JPH11340435A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11340435A
JPH11340435A JP10141222A JP14122298A JPH11340435A JP H11340435 A JPH11340435 A JP H11340435A JP 10141222 A JP10141222 A JP 10141222A JP 14122298 A JP14122298 A JP 14122298A JP H11340435 A JPH11340435 A JP H11340435A
Authority
JP
Japan
Prior art keywords
group
film
reaction
carbon
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10141222A
Other languages
Japanese (ja)
Other versions
JP3905977B2 (en
Inventor
Tomonori Aoyama
知憲 青山
Kazuhiro Eguchi
和弘 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14122298A priority Critical patent/JP3905977B2/en
Publication of JPH11340435A publication Critical patent/JPH11340435A/en
Application granted granted Critical
Publication of JP3905977B2 publication Critical patent/JP3905977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve surface morphology and to suppress island-shaped growth when forming a capacitor electrode. SOLUTION: In the manufacture of a capacitor using a metal oxide as a dielectric film 10 and using a ruthenium film or a ruthenium oxide film as electrodes 8 and 11 for sandwiching the dielectric film, at least one electrode is formed by the CVD method using an organic group ruthenocene where at least one hydrogen out of ruthenocene or cyclopentadienyl ring is substituted for an organic functional group as a feed gas. In that case, for promoting a reaction for decomposing the cyclopentadienyl ring for forming the framework of cyclopentadienyl ring that is the ligand of the feed gas or the cyclopentadienyl with an organic functional group into a group with one carbon and a group with four carbons, or a reaction for decomposing into a group with one carbon and a group with two carbons, a catalyst that is made of a substance containing at least an 8-group or an 1B-group element is formed on the underlying surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法、特にキャパシタの電極として用いるルテニウム或
いはルテニウム酸化物の形成に関するものである。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to the formation of ruthenium or ruthenium oxide used as an electrode of a capacitor.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高集積化に伴
い、回路の微細化は進む一方であり、キャパシタのセル
面積も非常に小さくなってきている。セル面積が小さく
なるとキャパシタ容量も小さくなってしまうが、キャパ
シタの容量は感度やソフトエラー等の点からあまり小さ
くすることができないという要請がある。これを解決す
る方法として、キャパシタを3次元的に形成しセル面積
をできるだけ大きくしてキャパシタ容量を稼ぐ方法の
他、キャパシタ絶縁膜に誘電率の高い絶縁膜を用いる方
法が検討されている。
2. Description of the Related Art In recent years, as semiconductor integrated circuits have become more highly integrated, circuit miniaturization has been progressing, and the cell area of capacitors has also become extremely small. As the cell area decreases, the capacitance of the capacitor also decreases. However, there is a demand that the capacitance of the capacitor cannot be reduced so much in terms of sensitivity and soft error. As a method of solving this, a method of forming a capacitor three-dimensionally and increasing the cell area as much as possible to obtain a capacitor capacitance, and a method of using an insulating film having a high dielectric constant as a capacitor insulating film are being studied.

【0003】誘電率の高い絶縁膜として代表的なものに
(Ba,Sr)TiO3 があるが、このような酸化物誘
電体を用いる場合は、電極と誘電体膜との界面に低誘電
率の絶縁膜が形成されるのを防止するため、酸化されな
いかまたは酸化されても金属導電性を示す材料を電極と
して用いる必要がある。近年、このような性質を有する
キャパシタの電極材料として、酸化されても金属導電性
を示すルテニウム(Ru)について検討が行われてい
る。
A typical insulating film having a high dielectric constant is (Ba, Sr) TiO 3 , but when such an oxide dielectric is used, a low dielectric constant is formed at the interface between the electrode and the dielectric film. In order to prevent the formation of the insulating film, it is necessary to use a material which is not oxidized or which exhibits metal conductivity even if oxidized. In recent years, ruthenium (Ru), which exhibits metal conductivity even when oxidized, has been studied as an electrode material of a capacitor having such properties.

【0004】Ruを電極、(Ba,Sr)TiO3 を絶
縁膜としたキャパシタの形成方法の一例について、図1
4(a)〜図15(d)を参照して以下説明する。ま
ず、pタイプSi基板1上にSTI(Shallow
Trench Isolation)による素子分離領
域2を形成した後、トランジスタを構成するゲート絶縁
膜3a、ゲート電極(ワード線)3b、n+ 拡散層4を
形成する。その後、層間絶縁膜5aを堆積して平坦化し
た後、ビット線6を形成する。続いて、層間絶縁膜5b
を堆積して平坦化した後、コンタクトホールを開孔して
W膜7を埋め込み、加工する(図14(a))。
FIG. 1 shows an example of a method of forming a capacitor using Ru as an electrode and (Ba, Sr) TiO 3 as an insulating film.
4 (a) to FIG. 15 (d). First, STI (Shallow) is formed on a p-type Si substrate 1.
After forming the element isolation region 2 by Trench Isolation, a gate insulating film 3a, a gate electrode (word line) 3b, and an n + diffusion layer 4 constituting the transistor are formed. After that, the interlayer insulating film 5a is deposited and flattened, and then the bit line 6 is formed. Subsequently, the interlayer insulating film 5b
After depositing and flattening, a contact hole is opened to bury the W film 7 and process (FIG. 14A).

【0005】次に、層間絶縁膜5cを堆積して平坦化し
た後、コンタクトホールを開孔する(図14(b))。
次に、Ru膜8をRu(C552 (シクロペンタジ
エニルルテニウム(慣用名:ルテノセン)、以下、(C
55 )をCpと、(C552 を(Cp)2 と略記
する)とO2 を用いたCVD法で堆積した後、SOG膜
9を全面に塗布し、さらにCMP(ケミカルメカニカル
ポリッシング)法で層間絶縁膜5c上のSOG膜9及び
Ru膜8を除去する(図14(c))。
Next, after depositing and planarizing the interlayer insulating film 5c, a contact hole is opened (FIG. 14B).
Next, the Ru film 8 is made of Ru (C 5 H 5 ) 2 (cyclopentadienyl ruthenium (common name: ruthenocene);
5 H 5 ) is deposited by CVD using Cp, (C 5 H 5 ) 2 is abbreviated as (Cp) 2 ) and O 2, and then an SOG film 9 is applied on the entire surface, and furthermore, CMP (chemical The SOG film 9 and the Ru film 8 on the interlayer insulating film 5c are removed by a mechanical polishing method (FIG. 14C).

【0006】さらに、充分希釈したHF水溶液またはH
F蒸気によってSOG膜9を全て除去した後、(Ba,
Sr)TiO3 膜10をCVD法で堆積する。その後、
Ru膜11をCVD法で堆積し、上部電極として加工す
る(図15(d))。
Further, a sufficiently diluted HF aqueous solution or H
After removing all the SOG film 9 by the F vapor, (Ba,
Sr) A TiO 3 film 10 is deposited by a CVD method. afterwards,
A Ru film 11 is deposited by a CVD method and processed as an upper electrode (FIG. 15D).

【0007】キャパシタ容量を稼ぐためには立体キャパ
シタを作製することが必要であり、高誘電率の(Ba,
Sr)TiO3 を用いたとしても、上記のようにCVD
法で電極及び酸化物誘電体を形成する必要がある。
In order to increase the capacitance of the capacitor, it is necessary to manufacture a three-dimensional capacitor, and a high dielectric constant (Ba,
Even if Sr) TiO 3 is used, as described above, CVD
It is necessary to form an electrode and an oxide dielectric by a method.

【0008】しかし、一般にCVD法で形成した金属膜
或いは金属導電性を持つ金属酸化膜は表面モフォロジー
が悪く、これをキャパシタの電極として用いると電界集
中によるリーク電流の増大が生じる。また、微細化を実
現するために極薄膜の電極を形成しようとすると、島状
の形状となって膜がつながらなくなってしまい、これを
キャパシタ電極として用いるとキャパシタ面積を稼ぐこ
とができず、キャパシタ動作に必要な容量が確保できな
いという問題も生じる。
However, in general, a metal film or a metal oxide film having metal conductivity formed by a CVD method has poor surface morphology, and when this is used as an electrode of a capacitor, leakage current increases due to electric field concentration. Also, if an attempt is made to form an ultra-thin electrode in order to realize miniaturization, the film will not be connected because of an island shape, and if this is used as a capacitor electrode, the capacitor area cannot be increased, and There is also a problem that the capacity required for the operation cannot be secured.

