JPH11352159A - Photoelectronic circuit - Google Patents

Photoelectronic circuit

Info

Publication number
JPH11352159A
JPH11352159A JP10178057A JP17805798A JPH11352159A JP H11352159 A JPH11352159 A JP H11352159A JP 10178057 A JP10178057 A JP 10178057A JP 17805798 A JP17805798 A JP 17805798A JP H11352159 A JPH11352159 A JP H11352159A
Authority
JP
Japan
Prior art keywords
light
current
circuit
light receiving
comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10178057A
Other languages
Japanese (ja)
Other versions
JP3335911B2 (en
Inventor
Masao Kudo
正夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaki Electric Co Ltd
Original Assignee
Osaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaki Electric Co Ltd filed Critical Osaki Electric Co Ltd
Priority to JP17805798A priority Critical patent/JP3335911B2/en
Publication of JPH11352159A publication Critical patent/JPH11352159A/en
Application granted granted Critical
Publication of JP3335911B2 publication Critical patent/JP3335911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectronic circuit having a wide dynamic range. SOLUTION: Light hν is introduced from a light emitting diode LED to an optical sensor 8 by feeding a driving current Id from a driving circuit 9 to the light emitting diode LED and light hν' modulated in the optical sensor 8 is received by a photodiode PD. A photocurrent Ip generated in the photodiode PD is compared with a reference current Iref by a current comparison circuit 10 and a comparison current ΔIp generated by the comparison is converted to a voltage signal ΔVp by a current/voltage conversion circuit 13 to carry it through a low-pass filter 14. A direct current voltage component ΔVdc in a voltage signal ΔVp ' outputted from the low pass filter 14 is extracted by a direct current component extraction circuit 15 and an average light receiving power on the light receiving surface of the photodiode PD is kept constant by returning the direct current voltage component ΔVdc to the driving circuit 9. A dynamic range is enlarged by comparing the photocurrent Ip with the reference current Iref .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光素子からの出
射光を受光する受光素子と、受光素子の受光面での平均
受光パワーが一定になるように、発光素子に帰還をかけ
る帰還ループとを備えた光電子回路に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light receiving element for receiving light emitted from a light emitting element, and a feedback loop for feeding back the light emitting element so that the average light receiving power on the light receiving surface of the light receiving element is constant. The present invention relates to an opto-electronic circuit provided with:

【0002】[0002]

【従来の技術】従来、図6に示すような光電子回路が知
られており、磁界や電界などの計測対象によって光のパ
ラメータが変化する光学センサ1を備えた電力測定装置
などに適用されている。
2. Description of the Related Art Conventionally, an optoelectronic circuit as shown in FIG. 6 is known, and is applied to a power measuring device having an optical sensor 1 whose light parameter changes depending on an object to be measured such as a magnetic field or an electric field. .

【0003】この光電子回路は、発光素子LEDからの
出射光hνを光学センサ1に導入し、光学センサ1で変
調された変調光hν’を受光素子PDで受光して光電流
Ipに変換する。更に、この光電流Ipを電流/電圧変換
回路2で電圧信号V1に変換し、ノイズ除去用のローパ
スフィルタ3を介して計測信号Voutを出力する。
In this optoelectronic circuit, light hν emitted from a light emitting element LED is introduced into an optical sensor 1, and modulated light hν ′ modulated by the optical sensor 1 is received by a light receiving element PD and converted into a photocurrent Ip. Further, the photocurrent Ip is converted into a voltage signal V1 by a current / voltage conversion circuit 2, and a measurement signal Vout is output via a low-pass filter 3 for removing noise.

【0004】かかる構成によると、受光素子PDの受光
面での受光パワーPは、平均受光パワーP0と、光学セ
ンサ1による変調光hν’の変調度mを用いて、P=P
0(1+m)で表され、計測信号Voutは、平均受光パワ
ーP0に相当する直流電圧成分に、変調度mに相当する
交流電圧成分が重畳した波形となる。したがって、計測
信号Voutの交流電圧成分に基づいて変調光hν’の変
調度mを測定でき、更に、この変調度mに基づいて磁界
や電界などの計測が可能となっている。
According to this configuration, the light receiving power P on the light receiving surface of the light receiving element PD is calculated by using the average light receiving power P 0 and the modulation m of the modulated light hν ′ by the optical sensor 1 to obtain P = P
0 (1 + m), and the measurement signal Vout has a waveform in which an AC voltage component corresponding to the modulation factor m is superimposed on a DC voltage component corresponding to the average received light power P 0 . Therefore, the modulation degree m of the modulated light hν ′ can be measured based on the AC voltage component of the measurement signal Vout, and the magnetic field, the electric field, and the like can be measured based on the modulation degree m.

