…支持台、3…固定ボルト、4…歪
みゲ−ジ、5…断熱材、6…定盤、7…計測対象物、8
…支持台、9…固定ボルト、10…歪みゲ−ジ、11…断熱
材、12…定盤、13…断熱材
DESCRIPTION OF SYMBOLS 1 ... Measurement object, 2 ... Support base, 3 ... Fixing bolt, 4 ... Strain gauge, 5 ... Heat insulation material, 6 ... Stable plate, 7 ... Measurement object, 8
... Support stand, 9 ... Fixing bolt, 10 ... Strain gauge, 11 ... Insulation material, 12 ... Stable plate, 13 ... Insulation material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 哲也 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tetsuya Nakamura 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測対象物を試験温度雰囲気内で変位拘
束して固定する支持台を備えた熱変形計測装置におい
て、この支持台は線膨脹係数が計測対象物の線膨脹係数
の1/5より小さい材料で構成され、全体が試験温度雰
囲気内に備えられ、試験温度雰囲気外と隔絶されている
ことを特徴とする熱変形計測装置。
1. A thermal deformation measuring apparatus having a support for fixing an object to be measured in a test temperature atmosphere by displacing and constraining the object, wherein the support has a linear expansion coefficient of 1/5 of a linear expansion coefficient of the object to be measured. A thermal deformation measuring device comprising a smaller material, entirely provided in a test temperature atmosphere, and isolated from the outside of the test temperature atmosphere.
JP22379397A 1997-08-20 1997-08-20 Thermal deformation measuring apparatus Pending JPH1164204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22379397A JPH1164204A (en) 1997-08-20 1997-08-20 Thermal deformation measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22379397A JPH1164204A (en) 1997-08-20 1997-08-20 Thermal deformation measuring apparatus

Publications (1)

Publication Number Publication Date
JPH1164204A true JPH1164204A (en) 1999-03-05

Family

ID=16803812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22379397A Pending JPH1164204A (en) 1997-08-20 1997-08-20 Thermal deformation measuring apparatus

Country Status (1)

Country Link
JP (1) JPH1164204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264776A (en) * 2008-04-22 2009-11-12 Toyota Motor Corp Calculation method of heat transfer coefficient
CN104122079A (en) * 2013-04-25 2014-10-29 深圳市海洋王照明工程有限公司 Key cap test method
US9233603B2 (en) 2000-01-26 2016-01-12 E-Traction Europe B.V. Wheel provided with driving means

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233603B2 (en) 2000-01-26 2016-01-12 E-Traction Europe B.V. Wheel provided with driving means
JP2009264776A (en) * 2008-04-22 2009-11-12 Toyota Motor Corp Calculation method of heat transfer coefficient
CN104122079A (en) * 2013-04-25 2014-10-29 深圳市海洋王照明工程有限公司 Key cap test method

Similar Documents

Publication Publication Date Title
Meakin Microstrain behavior of body-centered cubic metals
US3575053A (en) Cryogenic linear temperature sensor
US4923307A (en) Dilatometer
JPH1164204A (en) Thermal deformation measuring apparatus
Oh et al. Techniques for measuring thermal expansion and creep of polysilicon
Lee et al. The thermomechanical behavior for aluminum alloy under uniaxial tensile loading
CN107389444A (en) A kind of ceramic high temperature bend test chucking appliance system of measurable deformation
Qiu et al. Critical heat flux in saturated and subcooled boiling for R-113 jet impingement on the stagnation zone
JP2012026900A (en) Thermal expansion measuring apparatus
Halford Stored energy of cold work changes induced by cyclic deformation
Deng et al. Measurements of thermal expansion coefficient of phenolic foam at low temperatures
US6215323B1 (en) Method and apparatus for temperature-controlled testing of integrated circuits
Rabiei et al. Heat generation during the fatigue of a cellular Al alloy
Rodrigues et al. Phase equilibrium in a polarized saturated 3 He—4 He mixture
US3539136A (en) Thermo-mechanical multi-function support device
Yang et al. Thermal expansion of polyurethane foam at low temperature
Tsuji et al. Investigation of photothermoelasticity by means of heating
El-Tonsy Low cost technique for measuring thermal expansion of thin polymer samples
US2119076A (en) Instrument for measuring elongation
Lindholm et al. Effect of Strain Rate, Temperature and Multiaxial Stress on the Strength and Ductility of S-200E Beryllium and 6Al-4V Titanium
JPS621274B2 (en)
KR101380624B1 (en) Precise stage for field using sliding structure
CN203870311U (en) Apparatus for compensating temperature with lever
Chen et al. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons
Barford An automatic recording differential dilatometer