【0009】また、柱状のキャパシタを形成する場合、
Ru膜の表面モフォロジーが悪いと、CMP法で層間絶
縁膜5c上のRu膜を除去した際に図16に示すような
シームがRu電極8の中央部に生じてしまう。そのた
め、キャパシタ絶縁膜である(Ba,Sr)TiO3
を堆積した際にシーム部のキャパシタ絶縁膜に窪みがで
きてしまい、電界集中によるリーク電流の増加が生じる
という問題がある。
When a columnar capacitor is formed,
If the Ru film has poor surface morphology, a seam as shown in FIG. 16 is formed at the center of the Ru electrode 8 when the Ru film on the interlayer insulating film 5c is removed by the CMP method. For this reason, when the (Ba, Sr) TiO 3 film as the capacitor insulating film is deposited, the capacitor insulating film in the seam portion is dented, and there is a problem that an increase in leak current due to electric field concentration occurs.

【0010】[0010]

【発明が解決しようとする課題】このように、Ruはそ
の酸化物(酸化ルテニウム:RuO2 )も金属導電性を
示すため、(Ba,Sr)TiO3 等を誘電体とするキ
ャパシタの電極材料として有望であるが、CVD法で形
成したときに、良好な表面モフォロジーを得ることが難
しく、またRuやRuO2 が島状に形成されてしまうと
いう問題がある。
As described above, since the oxide of Ru (ruthenium oxide: RuO 2 ) also exhibits metal conductivity, the electrode material of a capacitor using (Ba, Sr) TiO 3 or the like as a dielectric material is used. However, when formed by the CVD method, it is difficult to obtain good surface morphology, and there is a problem that Ru or RuO 2 is formed in an island shape.

【0011】本発明は上記従来の課題に対してなされた
ものであり、キャパシタ電極となるルテニウムまたは酸
化ルテニウムの形成に際して、表面モフォロジーに優
れ、島状成長を抑制することが可能な製造方法を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and provides a manufacturing method which is excellent in surface morphology and can suppress island-like growth when forming ruthenium or ruthenium oxide serving as a capacitor electrode. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】本発明は、誘電体膜とし
て金属酸化物を用い、この誘電体膜を挟む電極としてル
テニウム膜または酸化ルテニウム膜を用いたキャパシタ
を有する半導体装置の製造方法において、少なくとも一
方の電極をルテノセンまたはシクロペンタジエニル環の
一つ以上の水素が有機官能基に置換された有機基ルテノ
センを原料ガスとして用いたCVD法で形成する工程
を、原料ガスの配位子であるシクロペンタジエニル基ま
たは有機官能基を持つシクロペンタジエニル基の骨格を
形成するシクロペンタジエニル環を、炭素1個の基と炭
素4個の基に分解させる反応または炭素1個の基と二つ
の炭素2個の基に分解させる反応を促進させる条件下で
行うことを特徴とする(請求項1)。
According to the present invention, there is provided a method of manufacturing a semiconductor device having a capacitor using a metal oxide as a dielectric film and using a ruthenium film or a ruthenium oxide film as an electrode sandwiching the dielectric film. A step of forming at least one electrode by a CVD method using an organic group ruthenocene in which at least one hydrogen of a ruthenocene or cyclopentadienyl ring is substituted by an organic functional group as a source gas, using a ligand of the source gas. Reaction of decomposing a cyclopentadienyl ring forming a skeleton of a cyclopentadienyl group or a cyclopentadienyl group having an organic functional group into one carbon group and four carbon groups, or one carbon group And a condition for accelerating the reaction for decomposing into two groups of two carbons (claim 1).

【0013】前記炭素1個の基と炭素4個の基に分解さ
せる反応または炭素1個の基と二つの炭素2個の基に分
解させる反応を促進させるための処理としては、前記電
極が形成される下地表面に触媒を形成する処理があげら
れる(請求項2)。
As a treatment for accelerating the reaction for decomposing into a group of one carbon and four carbons or the reaction for decomposing into a group of one carbon and two groups of two carbons, the process of forming the electrode (Claim 2).

【0014】下地表面に形成する触媒には、少なくとも
8族または1B族の元素を含む物質(該元素の単体また
は化合物)があげられる(請求項3)。触媒は、0.5
nm以上の膜厚または粒径を有していることが好まし
く、例えば、8族または1B族の元素を含む物質をスパ
ッタ法で形成する、或いは8族または1B族の元素を含
む溶液に浸すといった方法で形成することができる。
The catalyst formed on the underlayer surface includes a substance containing an element of at least the group 8 or 1B (simple element or compound of the element). The catalyst is 0.5
It preferably has a thickness or a particle size of at least nm. For example, a substance containing a Group 8 or 1B element is formed by a sputtering method, or is immersed in a solution containing a Group 8 or 1B element. It can be formed by a method.

【0015】また、本発明は、誘電体膜として金属酸化
物を用い、この誘電体膜を挟む電極としてルテニウム膜
または酸化ルテニウム膜を用いたキャパシタを有する半
導体装置の製造方法において、少なくとも一方の電極を
ルテノセンまたはシクロペンタジエニル環の一つ以上の
水素が有機官能基に置換された有機基ルテノセンを原料
ガスとして用いたCVD法で形成する工程を、原料ガス
の配位子であるシクロペンタジエニル基または有機官能
基を持つシクロペンタジエニル基の骨格を形成するシク
ロペンタジエニル環が分解されてルテニウムアセチリド
誘導体を生成する反応を抑制する条件下で行うことを特
徴とする(請求項4)。
Further, the present invention provides a method of manufacturing a semiconductor device having a capacitor using a metal oxide as a dielectric film and using a ruthenium film or a ruthenium oxide film as an electrode sandwiching the dielectric film. Is formed by a CVD method using, as a source gas, an organic group ruthenocene in which at least one hydrogen of a ruthenocene or cyclopentadienyl ring is substituted with an organic functional group. The method is characterized in that the reaction is performed under conditions that suppress a reaction in which a cyclopentadienyl ring forming a skeleton of a cyclopentadienyl group having an enyl group or an organic functional group is decomposed to form a ruthenium acetylide derivative. ).

【0016】前記ルテニウムアセチリド誘導体を生成す
る反応を抑制するための処理としては、前記電極が形成
される下地に対する表面処理があげられ(請求項5)、
特に原料ガスの構成要素に対して負の電荷を与える反応
を生じさせる表面処理(請求項6)があげられる。具体
的な表面処理としては、プラズマ中に晒す処理、ハロゲ
ンイオンを含む溶液に浸す処理、アルカリ溶液に浸す処
理があげられる。
The treatment for suppressing the reaction for producing the ruthenium acetylide derivative includes a surface treatment for a base on which the electrode is formed (Claim 5).
In particular, a surface treatment for causing a reaction for giving a negative charge to the constituents of the source gas (claim 6) can be mentioned. Specific surface treatments include exposure to plasma, immersion in a solution containing halogen ions, and immersion in an alkaline solution.

【0017】また、請求項4に係る発明を成長速度の観
点から見ると、例えば、0.02nm/min以上で2
nm/min未満の成長速度を有する反応と、2nm/
min以上の成長速度を有する反応が段階的に生じる、
或いは、0.02nm/min以上で2nm/min未
満の成長速度を有する反応が15分以下である、といっ
た特性を有している。
Further, when the invention according to claim 4 is viewed from the viewpoint of the growth rate, for example, at 0.02 nm / min or more, 2
a reaction with a growth rate of less than 2 nm / min
A reaction having a growth rate of min or more occurs stepwise.
Alternatively, it has a characteristic that a reaction having a growth rate of 0.02 nm / min or more and less than 2 nm / min is 15 minutes or less.

【0018】以下、本発明の有効性を示すためのRu膜
の成長メカニズム等について説明する。Ru膜の成長に
ついて詳細に調べたところ、Ruの成長はある一定の時
間(導入時間)が経過した後に起こっていることが判明
した。230℃で成膜した場合について調べたところ、
20分以上の導入時間があることがわかった。WやTi
N等のLSIに用いられている金属膜をCVD法で成膜
する場合はこのような数10分オーダーの導入時間は見
られず、RuのCVDが非常に特異であることがわか
る。また、導入時間と成長時間に対するRu膜厚につい
てさらに詳細に調べた結果、図13に示すように、導入
時間中は非常に遅い成長速度でRuが成長し、ある程度
の膜厚または粒径(0.5−1.5nm程度)になる
と、成長速度が急激に速くなることがわかった。
Hereinafter, the growth mechanism of the Ru film for showing the effectiveness of the present invention will be described. When the growth of the Ru film was examined in detail, it was found that the growth of Ru occurred after a certain time (introduction time) had elapsed. When the film was formed at 230 ° C,
It was found that there was an introduction time of 20 minutes or more. W and Ti
When a metal film used for an LSI such as N is formed by a CVD method, such an introduction time on the order of several tens of minutes is not seen, and it is understood that Ru CVD is very peculiar. Further, as a result of further detailed investigation of the Ru film thickness with respect to the introduction time and the growth time, as shown in FIG. 13, Ru grew at a very low growth rate during the introduction time, and a certain thickness or grain size (0 (About 1.5-1.5 nm), it was found that the growth rate sharply increased.