【0005】ただし、変調度mを高精度で測定するため
の条件として、上記式P=P0(1+m)中の平均受光
パワーP0を常時一定にする必要がある。この条件が満
足されない場合として、発光素子LEDと受光素子PD
及び光学センサ1にドリフトが生じる場合がある。この
ドリフトが生じると、平均受光パワーP0の変動に伴っ
て受光パワーPも変動するため、計測信号Voutの交流
電圧成分の変化が計測対象の変化によるものか、ドリフ
トに起因するものかの判別ができなくなる。この結果、
変調度mを高精度で測定することができなくなるという
問題を生じる。
However, as a condition for measuring the degree of modulation m with high accuracy, the average received light power P 0 in the above equation P = P 0 (1 + m) must be kept constant. If this condition is not satisfied, the light emitting element LED and the light receiving element PD
And the optical sensor 1 may drift. When this drift occurs, the received light power P also fluctuates with the fluctuation of the average received light power P 0. Therefore, it is determined whether the change in the AC voltage component of the measurement signal Vout is due to a change in the measurement target or due to the drift. Can not be done. As a result,
There is a problem that the modulation m cannot be measured with high accuracy.

【0006】そこで、図6に示す光電子回路では、ドリ
フト補償法として帰還方式が採用されており、電圧信号
V1中の直流電圧成分V2を直流成分抽出回路4で抽出
すると共に、直流電圧成分V2と基準電圧発生回路5で
予め設定しておいた基準電圧Vrefとを比較回路6で比
較し、その比較電圧V3で駆動回路7に帰還をかけるこ
とにより、平均受光パワーP0が一定になるように、駆
動回路7から発光素子LEDに供給される駆動電流Id
を制御している。
Therefore, in the optoelectronic circuit shown in FIG. 6, a feedback method is employed as a drift compensation method. The DC voltage component V2 in the voltage signal V1 is extracted by the DC component extraction circuit 4, and the DC voltage component V2 is a reference voltage Vref that is set in advance by the reference voltage generating circuit 5 is compared in the comparator circuit 6, by applying the feedback to drive circuit 7 in the comparison voltage V3, such that the average received optical power P 0 is constant Drive current Id supplied from the drive circuit 7 to the light emitting element LED
Is controlling.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記光電子回
路における帰還方式では、直流電圧成分V2と基準電圧
Vrefとを電源電圧範囲内で比較することで、駆動回路
7に帰還をかけるための比較電圧V3を生成するので、
ダイナミックレンジが狭くなるという問題があった。
However, in the feedback system in the optoelectronic circuit, the comparison voltage for applying feedback to the drive circuit 7 is obtained by comparing the DC voltage component V2 and the reference voltage Vref within the power supply voltage range. Since V3 is generated,
There was a problem that the dynamic range was narrowed.

【0008】[0008]

【課題を解決するための手段】本発明は、このような課
題を克服するためになされたもので、発光素子と、前記
発光素子で出射される出射光を受光する受光素子とを有
する光電子回路において、前記受光素子に生じる光電流
と予め設定された基準電流とを比較して比較電流を生成
する電流比較回路と、前記比較電流の直流成分に基づい
て前記発光素子に帰還をかけ、前記受光素子の受光面で
の平均受光パワーが一定になるように制御する帰還ルー
プとを備える構成とした。
SUMMARY OF THE INVENTION The present invention has been made to overcome the above problems, and has an optoelectronic circuit having a light emitting element and a light receiving element for receiving the light emitted by the light emitting element. A current comparison circuit that generates a comparison current by comparing a photocurrent generated in the light receiving element with a preset reference current, and feeds back the light emitting element based on a DC component of the comparison current, A feedback loop for controlling the average light receiving power on the light receiving surface of the element to be constant is provided.

【0009】かかる構成によると、比較電流の直流成分
に基づいて発光素子に帰還をかけることにより、ドリフ
トなどに起因する受光素子の受光面での平均受光パワー
の変動が抑えられる。更に、比較電流の直流成分を、受
光素子に生じる光電流と予め設定された基準電流との電
流比較によって生成するため、ダイナミックレンジが広
がる。
According to this configuration, the feedback of the light emitting element based on the DC component of the comparison current suppresses the fluctuation of the average light receiving power on the light receiving surface of the light receiving element due to drift or the like. Further, since the DC component of the comparison current is generated by comparing the photocurrent generated in the light receiving element with a preset reference current, the dynamic range is widened.