【0019】導入時間中での反応過程を四重極質量分析
計(Q−Mass)を用いて調べた結果、Ru(Cp)
2 がRuCpとCpに分解される反応、RuCpがRu
とCpに分解される反応、RuCpが分解される際に、
Cpが炭素2個の基と炭素3個の基に分解され、炭素3
個の基がRuと結合してルテニウムメチルアセチリド
(RuC≡CCH3 )を形成する反応、があることがわ
かった(図11参照)。
The reaction process during the introduction time was examined using a quadrupole mass spectrometer (Q-Mass).
2 is decomposed into RuCp and Cp, RuCp becomes Ru
When RuCp is decomposed into a reaction decomposed into Cp and
Cp is decomposed into two carbon groups and three carbon groups,
It has been found that there is a reaction in which these groups are combined with Ru to form ruthenium methylacetylide (RuC≡CCH 3 ) (see FIG. 11).

【0020】また、反応をさらに詳細に調べたところ、
導入時間中ではルテニウムメチルアセチリドの生成反応
に原料のRuが消費され、RuCpがRuとCpに分解
される反応に用いられるRuの量が少なく、ルテニウム
メチルアセチリドは揮発してウエハ上にRuが形成され
ないため、Ruの成膜速度は極めて遅くその密度も低い
ことが判明した。このような反応で成膜したRu膜の断
面SEM像を図20に示す。初期核密度が低いため、表
面モフォロジーが非常に悪くなっていることがわかる。
Further, when the reaction was examined in more detail,
During the introduction time, the raw material Ru is consumed in the reaction for generating ruthenium methyl acetylide, the amount of Ru used in the reaction in which RuCp is decomposed into Ru and Cp is small, and ruthenium methyl acetylide volatilizes to form Ru on the wafer. Therefore, it was found that the Ru film formation rate was extremely slow and the density was low. FIG. 20 shows a cross-sectional SEM image of the Ru film formed by such a reaction. It can be seen that the surface morphology is very poor due to the low initial nuclear density.

【0021】そこで、RuのCVDの前に数層のRuを
触媒となるように密に形成し、その後にCVD法でRu
を成膜したところ、表面の非常に滑らかなRu膜が得ら
れることが判明した。また、この場合は導入時間が見ら
れず、直ちにRu膜の成長が起こっていることが判明し
た。これは、Ruが触媒として機能し、原料ガスを供給
したときにCp環が炭素1個の基と炭素4個の基(或い
は炭素1個の基と二つの炭素2個の基)に分解する反応
を促進させるためである。なお、触媒としてはRu以外
に8族や1B族の元素を少なくとも一つ以上含む単体ま
たは化合物でも同様に効果があることが判明した。
Therefore, several layers of Ru are formed densely as a catalyst before the CVD of Ru, and then Ru is formed by a CVD method.
It was found that a Ru film having a very smooth surface was obtained. In this case, no introduction time was observed, and it was found that the Ru film was growing immediately. This is because Ru functions as a catalyst and the Cp ring is decomposed into one carbon group and four carbon groups (or one carbon group and two two carbon groups) when the source gas is supplied. This is for accelerating the reaction. In addition, it has been found that a simple substance or a compound containing at least one group 8 or 1B element other than Ru as the catalyst is also effective.

【0022】また、導入時間中にできるだけ密に初期核
が形成されるように下地を処理した場合、下地を処理し
ていない場合と同様に導入時間と成長時間が見られた
が、導入時間は下地を処理していない場合よりも短く、
また、成膜されたRu膜は非常に良好な表面モフォロジ
ーを有しているいることが判明した。これは、下地処理
を行うことにより、Ru(Cp)基等に対して負の電荷
が供与され、ルテニウムアセチリド誘導体が生成される
反応が抑制されるためである。
When the underlayer was treated so that the initial nuclei were formed as densely as possible during the introduction time, the introduction time and the growth time were observed as in the case where the underlayer was not treated. It is shorter than when the substrate is not processed,
It was also found that the formed Ru film had a very good surface morphology. This is because by performing the base treatment, a negative charge is provided to the Ru (Cp) group and the like, and the reaction of generating a ruthenium acetylide derivative is suppressed.

【0023】以上のことから、キャパシタ電極としてR
u或いはRuO2 をCVD法で成膜する際に、CVDの
反応が促進される触媒を下地表面に密に形成することに
よって、Ru或いはRuO2 の成長反応が速やかに起こ
り、成膜された膜の表面モフォロジーを平滑にすること
ができる(請求項1−3)。
From the above, as the capacitor electrode, R
When forming a film of u or RuO 2 by the CVD method, a catalyst for accelerating the CVD reaction is densely formed on the base surface, so that the growth reaction of Ru or RuO 2 occurs quickly, and the formed film is formed. Can have a smooth surface morphology (claim 1-3).

【0024】また、導入時間中に生じるルテニウムメチ
ルアセチリド誘導体の生成を抑制する下地処理を行うこ
とにより、初期核形成速度の上昇と初期核密度の増大を
はかることができ、成膜された膜の表面モフォロジーを
平滑にすることができる(請求項4−6)。
Further, by performing a base treatment for suppressing the formation of the ruthenium methylacetylide derivative generated during the introduction time, it is possible to increase the initial nucleation rate and increase the initial nucleus density. Surface morphology can be smoothed (claim 4-6).

【0025】[0025]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。 (1)実施形態1 まず、本発明の第1の実施形態に係るキャパシタの製造
工程ついて、図1(a)乃至図3(g)を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings. (1) First Embodiment First, a manufacturing process of a capacitor according to a first embodiment of the present invention will be described with reference to FIGS. 1 (a) to 3 (g).

【0026】まず、pタイプSi基板1上に、STI構
造の素子分離領域2を形成した後、ゲート絶縁膜3a、
ゲート電極3b(ワード線となる)及びソース・ドレイ
ン拡散層(n+ 拡散層)4からなるMOSトランジスタ
を形成する。その後、層間絶縁膜5aを堆積して平坦化
した後、ビット線6を形成する。その後、さらに層間絶
縁膜5bを堆積して平坦化した後、コンタクトホールを
開孔する(図1(a))。
First, after an element isolation region 2 having an STI structure is formed on a p-type Si substrate 1, a gate insulating film 3a,
A MOS transistor including a gate electrode 3b (to be a word line) and a source / drain diffusion layer (n + diffusion layer) 4 is formed. After that, the interlayer insulating film 5a is deposited and flattened, and then the bit line 6 is formed. Thereafter, an interlayer insulating film 5b is further deposited and planarized, and then a contact hole is opened (FIG. 1A).

【0027】次に、W膜7を全面に堆積した後、層間絶
縁膜5b上のW膜7をエッチバック法またはCMP法に
より除去し、コンタクトホール内部にのみ埋め込む(図
1(b))。続いて、層間絶縁膜5cを堆積して平坦化
した後、コンタクトホールを開孔する(図1(c))。
Next, after the W film 7 is deposited on the entire surface, the W film 7 on the interlayer insulating film 5b is removed by an etch-back method or a CMP method and buried only in the contact hole (FIG. 1B). Subsequently, after the interlayer insulating film 5c is deposited and planarized, a contact hole is opened (FIG. 1C).

【0028】次に、基板をRuCl3 のエチレングリコ
ール溶液またはRuのメッキ液に浸す処理を行い、0.
5nm以上のRu8を全面に形成する(図2(d))。
その後、基板温度180−400℃、圧力0.01−1
0Torrで、ArガスをキャリアとしたRu(Cp)
2 とO2 (雰囲気中O2 濃度40%以下)をチャンバー
に導入してRu膜8を全面に堆積する(図2(e))。
次に、SOG膜(図示せず)を全面に塗布した後、CM
P法で層間絶縁膜5c上のSOG膜及びRu膜を除去
し、HF蒸気でコンタクトホール内に残ったSOG膜を
除去してRu膜8からなる下部電極を形成する(図2
(f))。
Next, the substrate is immersed in an ethylene glycol solution of RuCl 3 or a plating solution of Ru.
Ru8 of 5 nm or more is formed on the entire surface (FIG. 2D).
Thereafter, a substrate temperature of 180-400 ° C. and a pressure of 0.01-1.
Ru (Cp) with Ar gas as carrier at 0 Torr
2 and O 2 (O 2 concentration of 40% or less in the atmosphere) are introduced into the chamber, and a Ru film 8 is deposited on the entire surface (FIG. 2E).
Next, after applying an SOG film (not shown) on the entire surface, the CM
The SOG film and the Ru film on the interlayer insulating film 5c are removed by the P method, and the SOG film remaining in the contact hole is removed by HF vapor to form a lower electrode made of the Ru film 8 (FIG. 2).
(F)).

【0029】次に、(Ba,Sr)TiO3 膜10をC
VD法で全面に堆積する。その後、基板温度100−2
00℃、圧力1−100Torrで、Arガスをキャリ
アとしたRu(Cp)2 とO2 の混合ガス中に基板を晒
して初期核の形成を行った後、基板温度200−450
℃、圧力0.01−10Torrで、Arガスをキャリ
アとしたRu(Cp)2 とO2 (雰囲気中O2 濃度40
%以下)をチャンバーに導入してRu膜11を全面に堆
積し、上部電極として加工する(図3(g))。
Next, the (Ba, Sr) TiO 3 film 10 is
It is deposited on the entire surface by the VD method. Thereafter, a substrate temperature of 100-2
The substrate was exposed to a mixed gas of Ru (Cp) 2 and O 2 using Ar gas as a carrier at 00 ° C. and a pressure of 1-100 Torr to form an initial nucleus.
Ru (Cp) 2 and O 2 (Ar atmosphere O 2 concentration 40) using Ar gas as a carrier at a temperature of 0.01 ° C. and a pressure of 0.01-10 Torr.
% Or less) is introduced into the chamber, and a Ru film 11 is deposited on the entire surface and processed as an upper electrode (FIG. 3G).

【0030】このように、RuのCVDを行う直前にR
uを含む溶液に浸すことにより、下地表面に0.5nm
以上のRuの核を密につけることができる。この場合の
Ru膜の反応過程を四重極質量分析計を用いて詳細に調
べた結果、RuCpが炭素1個の基と炭素4個の基(或
いは炭素1個の基と二つの炭素2個の基)に分解してR
uが生成する反応でRuの成長が起こっていることがわ
かった(図12参照)。また、0.5nm以上のRuの
核は触媒として機能し、原料ガスを供給すると直ちにC
p環が炭素1個の基と炭素4個の基(或いは炭素1個の
基と二つの炭素2個の基)に分解する反応を促進させる
ことができ、平滑な表面のRu膜を得ることができる。
As described above, immediately before performing Ru CVD, R
immersion in a solution containing u
The above-mentioned Ru nuclei can be densely provided. The reaction process of the Ru film in this case was examined in detail using a quadrupole mass spectrometer, and as a result, RuCp was found to have one carbon group and four carbon groups (or one carbon group and two carbon atoms). To the group of
It was found that the growth of Ru occurred in the reaction for producing u (see FIG. 12). Further, the Ru nucleus of 0.5 nm or more functions as a catalyst, and immediately after supplying the raw material gas,
A reaction in which the p-ring is decomposed into one carbon group and four carbon groups (or one carbon group and two two carbon groups) can be promoted, and a Ru film having a smooth surface can be obtained. Can be.

【0031】なお、上記の例ではRuを含む溶液に浸す
処理を行ったが、Ruの代わりにPt,Au,Ir,R
h等の8族或いは1B族の元素を含む溶液に浸し、これ
らの元素を含む単体または化合物を核とした場合にも、
同様の触媒作用により同様の効果を得ることができる。
In the above example, the immersion treatment was performed in a solution containing Ru, but instead of Ru, Pt, Au, Ir, R
h, etc., when immersed in a solution containing an element of Group 8 or 1B, and a simple substance or a compound containing these elements is used as a nucleus,
A similar effect can be obtained by a similar catalytic action.

【0032】(2)実施形態2 次に、本発明の第2の実施形態に係るキャパシタの製造
工程ついて、図4(a)乃至図6(h)を参照して説明
する。
(2) Second Embodiment Next, a manufacturing process of a capacitor according to a second embodiment of the present invention will be described with reference to FIGS. 4 (a) to 6 (h).

【0033】まず、pタイプSi基板1上に、STI構
造の素子分離領域2を形成した後、ゲート絶縁膜3a、
ゲート電極3b及びソース・ドレイン拡散層(n+ 拡散
層)4からなるMOSトランジスタを形成する。その
後、層間絶縁膜5aを堆積して平坦化した後、ビット線
6を形成する。その後、さらに層間絶縁膜5bを堆積し
て平坦化した後、シリコン窒化膜5dを堆積し、コンタ
クトホールを開孔する(図4(a))。
First, after an element isolation region 2 having an STI structure is formed on a p-type Si substrate 1, a gate insulating film 3a,
A MOS transistor including the gate electrode 3b and the source / drain diffusion layer (n + diffusion layer) 4 is formed. After that, the interlayer insulating film 5a is deposited and flattened, and then the bit line 6 is formed. Thereafter, an interlayer insulating film 5b is further deposited and planarized, and then a silicon nitride film 5d is deposited, and a contact hole is opened (FIG. 4A).

【0034】次に、W膜7を全面に堆積した後、シリコ
ン窒化膜5d上のW膜7をエッチバック法またはCMP
法により除去し、コンタクトホール内部にのみ埋め込む
(図4(b))。続いて、層間絶縁膜5cを堆積して平
坦化した後、コンタクトホールを開孔する(図4
(c))。
Next, after a W film 7 is deposited on the entire surface, the W film 7 on the silicon nitride film 5d is etched back by an etch-back method or a CMP method.
It is removed by a method and buried only inside the contact hole (FIG. 4B). Subsequently, after an interlayer insulating film 5c is deposited and planarized, a contact hole is opened (FIG. 4).
(C)).

【0035】次に、スパッタ法で0.5nm以上の膜厚
となるように、薄くRu膜8を形成する(図5
(d))。その後、基板温度180−400℃、圧力
0.01−10Torrで、Arガスをキャリアとした
Ru(EtCp)2 (Etはエチル基を表す)とO2
(雰囲気中O2 濃度40%以下)をチャンバーに導入し
てRu膜8を全面に堆積する(図5(e))。その後、
CMP法で層間絶縁膜5c上のRu膜8を除去してコン
タクトホール内部にRu膜8を埋め込む(図5
(f))。さらに、希HF水溶液によるウエットエッチ
ングまたは反応性イオンエッチングにて層間絶縁膜5c
を除去し、Ru膜8からなる下部電極を形成する(図6
(g))。
Next, a thin Ru film 8 is formed by sputtering to a thickness of 0.5 nm or more.
(D)). Then, Ru (EtCp) 2 (Et represents an ethyl group) and O 2 using Ar gas as a carrier at a substrate temperature of 180 to 400 ° C. and a pressure of 0.01 to 10 Torr.
(O 2 concentration of 40% or less in the atmosphere) is introduced into the chamber, and a Ru film 8 is deposited on the entire surface (FIG. 5E). afterwards,
The Ru film 8 on the interlayer insulating film 5c is removed by the CMP method to bury the Ru film 8 in the contact hole (FIG. 5).
(F)). Further, the interlayer insulating film 5c is formed by wet etching or reactive ion etching with a dilute HF aqueous solution.
To form a lower electrode made of the Ru film 8 (FIG. 6).
(G)).

【0036】次に、(Ba,Sr)TiO3 膜10をC
VD法で全面に堆積する。その後、下部Ru電極の場合
と同様にしてRu膜11を全面に堆積し、上部電極とし
て加工する(図6(h))。
Next, the (Ba, Sr) TiO 3 film 10 is
It is deposited on the entire surface by the VD method. Thereafter, a Ru film 11 is deposited on the entire surface in the same manner as in the case of the lower Ru electrode, and is processed as an upper electrode (FIG. 6 (h)).

【0037】このように、RuのCVDを行う直前に
0.5nm以上の極薄Ru膜を形成することによって、
下地表面にRuの核を密につけることができ、かつ、R
u−CVD時に直ちにEtCpの骨格となるCp環が炭
素1個の基と炭素4個の基(または炭素1個の基と二つ
の炭素2個の基)に分解する反応を促進させる触媒作用
が生じ、図17のSEM像に示されるように、平滑な表
面のRu膜を得ることができる。
As described above, by forming an ultra-thin Ru film of 0.5 nm or more immediately before performing Ru CVD,
Ru nuclei can be densely attached to the underlayer surface, and R
A catalytic action that promotes the reaction of immediately decomposing the Cp ring serving as the skeleton of EtCp into one carbon group and four carbon groups (or one carbon group and two two carbon groups) during u-CVD. As a result, as shown in the SEM image of FIG. 17, a Ru film having a smooth surface can be obtained.

【0038】なお、上記の例ではスパッタ法によりRu
の核を形成したが、Ruの代わりにPt,Au,Ir,
Rh等の8族或いは1B族の元素を含む単体または化合
物を核としても、同様に触媒作用が生じ同様の効果を得
ることができる。
In the above example, Ru is used by sputtering.
, But instead of Ru, Pt, Au, Ir,
Even when a nucleus is a simple substance or a compound containing a Group 8 or 1B element such as Rh, a catalytic action is similarly produced and the same effect can be obtained.