【0010】また、計測対象によって光のパラメータが
変化する光学センサと、前記光学センサに光を出射する
発光素子と、前記光学センサにより変調される変調光を
受光する受光素子とを備える光電子回路において、前記
受光素子に生じる光電流と予め設定された基準電流とを
比較して比較電流を生成する電流比較回路と、前記比較
電流の直流成分に基づいて前記発光素子に帰還をかけ、
前記受光素子の受光面での平均受光パワーが一定になる
ように制御する帰還ループとを備える構成とした。
[0010] Also, in an optoelectronic circuit comprising an optical sensor whose light parameter changes according to a measurement object, a light emitting element for emitting light to the optical sensor, and a light receiving element for receiving modulated light modulated by the optical sensor. A current comparison circuit that generates a comparison current by comparing a photocurrent generated in the light receiving element with a preset reference current, and feeds back the light emitting element based on a DC component of the comparison current,
And a feedback loop for controlling the average light receiving power on the light receiving surface of the light receiving element to be constant.

【0011】かかる構成によると、ダイナミックレンジ
の広い帰還ループにより、ドリフトなどに起因する受光
素子の受光面での平均受光パワーの変動が抑えられるこ
とで、光学センサを用いた高精度の計測機器が実現され
る。
According to this configuration, the fluctuation of the average light receiving power on the light receiving surface of the light receiving element due to drift or the like is suppressed by the feedback loop having a wide dynamic range, so that a highly accurate measuring device using the optical sensor can be provided. Is achieved.

【0012】[0012]

【発明の実施の形態】以下、本発明による光電子回路を
電子式電力量計に適用した実施の形態について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which an optoelectronic circuit according to the present invention is applied to an electronic wattmeter will be described below.

【0013】図1は、本実施形態の光電子回路の構成を
示すブロック図である。同図において、発光素子である
発光ダイオードLEDと受光素子であるフォトダイオー
ドPDの間に光学センサ8が挿入され、発光ダイオード
LEDには駆動回路9、フォトダイオードPDには電流
比較回路10がそれぞれ接続されている。
FIG. 1 is a block diagram showing the configuration of the optoelectronic circuit of the present embodiment. In the figure, an optical sensor 8 is inserted between a light emitting diode LED as a light emitting element and a photodiode PD as a light receiving element. A driving circuit 9 is connected to the light emitting diode LED, and a current comparison circuit 10 is connected to the photodiode PD. Have been.

【0014】光学センサ8には、磁界によって光のパラ
メータが変化するファラデー素子などの光磁気効果素子
や、電界によって光のパラメータが変化するポッケルス
素子などの電気光学効果素子が備えられている。
The optical sensor 8 is provided with a magneto-optical effect element such as a Faraday element whose light parameter changes according to a magnetic field, and an electro-optical effect element such as a Pockels element whose light parameter changes according to an electric field.

【0015】駆動回路9は、所定の増幅率を有する能動
増幅器で構成され、直流成分抽出回路15から出力され
る直流電圧成分ΔVdcに比例した駆動電流Idを発光ダ
イオードLEDに供給する。これにより、駆動電流Id
に相当する光パワーPinを有する出射光hνが光学セン
サ8に導入され、磁界や電界の変化に応じて光学センサ
8で変調された変調光hν’をフォトダイオードPDが
受光するようになっている。
The driving circuit 9 is constituted by an active amplifier having a predetermined amplification factor, and supplies a driving current Id proportional to the DC voltage component ΔVdc output from the DC component extracting circuit 15 to the light emitting diode LED. As a result, the drive current Id
Is output to the optical sensor 8, and the photodiode PD receives modulated light hν 'modulated by the optical sensor 8 in response to a change in a magnetic field or an electric field. .

【0016】電流比較回路10は、電流加算(又は電流
減算)を行う加減算回路で構成されている。そして、発
光ダイオードLEDに生じる光電流Ipと電流生成回路
11で生成される基準電流Irefとを電流加算(又は電
流減算)することにより、光電流Ipと基準電流Irefと
の比較結果である比較電流ΔIpを電流/電圧変換回路
13へ出力する。
The current comparison circuit 10 is constituted by an addition / subtraction circuit for performing current addition (or current subtraction). Then, the current Ip generated in the light emitting diode LED and the reference current Iref generated by the current generation circuit 11 are added (or subtracted) to obtain a comparison current that is a comparison result between the photocurrent Ip and the reference current Iref. ΔIp is output to the current / voltage conversion circuit 13.

【0017】尚、電流生成回路11から電流比較回路1
0に向けて基準電流Irefを供給すると、上記の電流加
算が行われ、基準電流Irefを電流比較回路10から電
流生成回路11側へ引く(シンクする)と、上記の電流
減算が行われる。したがって、基準電流Irefの極性に
対応して電流加算又は電流減算が行われることから、本
実施形態の光電子回路では、これら電流加算と電流減算
のいずれの構成を採用しても、比較電流ΔIpが得られ
るようになっている。
The current generation circuit 11 to the current comparison circuit 1
When the reference current Iref is supplied toward 0, the above-described current addition is performed. When the reference current Iref is pulled (sinked) from the current comparison circuit 10 to the current generation circuit 11, the above-described current subtraction is performed. Therefore, the current addition or the current subtraction is performed in accordance with the polarity of the reference current Iref. Therefore, in the optoelectronic circuit of the present embodiment, the comparison current ΔIp is obtained regardless of the configuration of the current addition or the current subtraction. You can get it.

【0018】電流生成回路11は、基準電圧発生回路1
2に予め設定されている定電圧Vrefに基づいて基準電
流Irefを生成する。
The current generation circuit 11 includes a reference voltage generation circuit 1
The reference current Iref is generated based on the constant voltage Vref set in advance to 2.

【0019】電流/電圧変換回路13は、比較電流ΔI
pをそれに比例した電圧信号ΔVpに変換し、ノイズ除去
用のローパスフィルタ14を介して積算回路(図示略)
へ出力する。これにより、電圧信号ΔVpに重畳してい
る高域ノイズがローパスフィルタ14で除去され、ノイ
ズの無い電圧信号ΔVp’が計測信号として上記積算回
路へ出力される。
The current / voltage conversion circuit 13 outputs a comparison current ΔI
p is converted into a voltage signal ΔVp proportional thereto, and integrated via a low-pass filter 14 for noise removal (not shown).
Output to As a result, high-frequency noise superimposed on the voltage signal ΔVp is removed by the low-pass filter 14, and a noise-free voltage signal ΔVp ′ is output to the integrating circuit as a measurement signal.

【0020】ローパルフィルタ14と駆動回路9との間
に、直流成分抽出回路15が設けられている。この直流
成分抽出回路15は、電圧信号ΔVp’中の直流電圧成
分ΔVdcを抽出し駆動回路9に帰還をかけることによっ
て、フォトダイオードPDの受光面での平均受光パワー
0が一定になるように、駆動電流Idを制御する。すな
わち、直流成分抽出回路15は、発光ダイオードLED
とフォトダイオードPD及び光学センサ8等のドリフト
を補償することで、平均受光パワーP0を一定にする帰
還ループを構成している。
A DC component extraction circuit 15 is provided between the low pallet filter 14 and the drive circuit 9. The DC component extraction circuit 15 extracts the DC voltage component ΔVdc from the voltage signal ΔVp ′ and feeds it back to the drive circuit 9 so that the average light receiving power P 0 on the light receiving surface of the photodiode PD becomes constant. , The drive current Id. That is, the DC component extraction circuit 15 includes the light emitting diode LED.
By compensating for drifts of the photodiode PD, the optical sensor 8 and the like, a feedback loop for making the average received light power P 0 constant is formed.

【0021】図2は、電流比較回路10と電流生成回路
11と基準電圧発生回路12及び電流/電圧変換回路1
3のより具体的な回路例を示している。
FIG. 2 shows a current comparison circuit 10, a current generation circuit 11, a reference voltage generation circuit 12, and a current / voltage conversion circuit 1.
3 shows a more specific circuit example.

【0022】同図において、基準電圧発生回路12は、
ボルテージレギュレータ16と抵抗17,18で構成さ
れており、ボルテージレギュレータ16に発生した定電
圧Vregを抵抗17,18で分圧することにより、予め
決められた定電圧Vrefを発生する。
In FIG. 1, a reference voltage generating circuit 12
The voltage regulator 16 is composed of a voltage regulator 16 and resistors 17 and 18. The constant voltage Vreg generated in the voltage regulator 16 is divided by the resistors 17 and 18 to generate a predetermined constant voltage Vref.

【0023】電流生成回路11は、抵抗17,18の接
続点xとフォトダイオードPDのカソードとの間に接続
された抵抗19で構成され、接続点xに生じる定電圧V
refに基づいて基準電流Irefを生成する。
The current generating circuit 11 is composed of a resistor 19 connected between a connection point x of the resistors 17 and 18 and a cathode of the photodiode PD, and a constant voltage V generated at the connection point x.
A reference current Iref is generated based on ref.

【0024】電流/電圧変換回路13は、小さな抵抗値
の抵抗20a,20b,20cによって大きな増幅率が
得られるT形反転増幅器21で構成されており、反転増
幅器21の反転入力端子がフォトダイオードPDのカソ
ードに接続されている。
The current / voltage conversion circuit 13 is composed of a T-type inverting amplifier 21 having a large amplification factor obtained by resistors 20a, 20b, and 20c having small resistance values. The inverting input terminal of the inverting amplifier 21 has a photodiode PD. Connected to the cathode.