【0039】(3)実施形態3 次に、本発明の第3の実施形態に係るキャパシタの製造
工程ついて、図7(d)乃至図7(f)を参照して説明
する。なお、途中の工程までは第1の実施形態で示した
工程(図1(a)−図1(c)の工程)と同様であるた
め、これらの工程については第1の実施形態を参照する
こととし、それ以降の工程について説明する。
(3) Third Embodiment Next, a manufacturing process of a capacitor according to a third embodiment of the present invention will be described with reference to FIGS. 7 (d) to 7 (f). Since the steps up to the middle are the same as the steps shown in the first embodiment (the steps of FIGS. 1A to 1C), the first embodiment is referred to for these steps. The subsequent steps will be described.

【0040】図1(c)の工程の後、O2 プラズマ中或
いはArプラズマ中に基板を晒し、その後、基板温度2
00−450℃、圧力0.01−10Torrで、Ar
ガスをキャリアとしたRu(EtCp)2 とO2 (雰囲
気中O2 濃度40%以下)をチャンバーに導入してRu
膜8を全面に堆積する(図7(d))。その後、SOG
膜(図示せず)を全面に塗布した後、CMP法で層間絶
縁膜5c上のSOG膜及びRu膜8を除去し、HF蒸気
でコンタクトホール内に残ったSOG膜を除去してRu
膜8からなる下部電極を形成する(図7(e))。
After the step shown in FIG. 1C, the substrate is exposed to O 2 plasma or Ar plasma.
At 00-450 ° C. under a pressure of 0.01-10 Torr, Ar
Ru (EtCp) 2 and O 2 (O 2 concentration of 40% or less in the atmosphere) with a gas as a carrier are introduced into the chamber, and Ru is introduced.
The film 8 is deposited on the entire surface (FIG. 7D). Then, SOG
After a film (not shown) is applied on the entire surface, the SOG film and the Ru film 8 on the interlayer insulating film 5c are removed by a CMP method, and the SOG film remaining in the contact hole is removed by HF vapor to remove Ru.
A lower electrode made of the film 8 is formed (FIG. 7E).

【0041】次に、(Ba,Sr)TiO3 膜10をC
VD法で全面に堆積する。その後、下部Ru電極8の場
合と同様に、O2 プラズマ中或いはArプラズマ中に基
板を晒した後、Ru膜11をCVD法で堆積し、上部電
極として加工する(図7(f))。
Next, the (Ba, Sr) TiO 3 film 10 is
It is deposited on the entire surface by the VD method. After that, as in the case of the lower Ru electrode 8, the substrate is exposed to O 2 plasma or Ar plasma, and then a Ru film 11 is deposited by a CVD method and processed as an upper electrode (FIG. 7F).

【0042】このように、下部及び上部Ru電極を形成
する前に基板をプラズマ処理することにより、ミクロな
ダメージによって原料ガスが吸着されやすくなり、核密
度が増加する。また、ダングリングボンドが生じること
により、電子がRu(EtCp)基に供与され、Ruの
アセチリド化反応が抑制され、金属Ruを生成する反応
が促進される。このため、初期核が形成されやすくな
り、島状成長及び表面モフォロジー劣化を防止すること
ができ、良好な特性のキャパシタを実現することができ
る。
As described above, by subjecting the substrate to plasma treatment before forming the lower and upper Ru electrodes, the source gas is easily adsorbed due to micro damage, and the nucleus density is increased. In addition, when a dangling bond is generated, electrons are donated to the Ru (EtCp) group, the acetylidation reaction of Ru is suppressed, and the reaction of generating metal Ru is promoted. For this reason, initial nuclei are easily formed, island growth and surface morphology deterioration can be prevented, and a capacitor having excellent characteristics can be realized.

【0043】なお、上記の例ではRuの成膜前にO2
ラズマ中或いはArプラズマ中で処理を行ったが、N2
プラズマ中やNeプラズマ中或いはHCl,BCl3
Cl2 ,F2 等のハロゲンを含むプラズマ中で処理して
も初期核密度を増加させることができ、良好なキャパシ
タを形成することができる。
Incidentally, although in the above example were treated with O 2 plasma or an Ar plasma before the formation of Ru, N 2
In plasma, Ne plasma, HCl, BCl 3 ,
Cl 2, be treated in a plasma containing a halogen F 2 or the like can increase the initial nucleus density, it is possible to form a good capacitor.

【0044】また、プラズマの発生方法としては、平行
平板型、ヘリコン型、ECR型、誘導結合型等を用いる
ことができる。また、プラズマ処理とRuの成膜を例え
ばクラスタータイプのCVD装置を用いて真空を破るこ
となく連続で行うと、より平滑なRu膜を得ることがで
きる。
As a plasma generation method, a parallel plate type, a helicon type, an ECR type, an inductive coupling type, or the like can be used. Further, when the plasma treatment and the film formation of Ru are continuously performed without breaking vacuum using, for example, a cluster type CVD apparatus, a smoother Ru film can be obtained.

【0045】(4)実施形態4 次に、本発明の第4の実施形態に係るキャパシタの製造
工程ついて、図8(d)乃至図9(g)を参照して説明
する。なお、途中の工程までは第2の実施形態で示した
工程(図4(a)−図4(c)の工程)と同様であるた
め、これらの工程については第2の実施形態を参照する
こととし、それ以降の工程について説明する。
(4) Fourth Embodiment Next, a manufacturing process of a capacitor according to a fourth embodiment of the present invention will be described with reference to FIGS. 8 (d) to 9 (g). Note that the steps up to the middle are the same as the steps shown in the second embodiment (the steps of FIGS. 4A to 4C), and therefore these steps are referred to the second embodiment. The subsequent steps will be described.

【0046】図4(c)の工程の後、NH4 F水溶液、
HCl水溶液またはテトラメチルアンモニウムハイドロ
オキサイド((CH34 NOH)水溶液に浸す処理を
行い、その後、基板温度180−400℃、圧力0.0
1−10Torrで、ArガスをキャリアとしたRu
(Cp)2 とO2 (雰囲気中O2 濃度40%以下)をチ
ャンバーに導入して、Ru膜8を全面に堆積する(図8
(d))。その後、CMP法で層間絶縁膜5c上のRu
膜8を除去してコンタクトホール内部にRu膜8を埋め
込む(図8(e))。さらに、希HF水溶液によるウエ
ットエッチングまたは反応性イオンエッチングにて層間
絶縁膜5cを除去し、Ru膜8からなる下部電極を形成
する(図9(f))。
After the step of FIG. 4C, an aqueous NH 4 F solution
HCl aqueous solution or tetramethylammonium hydroxide ((CH 3 ) 4 NOH) aqueous solution, and then a substrate temperature of 180-400 ° C. and a pressure of 0.0
Ru at 1-10 Torr using Ar gas as a carrier
(Cp) 2 and O 2 (O 2 concentration of 40% or less in the atmosphere) are introduced into the chamber, and a Ru film 8 is deposited on the entire surface (FIG. 8).
(D)). Then, Ru on the interlayer insulating film 5c is formed by the CMP method.
The film 8 is removed and the Ru film 8 is buried inside the contact hole (FIG. 8E). Further, the interlayer insulating film 5c is removed by wet etching using a dilute HF aqueous solution or reactive ion etching to form a lower electrode made of the Ru film 8 (FIG. 9F).

【0047】さらに、(Ba,Sr)TiO3 膜10を
CVD法で全面に堆積する。その後、下部Ru電極の場
合と同様にRu膜11を全面に堆積し、上部電極として
加工する(図9(g))。
Further, a (Ba, Sr) TiO 3 film 10 is deposited on the entire surface by the CVD method. Thereafter, a Ru film 11 is deposited on the entire surface as in the case of the lower Ru electrode, and processed as an upper electrode (FIG. 9G).

【0048】このようにして、Ru電極を形成する前に
ハロゲンイオンを含む溶液中またはアルカリ溶液中で処
理することにより、下地表面に吸着した陰イオンから電
子がRu(Cp)基に供与され、Ruのアセチリド化反
応が抑制され、金属Ruを生成する反応が促進される。
このため、初期核が形成されやすくなり、島状成長及び
表面モフォロジー劣化を防止することができ、良好な特
性のキャパシタを実現することができる。
In this way, by performing the treatment in a solution containing a halogen ion or in an alkaline solution before forming the Ru electrode, electrons are supplied to the Ru (Cp) group from the anions adsorbed on the base surface, The acetylidation reaction of Ru is suppressed, and the reaction for generating metal Ru is promoted.
For this reason, initial nuclei are easily formed, island growth and surface morphology deterioration can be prevented, and a capacitor having excellent characteristics can be realized.

【0049】このように、導入時間中にできるだけ密に
初期核が形成されるように下地を処理した場合、下地を
処理していない場合と同様に導入時間と成長時間が見ら
れたが、導入時間は下地を処理していない場合よりも短
く(基板温度230℃の場合、処理無しでは23分であ
ったのが、本処理を行うことにより14分になった)、
また、図18のSEM像に示されるように、成膜された
Ru膜は非常に良好な表面モフォロジーをもっているこ
とが判明した。このように、初期核が触媒作用を生じる
大きさになるまでの導入時間が短くなるようにRuのア
セチリド化反応を抑制すれば、下地表面に形成されるR
uの量が増加し、かつ、触媒として作用する初期核密度
も向上させることができる。詳細に調べたところ、導入
時間が15分以内となるように下地を処理することで、
平滑なRu膜が得られることが判明した。
As described above, when the underlayer was processed so that the initial nuclei were formed as densely as possible during the introduction time, the introduction time and the growth time were observed as in the case where the underlayer was not processed. The time is shorter than when the base is not processed (in the case of the substrate temperature of 230 ° C., the time was 23 minutes without the processing, but now becomes 14 minutes by performing the processing).
Further, as shown in the SEM image of FIG. 18, it was found that the formed Ru film had a very good surface morphology. As described above, if the acetylidation reaction of Ru is suppressed so that the introduction time until the initial nucleus becomes large enough to cause the catalytic action is reduced, the R formed on the base surface can be reduced.
The amount of u increases, and the initial nuclear density acting as a catalyst can be improved. After a detailed investigation, by processing the groundwork so that the introduction time is within 15 minutes,
It has been found that a smooth Ru film can be obtained.

【0050】(5)実施形態5 次に、本発明の第5の実施形態に係るキャパシタの製造
工程ついて、図10(d)乃至図10(f)を参照して
説明する。なお、途中の工程までは第1の実施形態で示
した工程(図1(a)−図1(c)の工程)と同様であ
るため、これらの工程については第1の実施形態を参照
することとし、それ以降の工程について説明する。
(5) Fifth Embodiment Next, a manufacturing process of a capacitor according to a fifth embodiment of the present invention will be described with reference to FIGS. 10 (d) to 10 (f). Since the steps up to the middle are the same as the steps shown in the first embodiment (the steps of FIGS. 1A to 1C), the first embodiment is referred to for these steps. The subsequent steps will be described.

【0051】図1(c)の工程の後、基板温度200℃
でCl2 ガスまたは5%に希釈したF2 ガスに基板を晒
し、その後、基板温度200−450℃、圧力0.01
−10Torrで、ArガスをキャリアとしたRu(M
eCp)2 (Meはメチル基を表す)とO2 (雰囲気中
2 濃度40%以上)をチャンバーに導入して、RuO
2 膜12を全面に堆積する(図10(d))。その後、
SOG膜(図示せず)を全面に塗布した後、CMP法で
層間絶縁膜5c上のSOG膜及びRuO2 膜12を除去
し、HF蒸気でコンタクトホール内に残ったSOG膜を
除去して、RuO2 膜12からなる下部電極を形成する
(図10(e))。
After the step of FIG. 1C, the substrate temperature is set to 200 ° C.
The substrate is exposed to Cl 2 gas or F 2 gas diluted to 5% with a substrate temperature of 200 to 450 ° C. and a pressure of 0.01.
Ru (M) using Ar gas as a carrier at −10 Torr
eCp) 2 (Me represents a methyl group) and O 2 (O 2 concentration of 40% or more in the atmosphere) were introduced into the chamber, and RuO was introduced.
Two films 12 are deposited on the entire surface (FIG. 10D). afterwards,
After applying an SOG film (not shown) on the entire surface, the SOG film and the RuO 2 film 12 on the interlayer insulating film 5c are removed by the CMP method, and the SOG film remaining in the contact hole is removed by HF vapor. A lower electrode made of the RuO 2 film 12 is formed (FIG. 10E).

【0052】次に、(Ba,Sr)TiO3 膜10をC
VD法で全面に堆積する。その後、下部RuO2 電極形
成の場合と同様にハロゲンガスで処理した後、RuO2
膜13を全面に堆積し、上部電極として加工する(図1
0(f))。
Next, the (Ba, Sr) TiO 3 film 10 is
It is deposited on the entire surface by the VD method. Then, after treating with a halogen gas as in the case of forming the lower RuO 2 electrode, RuO 2
A film 13 is deposited on the entire surface and processed as an upper electrode (FIG. 1).
0 (f)).

【0053】このようにして、RuO2 電極を形成する
前にハロゲンを含む雰囲気中で処理することにより、下
地表面に吸着したハロゲンから電子がRu(MeCp)
基に供与され、Ruのアセチリド化反応を抑制し、金属
Ruの生成反応が促進され、この金属Ruと酸素が結合
してRuO2 が形成される反応も促進される。このた
め、初期核が形成されやすくなり、島状成長及び表面モ
フォロジー劣化を防止することができ、良好な特性のキ
ャパシタを実現することができる。
As described above, by performing the treatment in an atmosphere containing halogen before forming the RuO 2 electrode, the electrons adsorbed from the halogen adsorbed on the surface of the underlayer become Ru (MeCp).
It is provided to the group, suppresses the acetylidation reaction of Ru, promotes the production reaction of metal Ru, and promotes the reaction in which Ru and oxygen are combined to form RuO 2 . For this reason, initial nuclei are easily formed, island growth and surface morphology deterioration can be prevented, and a capacitor having excellent characteristics can be realized.

【0054】以上、本発明の実施形態について説明した
が、本発明を用いることにより表面モフォロジーの良好
なRu膜を得ることができる。図19にRuを20nm
と薄膜化した場合のSEM像を示す。20nmという薄
膜にもかかわらず、島状の成長も見られず、表面が非常
に平滑なRuがコンフォーマルに成膜されていることが
判明した。
Although the embodiments of the present invention have been described above, a Ru film having good surface morphology can be obtained by using the present invention. FIG. 19 shows Ru at 20 nm.
5 shows an SEM image when the film is made thinner. Despite the thin film thickness of 20 nm, no island-shaped growth was observed, and it was found that Ru with a very smooth surface was conformally formed.

【0055】なお、本発明は上記各実施形態に限定され
るものではなく、種々変形して実施可能である。上記実
施形態ではRuやRuO2 形成の際にO2 ガスをチャン
バーに導入しているが、O2 の代わりにO3 やOラジカ
ルを用いてもよい。例えばOラジカルを用いる場合に
は、マイクロ波放電によって発生させたOラジカルをチ
ャンバーに導入すればよい。
The present invention is not limited to the above embodiments, but can be implemented with various modifications. In the above embodiment, the O 2 gas is introduced into the chamber when Ru or RuO 2 is formed, but O 3 or O radicals may be used instead of O 2 . For example, when O radicals are used, O radicals generated by microwave discharge may be introduced into the chamber.

【0056】また、上記実施形態ではキャパシタ絶縁膜
に(Ba,Sr)TiO3 を用いて説明したが、PZ
T,STO,Ta25 ,BTO,SBT等を用いても
よい。さらに、W膜の下地にTi膜やTiN膜或いはこ
れらの積層膜を密着層として堆積してもよい。
In the above embodiment, (Ba, Sr) TiO 3 was used for the capacitor insulating film.
T, STO, Ta 2 O 5 , BTO, SBT or the like may be used. Further, a Ti film, a TiN film, or a laminated film of these may be deposited as an adhesion layer under the W film.

【0057】また、Ru(Cp)2 、Ru(MeCp)
2 、Ru(EtCp)2 以外にも骨格がCp環の配位子
であれば本発明を適用することができる。また、Ru以
外の金属のメタロセン誘導体でも同様の効果を奏するこ
とが可能である。
Further, Ru (Cp) 2 , Ru (MeCp)
The present invention can be applied to the case where the skeleton is a ligand of a Cp ring other than Ru (EtCp) 2 . A similar effect can be obtained with metallocene derivatives of metals other than Ru.

【0058】また、反応機構に関する説明では、反応を
わかりやすく説明するため、Ru(Cp)2 を原料とし
た場合について説明したが、Cp基の一つ以上の水素が
メチル基やエチル基或いはプロピル基等の有機官能基に
置換された原料を用いても、骨格となるCp環が上記の
ように分解されるのは同様である。この場合、例えばメ
チルシクロペンタジエニル基(CH3 Cp基)のCp環
が炭素1個と炭素4個の基に分解された際に、炭素1個
の基にメチル基がついていてこれが酸素と反応したとす
ると、アセトアルデヒド(CH3 CHO)や酢酸(CH
3 COOH)を生じることになる(同様の反応がCp基
のみの場合にはホルムアルデヒド(HCHO)や蟻酸
(HCOOH)が生じる)。その他、本発明は、その趣
旨を逸脱しない範囲内において種々変形して実施するこ
とが可能である。
In the description of the reaction mechanism, the case where Ru (Cp) 2 is used as a raw material has been described in order to explain the reaction in an easy-to-understand manner, but one or more hydrogen atoms of the Cp group are replaced with a methyl group, an ethyl group or a propyl group. Even when a raw material substituted with an organic functional group such as a group is used, the Cp ring serving as the skeleton is decomposed as described above. In this case, for example, when the Cp ring of a methylcyclopentadienyl group (CH 3 Cp group) is decomposed into one carbon and four carbon groups, the one carbon group has a methyl group, If reacted, acetaldehyde (CH 3 CHO) or acetic acid (CH
3 COOH) will produce a and formic acid (HCOOH) occurs (Formaldehyde (HCHO in the case of similar reactions Cp group only)). In addition, the present invention can be variously modified and implemented without departing from the spirit thereof.