【0025】電流比較回路10は、フォトダイオードP
Dのカソードと抵抗19及び反転増幅器21の反転入力
端子とが接続する接続点yによって実現されている。す
なわち、接続点yにおいて、光電流Ipと基準電流Iref
との電流加算(又は電流減算)が行われることにより比
較電流ΔIpが生成される。そして、反転増幅器21が
比較電流ΔIpに比例した電圧信号ΔVpを出力する。
The current comparison circuit 10 includes a photodiode P
This is realized by a connection point y where the cathode of D is connected to the resistor 19 and the inverting input terminal of the inverting amplifier 21. That is, at the connection point y, the photocurrent Ip and the reference current Iref
The current addition (or current subtraction) is performed to generate the comparison current ΔIp. Then, the inverting amplifier 21 outputs a voltage signal ΔVp proportional to the comparison current ΔIp.

【0026】図3は、直流成分抽出回路15のより具体
的な回路例を示している。この直流成分抽出回路15
は、電圧増幅率設定用の抵抗22,23を有する反転増
幅器24と、反転増幅器24の反転入力端子とローパス
フィルタ14の出力端子との間に接続された抵抗25
と、反転増幅器24の非反転入力端子とローパスフィル
タ14の出力端子との間に直列接続された抵抗26及び
カップリングコンデンサ27を備えて構成されている。
FIG. 3 shows a more specific circuit example of the DC component extraction circuit 15. This DC component extraction circuit 15
Is an inverting amplifier 24 having resistors 22 and 23 for setting a voltage amplification factor, and a resistor 25 connected between an inverting input terminal of the inverting amplifier 24 and an output terminal of the low-pass filter 14.
And a resistor 26 and a coupling capacitor 27 connected in series between the non-inverting input terminal of the inverting amplifier 24 and the output terminal of the low-pass filter 14.

【0027】かかる構成によると、反転増幅器24の反
転入力端子には、ローパスフィルタ14からの電圧信号
ΔVp’が供給され、その非反転入力端子には、カップ
リングコンデンサ27を通過する電圧信号ΔVp’中の
交流電圧成分ΔVacのみが供給される。そして、同相信
号除去比(CMRR)の大きな反転増幅器24で交流電
圧成分ΔVacが除去されることにより、電圧信号ΔV
p’中の直流電圧成分ΔVdcだけが抽出されて駆動回路
9に供給される。
According to this configuration, the voltage signal ΔVp ′ from the low-pass filter 14 is supplied to the inverting input terminal of the inverting amplifier 24, and the voltage signal ΔVp ′ passing through the coupling capacitor 27 is supplied to its non-inverting input terminal. Only the middle AC voltage component ΔVac is supplied. The AC voltage component ΔVac is removed by the inverting amplifier 24 having a large in-phase signal removal ratio (CMRR), so that the voltage signal ΔV
Only the DC voltage component ΔVdc in p ′ is extracted and supplied to the drive circuit 9.

【0028】次に、かかる構成を有する光電子回路の動
作を図4及び図5を参照して説明する。尚、図4(a)
〜(d)は、直流電圧成分ΔVdcと駆動電流Idの波形
と、出射光hν及び変調光hν’の光パワーを模式的に
示している。図5(a)〜(c)は、光電流Ipと比較
電流ΔIp及び電圧信号ΔVpの波形を模式的に示してい
る。
Next, the operation of the optoelectronic circuit having such a configuration will be described with reference to FIGS. FIG. 4 (a)
(D) schematically shows the waveforms of the DC voltage component ΔVdc and the drive current Id, and the optical power of the emitted light hν and the modulated light hν ′. FIGS. 5A to 5C schematically show waveforms of the photocurrent Ip, the comparison current ΔIp, and the voltage signal ΔVp.

【0029】図4(a)〜(d)において、直流電圧成
分ΔVdc(図4(a)参照)に比例した駆動電流Id
(図4(b)参照)が駆動回路9から発光ダイオードL
EDに供給されるのに伴って、光パワーPinの出射光h
ν(図4(c)参照)が発光ダイオードLEDから光学
センサ8に導入され、更に、光学センサ8で変調された
変調光hν’(図4(d)参照)がフォトダイオードP
Dの受光面に入射する。ここで、フォトダイオードPD
の受光面での受光パワーPは、平均受光パワーP0と、
光学センサ8による変調光hν’の変調度mを用いて、
P=P0(1+m)で表される。
4 (a) to 4 (d), the drive current Id is proportional to the DC voltage component ΔVdc (see FIG. 4 (a)).
(Refer to FIG. 4B).
The outgoing light h of the optical power Pin is supplied to the ED.
ν (see FIG. 4C) is introduced into the optical sensor 8 from the light emitting diode LED, and the modulated light hν ′ (see FIG. 4D) modulated by the optical sensor 8 is converted to the photodiode P.
D enters the light receiving surface. Here, the photodiode PD
The light-receiving power P on the light-receiving surface is represented by an average light-receiving power P 0 ,
Using the degree of modulation m of the modulated light hν ′ by the optical sensor 8,
It is represented by P = P 0 (1 + m).