【0059】[0059]

【発明の効果】本発明によれば、所定の条件下でルテニ
ウムまたは酸化ルテニウムを形成することにより、ルテ
ニウムまたは酸化ルテニウムの島状成長が抑制され、平
滑な表面モフォロジーが得られる。よって、特性に優れ
た信頼性の高いキャパシタを実現することが可能とな
る。
According to the present invention, by forming ruthenium or ruthenium oxide under predetermined conditions, island-like growth of ruthenium or ruthenium oxide is suppressed, and a smooth surface morphology can be obtained. Therefore, a highly reliable capacitor having excellent characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 1 is a process cross-sectional view showing a part of a manufacturing process according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 2 is a process cross-sectional view showing a part of the manufacturing process according to the first embodiment of the present invention.

【図3】本発明の第1の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 3 is a process cross-sectional view showing a part of the manufacturing process according to the first embodiment of the present invention.

【図4】本発明の第2の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 4 is a process cross-sectional view showing a part of a manufacturing process according to a second embodiment of the present invention.

【図5】本発明の第2の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 5 is a process cross-sectional view showing a part of the manufacturing process according to the second embodiment of the present invention.

【図6】本発明の第2の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 6 is a process cross-sectional view showing a part of the manufacturing process according to the second embodiment of the present invention.

【図7】本発明の第3の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 7 is a process cross-sectional view showing a part of a manufacturing process according to a third embodiment of the present invention.

【図8】本発明の第4の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 8 is a process sectional view showing a part of a manufacturing process according to a fourth embodiment of the present invention.

【図9】本発明の第4の実施形態に係る製造工程の一部
を示した工程断面図。
FIG. 9 is a process cross-sectional view showing a part of a manufacturing process according to a fourth embodiment of the present invention.

【図10】本発明の第5の実施形態に係る製造工程の一
部を示した工程断面図。
FIG. 10 is a process sectional view showing a part of a manufacturing process according to a fifth embodiment of the present invention.

【図11】基板温度230℃での導入時間中のマススペ
クトルと室温でのマススペクトルの差スペクトルについ
て示した図。
FIG. 11 is a diagram showing a difference spectrum between a mass spectrum at an introduction time at a substrate temperature of 230 ° C. and a mass spectrum at a room temperature.

【図12】基板温度230℃でのRu成長中のマススペ
クトルと室温でのマススペクトルの差スペクトルについ
て示した図。
FIG. 12 is a diagram showing a difference spectrum between a mass spectrum during Ru growth at a substrate temperature of 230 ° C. and a mass spectrum at room temperature.

【図13】Ru膜厚とガス供給時間との関係を摸式的に
示した図。
FIG. 13 is a diagram schematically showing a relationship between a Ru film thickness and a gas supply time.

【図14】従来技術に係る製造工程の一部を示した工程
断面図。
FIG. 14 is a process cross-sectional view showing a part of a manufacturing process according to a conventional technique.

【図15】従来技術に係る製造工程の一部を示した工程
断面図。
FIG. 15 is a process cross-sectional view showing a part of a manufacturing process according to a conventional technique.

【図16】従来技術の問題点の一例を示した図。FIG. 16 is a diagram showing an example of a problem of the related art.

【図17】触媒形成後にRuを成膜したときのSEM像
を示した顕微鏡写真。
FIG. 17 is a micrograph showing an SEM image when Ru is formed into a film after forming a catalyst.

【図18】下地処理をした後にRuを成膜したときのS
EM像を示した顕微鏡写真。
FIG. 18 illustrates a case where Ru is deposited after performing a base treatment.
A micrograph showing an EM image.

【図19】本発明の方法によってRuを薄膜化したとき
のSEM像を示した顕微鏡写真。
FIG. 19 is a micrograph showing an SEM image when Ru is thinned by the method of the present invention.

【図20】初期核密度が低い場合のRu膜のSEM像を
示した顕微鏡写真。
FIG. 20 is a micrograph showing an SEM image of a Ru film when the initial nuclear density is low.

【符号の説明】[Explanation of symbols]

1…Si基板 2…素子分離領域 3a…ゲート絶縁膜 3b…ゲート電極 4…S/D拡散層 5a、5b、5c…層間絶縁膜 5d…シリコン窒化膜 6…ビット線 7…W膜 8、11…Ru膜 9…SOG膜 10…(Ba,Sr)TiO3 膜 12、13…RuO2DESCRIPTION OF SYMBOLS 1 ... Si substrate 2 ... Element isolation region 3a ... Gate insulating film 3b ... Gate electrode 4 ... S / D diffusion layer 5a, 5b, 5c ... Interlayer insulating film 5d ... Silicon nitride film 6 ... Bit line 7 ... W film 8,11 ... Ru film 9 ... SOG film 10 ... (Ba, Sr) TiO 3 film 12, 13 ... RuO 2 film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】誘電体膜として金属酸化物を用い、この誘
電体膜を挟む電極としてルテニウム膜または酸化ルテニ
ウム膜を用いたキャパシタを有する半導体装置の製造方
法において、少なくとも一方の電極をルテノセンまたは
シクロペンタジエニル環の一つ以上の水素が有機官能基
に置換された有機基ルテノセンを原料ガスとして用いた
CVD法で形成する工程を、原料ガスの配位子であるシ
クロペンタジエニル基または有機官能基を持つシクロペ
ンタジエニル基の骨格を形成するシクロペンタジエニル
環を、炭素1個の基と炭素4個の基に分解させる反応ま
たは炭素1個の基と二つの炭素2個の基に分解させる反
応を促進させる条件下で行うことを特徴とする半導体装
置の製造方法。
In a method of manufacturing a semiconductor device having a capacitor using a metal oxide as a dielectric film and using a ruthenium film or a ruthenium oxide film as an electrode sandwiching the dielectric film, at least one of the electrodes is formed of ruthenocene or cyclo-oxide. The step of forming by a CVD method using an organic group ruthenocene in which at least one hydrogen of a pentadienyl ring is substituted by an organic functional group as a source gas is performed by using a cyclopentadienyl group as a ligand of the source gas or an organic group. Reaction of decomposing a cyclopentadienyl ring forming a skeleton of a cyclopentadienyl group having a functional group into one carbon group and four carbon groups, or one carbon group and two carbon two groups A method for manufacturing a semiconductor device, characterized in that the method is performed under conditions that promote a reaction for decomposing into a semiconductor device.
【請求項2】前記炭素1個の基と炭素4個の基に分解さ
せる反応または炭素1個の基と二つの炭素2個の基に分
解させる反応を促進させるための処理として、前記電極
が形成される下地表面に触媒を形成する処理を行うこと
を特徴とする請求項1に記載の半導体装置の製造方法。
2. A process for accelerating the reaction for decomposing into one carbon group and four carbon groups or the reaction for decomposing into one carbon group and two two carbon groups, 2. The method for manufacturing a semiconductor device according to claim 1, wherein a treatment for forming a catalyst is performed on a surface of the formed base.
【請求項3】前記下地表面に形成する触媒は、少なくと
も8族または1B族の元素を含む物質であることを特徴
とする請求項2に記載の半導体装置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 2, wherein the catalyst formed on the base surface is a substance containing at least an element of Group 8 or Group 1B.
【請求項4】誘電体膜として金属酸化物を用い、この誘
電体膜を挟む電極としてルテニウム膜または酸化ルテニ
ウム膜を用いたキャパシタを有する半導体装置の製造方
法において、少なくとも一方の電極をルテノセンまたは
シクロペンタジエニル環の一つ以上の水素が有機官能基
に置換された有機基ルテノセンを原料ガスとして用いた
CVD法で形成する工程を、原料ガスの配位子であるシ
クロペンタジエニル基または有機官能基を持つシクロペ
ンタジエニル基の骨格を形成するシクロペンタジエニル
環が分解されてルテニウムアセチリド誘導体を生成する
反応を抑制する条件下で行うことを特徴とする半導体装
置の製造方法。
4. A method for manufacturing a semiconductor device having a capacitor using a metal oxide as a dielectric film and a ruthenium film or a ruthenium oxide film as an electrode sandwiching the dielectric film, wherein at least one of the electrodes is made of ruthenocene or cycloalkyl. The step of forming by a CVD method using an organic group ruthenocene in which at least one hydrogen of a pentadienyl ring is substituted by an organic functional group as a source gas is performed by using a cyclopentadienyl group as a ligand of the source gas or an organic group. A method for manufacturing a semiconductor device, characterized in that the method is carried out under conditions that suppress a reaction in which a cyclopentadienyl ring forming a skeleton of a cyclopentadienyl group having a functional group is decomposed to generate a ruthenium acetylide derivative.
【請求項5】前記ルテニウムアセチリド誘導体を生成す
る反応を抑制するための処理として、前記電極が形成さ
れる下地に対して表面処理を行うことを特徴とする請求
項4に記載の半導体装置の製造方法。
5. The semiconductor device according to claim 4, wherein a surface treatment is performed on a base on which the electrode is formed as a treatment for suppressing a reaction for producing the ruthenium acetylide derivative. Method.
【請求項6】前記下地に対する表面処理は、原料ガスの
構成要素に対して負の電荷を与える反応を生じさせる処
理であることを特徴とする請求項5に記載の半導体装置
の製造方法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein the surface treatment for the base is a treatment for causing a reaction for giving a negative charge to the constituents of the source gas.
JP14122298A 1998-05-22 1998-05-22 Manufacturing method of semiconductor device Expired - Fee Related JP3905977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14122298A JP3905977B2 (en) 1998-05-22 1998-05-22 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14122298A JP3905977B2 (en) 1998-05-22 1998-05-22 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH11340435A true JPH11340435A (en) 1999-12-10
JP3905977B2 JP3905977B2 (en) 2007-04-18