【0030】この受光パワーPを受けてフォトダイオー
ドPDに、平均受光パワーP0に相当する直流電流成分
(−Idc)と変調度mに相当する交流電流成分(−Ia
c)との和で表される光電流Ipが発生する(図5(a)
参照)。
The alternating current component corresponding to the photodiode PD receives the received optical power P, the DC current component corresponding to average received light power P 0 and (-Idc) the modulation index m (-Ia
A photocurrent Ip represented by the sum of (c) and (c) is generated (FIG. 5A).
reference).

【0031】また、光電流Ipと基準電流Irefとの電流
加算(又は電流減算)が電流比較回路10において行わ
れることにより、交流電流成分(−Iac)と直流電流成
分(Iref−Idc)との和で表される比較電流ΔIpが生
成される(図5(b)参照)。
Further, the current addition (or current subtraction) between the photocurrent Ip and the reference current Iref is performed in the current comparison circuit 10, so that the AC current component (-Iac) and the DC current component (Iref-Idc) are converted. The comparison current ΔIp represented by the sum is generated (see FIG. 5B).

【0032】更に、電流/電圧変換回路13により、交
流電流成分(−Iac)に比例した交流電圧成分ΔVacと
直流電流成分(Iref−Idc)に比例した直流電圧成分
(−ΔVdc)との和で表される電圧信号ΔVpが生成さ
れた後(図5(c)参照)、ローパスフィルタ14でノ
イズ成分の除去された電圧信号ΔVp’が計測信号とし
て積算回路へ出力される。
Further, the current / voltage conversion circuit 13 calculates the sum of an AC voltage component ΔVac proportional to the AC current component (−Iac) and a DC voltage component (−ΔVdc) proportional to the DC current component (Iref−Idc). After the generated voltage signal ΔVp is generated (see FIG. 5C), the voltage signal ΔVp ′ from which the noise component has been removed by the low-pass filter 14 is output to the integrating circuit as a measurement signal.

【0033】そして、直流成分抽出回路15で電圧信号
ΔVp’中の直流電圧成分ΔVdcが抽出され、駆動回路
9への帰還制御が行われる。
Then, the DC component extraction circuit 15 extracts the DC voltage component ΔVdc from the voltage signal ΔVp ′, and performs feedback control to the drive circuit 9.

【0034】本実施の形態によれば、電流比較回路10
において光電流Ipと基準電流Irefとを比較し、それに
よって得られる直流電圧成分ΔVdcを直流成分抽出回路
15を介して駆動回路9に帰還させるので、フォトダイ
オードPDの受光面での平均受光パワーP0が一定にな
るように、発光ダイオードLEDに供給する駆動電流I
dを制御することができる。
According to the present embodiment, the current comparison circuit 10
Compares the photocurrent Ip with the reference current Iref, and feeds back the DC voltage component ΔVdc obtained by this to the drive circuit 9 via the DC component extraction circuit 15, so that the average light reception power P at the light receiving surface of the photodiode PD is obtained. The driving current I supplied to the light emitting diode LED so that 0 is constant
d can be controlled.

【0035】この結果、発光ダイオードLEDとフォト
ダイオードPD及び光学センサ8等のドリフトを補償す
ることができ、電圧信号ΔVp’の交流電圧成分に基づ
いて変調光hν’の変調度mを高精度で測定することが
でき、更に、この変調度mに基づいて磁界や電界などを
高精度で計測することができる。
As a result, the drift of the light emitting diode LED, the photodiode PD, the optical sensor 8 and the like can be compensated, and the modulation degree m of the modulated light hν ′ can be accurately determined based on the AC voltage component of the voltage signal ΔVp ′. Measurement can be performed, and further, a magnetic field, an electric field, and the like can be measured with high accuracy based on the modulation degree m.

【0036】更に、電流比較回路10で、光電流Ipと
基準電流Irefとの電流加算又は電流減算を行うことに
より、光電流Ipと基準電流Irefとの電流比較を行うよ
うにしたので、電源電圧にとらわれることなく、光電子
回路のダイナミックレンジを広げることができる。
Further, the current comparison circuit 10 performs current addition or current subtraction between the photocurrent Ip and the reference current Iref, thereby comparing the current between the photocurrent Ip and the reference current Iref. The dynamic range of the optoelectronic circuit can be widened without being limited to the above.