Family

ID=15286972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14122298A Expired - Fee Related JP3905977B2 (en) 1998-05-22 1998-05-22 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3905977B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059284A (en) * 1999-12-30 2001-07-06 박종섭 A method for forming a capacitor of a semiconductor device
JP2001230389A (en) * 1999-12-28 2001-08-24 Hynix Semiconductor Inc Semiconductor memory element including ruthenium electrode and manufacturing method therefor
JP2001345285A (en) * 2000-03-31 2001-12-14 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and apparatus for producing semiconductor
JP2002026273A (en) * 2000-06-30 2002-01-25 Hynix Semiconductor Inc Method for manufacturing capacitor of semiconductor element
JP2002043440A (en) * 2000-06-30 2002-02-08 Hynix Semiconductor Inc Semiconductor memory and its manufacturing method
WO2002015275A1 (en) * 2000-08-11 2002-02-21 Hitachi, Ltd. Method for manufacturing semiconductor device
JP2002076302A (en) * 2000-08-25 2002-03-15 Fujitsu Ltd Semiconductor device and its manufacturing method
KR20020076147A (en) * 2001-03-26 2002-10-09 가부시키가이샤 히타치세이사쿠쇼 A method of making semiconductor device
JP2002540626A (en) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション Method of forming memory cell capacitor plate in memory cell capacitor structure
KR100423913B1 (en) * 2001-12-28 2004-03-22 삼성전자주식회사 Method of forming Ruthenium contained thin layer
JP2004311922A (en) * 2002-12-24 2004-11-04 Seiko Epson Corp Electrode film and its forming method, and ferroelectric memory and semiconductor device
US7002033B1 (en) 2004-07-27 2006-02-21 Jsr Corporation Chemical vapor deposition material and chemical vapor deposition
JP2006108291A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Ferroelectric capacitor and its manufacturing method, and ferroelectric memory device
US7238822B2 (en) 2002-12-03 2007-07-03 Jsr Corporation Ruthenium compound and process for producing a metal ruthenium film
KR100737192B1 (en) * 2000-01-26 2007-07-10 엘피다 메모리, 아이엔씨. Method of manufacturing semiconductor devices utilizing under-layer dependency of deposition of capacitor electrode film and semiconductor device
JP2008113006A (en) * 2002-07-18 2008-05-15 Micron Technology Inc Method for forming capacitor construction
KR100878384B1 (en) * 2001-08-09 2009-01-13 가부시키가이샤 히타치세이사쿠쇼 Method of manufacturing semiconductor integrated circuit device
US8124528B2 (en) 2008-04-10 2012-02-28 Micron Technology, Inc. Method for forming a ruthenium film

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540626A (en) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション Method of forming memory cell capacitor plate in memory cell capacitor structure
JP2001230389A (en) * 1999-12-28 2001-08-24 Hynix Semiconductor Inc Semiconductor memory element including ruthenium electrode and manufacturing method therefor
KR20010059284A (en) * 1999-12-30 2001-07-06 박종섭 A method for forming a capacitor of a semiconductor device
KR100737192B1 (en) * 2000-01-26 2007-07-10 엘피다 메모리, 아이엔씨. Method of manufacturing semiconductor devices utilizing under-layer dependency of deposition of capacitor electrode film and semiconductor device
JP2001345285A (en) * 2000-03-31 2001-12-14 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and apparatus for producing semiconductor
JP2002026273A (en) * 2000-06-30 2002-01-25 Hynix Semiconductor Inc Method for manufacturing capacitor of semiconductor element
JP2002043440A (en) * 2000-06-30 2002-02-08 Hynix Semiconductor Inc Semiconductor memory and its manufacturing method
WO2002015275A1 (en) * 2000-08-11 2002-02-21 Hitachi, Ltd. Method for manufacturing semiconductor device
US6989304B1 (en) 2000-08-11 2006-01-24 Renesas Technology Corp. Method for manufacturing a ruthenium film for a semiconductor device
JP2002076302A (en) * 2000-08-25 2002-03-15 Fujitsu Ltd Semiconductor device and its manufacturing method
KR20020076147A (en) * 2001-03-26 2002-10-09 가부시키가이샤 히타치세이사쿠쇼 A method of making semiconductor device
KR100878384B1 (en) * 2001-08-09 2009-01-13 가부시키가이샤 히타치세이사쿠쇼 Method of manufacturing semiconductor integrated circuit device
KR100423913B1 (en) * 2001-12-28 2004-03-22 삼성전자주식회사 Method of forming Ruthenium contained thin layer
JP2008113006A (en) * 2002-07-18 2008-05-15 Micron Technology Inc Method for forming capacitor construction
US7238822B2 (en) 2002-12-03 2007-07-03 Jsr Corporation Ruthenium compound and process for producing a metal ruthenium film
JP2004311922A (en) * 2002-12-24 2004-11-04 Seiko Epson Corp Electrode film and its forming method, and ferroelectric memory and semiconductor device
JP4586956B2 (en) * 2002-12-24 2010-11-24 セイコーエプソン株式会社 Electrode film manufacturing method
US7002033B1 (en) 2004-07-27 2006-02-21 Jsr Corporation Chemical vapor deposition material and chemical vapor deposition
JP2006108291A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Ferroelectric capacitor and its manufacturing method, and ferroelectric memory device
US8124528B2 (en) 2008-04-10 2012-02-28 Micron Technology, Inc. Method for forming a ruthenium film
US8513807B2 (en) 2008-04-10 2013-08-20 Micron Technology, Inc. Semiconductor devices including a ruthenium film
US8900992B2 (en) 2008-04-10 2014-12-02 Micron Technology, Inc. Methods of forming a ruthenium material, methods of forming a capacitor, and related electronic systems

Also Published As

Publication number Publication date
JP3905977B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JP3905977B2 (en) Manufacturing method of semiconductor device
TW497255B (en) Semiconductor device and method for making the same
US6949450B2 (en) Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber
US5843818A (en) Methods of fabricating ferroelectric capacitors
KR100622609B1 (en) Thin film deposition method
JP5175040B2 (en) Method for manufacturing capacitor of semiconductor element
CN106611742B (en) Method for forming contact hole
JP3607398B2 (en) Method for forming metal wiring layer of semiconductor device
KR20010083240A (en) Tantalum nitride cvd deposition by tantalum oxide densification
TW201921596A (en) Methods of producing self-aligned vias
TW200834733A (en) Semiconductor device and method for manufacturing the same
JP2004288710A (en) Semiconductor integrated circuit device and its manufacturing method
JP4910231B2 (en) Manufacturing method of semiconductor device
TWI449089B (en) Semiconductor structure and method of forming the same
JPH10144888A (en) Capacitor in semiconductor device and fabrication thereof
JPH08298288A (en) Manufacture of semiconductor device
US6773979B2 (en) Method for fabricating semiconductor device
TW200532911A (en) Method of forming MIM capacitor electrodes
JPH021154A (en) Manufacture of semiconductor device
JPH09199445A (en) Manufacture of semiconductor device
JP2001250817A (en) Method of dry etching and method of manufacturing semiconductor device
US20020177297A1 (en) Method for forming wire in semiconductor device
US6692795B2 (en) Method for fabricating semiconductor device having ruthenium layer and equipment for fabricating the same
TWI505360B (en) Method of forming metal carbide barrier layers for fluorocarbon films
JP3816494B2 (en) Dry etching method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040826

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

LAPS Cancellation because of no payment of annual fees