【0037】尚、電子式電力量計に適用した光電子回路
の実施形態について説明したが、本発明の光電子回路は
これに限定されるものではない。すなわち、本発明の光
電子回路は、磁界や電界によって光のパラメータが変化
するファラデー素子やポッケルス素子を利用した光学セ
ンサに限らず、他の物理的又は化学的現象を計測対象と
する光学センサを適用した様々な計測機器等にも利用す
ることができる。また、計測機器に限らず、発光素子と
受光素子を備えた光伝送システム等において、受光素子
に入射する光の平均受光パワーを一定に保つことで、伝
送品質の向上を図るための制御システム等にも適用する
ことができる。
Although the embodiment of the optoelectronic circuit applied to the electronic wattmeter has been described, the optoelectronic circuit of the present invention is not limited to this. That is, the optoelectronic circuit of the present invention is not limited to an optical sensor using a Faraday element or a Pockels element in which the parameter of light changes due to a magnetic field or an electric field, and applies an optical sensor for measuring other physical or chemical phenomena. It can also be used for various measuring instruments and the like. In addition to measurement equipment, control systems for improving transmission quality by maintaining a constant average light receiving power of light incident on a light receiving element in an optical transmission system including a light emitting element and a light receiving element. Can also be applied.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
受光素子に生じる光電流と予め設定された基準電流とを
比較することで比較電流を生成し、この比較電流の直流
成分に基づいて発光素子に帰還をかけるようにしたの
で、ドリフトなどに起因する受光素子の受光面での平均
受光パワーの変動を抑制することができると共に、ダイ
ナミックレンジを広げることができる。
As described above, according to the present invention,
A comparison current is generated by comparing a photocurrent generated in the light receiving element with a preset reference current, and feedback is applied to the light emitting element based on a DC component of the comparison current. The fluctuation of the average light receiving power on the light receiving surface of the light receiving element can be suppressed, and the dynamic range can be widened.

【0039】また、計測対象によって光のパラメータが
変化する光学センサを発光素子と受光素子との間に介在
させると、ダイナミックレンジの広い帰還ループによ
り、ドリフトなどに起因する受光素子の受光面での平均
受光パワーの変動が抑制されることで、高精度の計測機
器を実現することができる。
When an optical sensor whose light parameter changes depending on the object to be measured is interposed between the light emitting element and the light receiving element, a feedback loop having a wide dynamic range causes a light receiving surface of the light receiving element due to drift or the like to be generated. By suppressing the fluctuation of the average received light power, a highly accurate measuring device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態の光電子回路の構成を示すブロック
図である。
FIG. 1 is a block diagram illustrating a configuration of an optoelectronic circuit according to an embodiment.

【図2】電流比較回路と電流生成回路と基準電圧発生回
路及び電流/電圧変換回路の具体的な回路例を示す回路
図である。
FIG. 2 is a circuit diagram showing specific circuit examples of a current comparison circuit, a current generation circuit, a reference voltage generation circuit, and a current / voltage conversion circuit.

【図3】直流成分抽出回路の具体的な回路例を示す回路
図である。
FIG. 3 is a circuit diagram showing a specific example of a DC component extraction circuit.

【図4】本実施形態の動作例を説明するための説明図で
ある。
FIG. 4 is an explanatory diagram for explaining an operation example of the embodiment;

【図5】本実施形態の動作例を更に説明するための説明
図である。
FIG. 5 is an explanatory diagram for further explaining an operation example of the present embodiment;

【図6】従来の光電子回路の構成を示すブロック図であ
る。
FIG. 6 is a block diagram illustrating a configuration of a conventional optoelectronic circuit.

【符号の説明】[Explanation of symbols]

8…光学センサ 9…駆動回路 10…電流比較回路 11…電流生成回路 12…基準電圧発生回路 13…電流/電圧変換回路 14…ローパスフィルタ 15…直流成分抽出回路 Reference Signs List 8 optical sensor 9 drive circuit 10 current comparison circuit 11 current generation circuit 12 reference voltage generation circuit 13 current / voltage conversion circuit 14 low-pass filter 15 DC component extraction circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01R 33/032 G01R 33/032 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G01R 33/032 G01R 33/032

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発光素子と、前記発光素子で出射される
出射光を受光する受光素子とを有する光電子回路におい
て、 前記受光素子に生じる光電流と予め設定された基準電流
とを比較して比較電流を生成する電流比較回路と、 前記比較電流の直流成分に基づいて前記発光素子に帰還
をかけ、前記受光素子の受光面での平均受光パワーが一
定になるように制御する帰還ループとを備えることを特
徴とする光電子回路。
1. An optoelectronic circuit having a light-emitting element and a light-receiving element for receiving light emitted from the light-emitting element, wherein a photocurrent generated in the light-receiving element is compared with a preset reference current. A current comparison circuit that generates a current; and a feedback loop that performs feedback to the light emitting element based on a DC component of the comparison current and controls the average light receiving power on a light receiving surface of the light receiving element to be constant. An optoelectronic circuit, comprising:
【請求項2】 計測対象によって光のパラメータが変化
する光学センサと、前記光学センサに光を出射する発光
素子と、前記光学センサにより変調される変調光を受光
する受光素子とを有する光電子回路において、 前記受光素子に生じる光電流と予め設定された基準電流
とを比較して比較電流を生成する電流比較回路と、 前記比較電流の直流成分に基づいて前記発光素子に帰還
をかけ、前記受光素子の受光面での平均受光パワーが一
定になるように制御する帰還ループとを備えることを特
徴とする光電子回路。
2. An optoelectronic circuit comprising: an optical sensor whose light parameter changes according to an object to be measured; a light emitting element that emits light to the optical sensor; and a light receiving element that receives modulated light modulated by the optical sensor. A current comparison circuit that generates a comparison current by comparing a photocurrent generated in the light receiving element with a preset reference current; and applying feedback to the light emitting element based on a DC component of the comparison current, the light receiving element A feedback loop for controlling the average light receiving power on the light receiving surface of the light emitting element to be constant.
【請求項3】 前記光学センサは、磁界によって光のパ
ラメータが変化する光磁気効果素子を有することを特徴
とする請求項2に記載の光電子回路。
3. The optoelectronic circuit according to claim 2, wherein the optical sensor has a magneto-optical effect element whose light parameter changes according to a magnetic field.
【請求項4】 前記光学センサは、電界によって光のパ
ラメータが変化する電気光学効果素子を有することを特
徴とする請求項2に記載の光電子回路。
4. The optoelectronic circuit according to claim 2, wherein the optical sensor includes an electro-optic effect element whose light parameter changes according to an electric field.
JP17805798A 1998-06-10 1998-06-10 Optoelectronic circuit Expired - Fee Related JP3335911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17805798A JP3335911B2 (en) 1998-06-10 1998-06-10 Optoelectronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17805798A JP3335911B2 (en) 1998-06-10 1998-06-10 Optoelectronic circuit

Publications (2)

Publication Number Publication Date
JPH11352159A true JPH11352159A (en) 1999-12-24
JP3335911B2 JP3335911B2 (en) 2002-10-21

Family

ID=16041862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17805798A Expired - Fee Related JP3335911B2 (en) 1998-06-10 1998-06-10 Optoelectronic circuit

Country Status (1)

Country Link
JP (1) JP3335911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759824A (en) * 2014-01-23 2014-04-30 西安电子科技大学 Photoelectric conversion circuit used for visible light sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698023A (en) * 2013-12-23 2014-04-02 吴建堂 Signal tester of infrared remote controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759824A (en) * 2014-01-23 2014-04-30 西安电子科技大学 Photoelectric conversion circuit used for visible light sensor

Also Published As

Publication number Publication date
JP3335911B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US4292606A (en) Modulation current control of laser diodes
US4540937A (en) Electronic circuitry with self-calibrating feedback for use with an optical current sensor
US5376783A (en) Power meter with background subtraction
EP0411641B1 (en) Electro-optic sampling apparatus using a low noise pulsed laser diode
US4680810A (en) Means for controlling a semiconductor device and communication system comprising the means
JPS63193582A (en) Laser-diode driving circuit
JP3335911B2 (en) Optoelectronic circuit
US6429638B1 (en) N-diode peak detector
JP3335927B2 (en) Optoelectronic circuit
US6965103B2 (en) Signal strength detection circuits for high speed optical electronics
WO1996013083A1 (en) Bias controller and method therefore
JP3335918B2 (en) Optoelectronic circuit
JP3433106B2 (en) Optoelectronic circuit
GB2223638A (en) Radiation measuring apparatus
JP3066947B2 (en) Sensor circuit
JPS6230433A (en) Laser diode bias current control system
US10845394B2 (en) Null detector devices and systems employing same
SU1019412A1 (en) Direct current stabilizer
US6855920B2 (en) Signal strength detection in high-speed optical electronics
JPS6488372A (en) Current detecting device
JP3135836B2 (en) Sensor circuit
KR100283571B1 (en) Heater voltage generator
JP2840274B2 (en) Semiconductor laser controller
SU1629857A1 (en) Optoelectronic device for checking current in high-voltage circuits
JPS6126870A (en) Peak value detecting circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees