JPH11337481A - Apparatus and method for measurement of internal quality of fruits and vegetables - Google Patents

Apparatus and method for measurement of internal quality of fruits and vegetables

Info

Publication number
JPH11337481A
JPH11337481A JP14768098A JP14768098A JPH11337481A JP H11337481 A JPH11337481 A JP H11337481A JP 14768098 A JP14768098 A JP 14768098A JP 14768098 A JP14768098 A JP 14768098A JP H11337481 A JPH11337481 A JP H11337481A
Authority
JP
Japan
Prior art keywords
fruits
vegetables
light
internal quality
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14768098A
Other languages
Japanese (ja)
Inventor
Toyohiko Aoki
豊彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP14768098A priority Critical patent/JPH11337481A/en
Priority to US09/316,070 priority patent/US6334092B1/en
Priority to EP99110130A priority patent/EP0961112A3/en
Priority to KR1019990019059A priority patent/KR100714736B1/en
Publication of JPH11337481A publication Critical patent/JPH11337481A/en
Priority to KR1020060122830A priority patent/KR100731568B1/en
Priority to KR1020060122831A priority patent/KR100713600B1/en
Priority to KR1020060122832A priority patent/KR100731569B1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables

Abstract

PROBLEM TO BE SOLVED: To obtain an apparatus and a method in which the time required for a data processing operation is shortened and in which the internal quality of fruits and vegetables can be measured at high speed and with high accuracy, by a method wherein light which is passed through the fruits and vegetables is divided into the prescribed number of frequency regions and light-receiving signal processing circuits corresponding to the respective regions are installed. SOLUTION: In a measuring apparatus for the internal quality of fruits and vegetables, light which is passed through an object 5 to be inspected is divided into the prescribed number of frequency regions by, e.g. a diffraction grating 3, and it is measured by photodiodes 20 which are arranged so as to correspond to the respective frequency regions. Obtained signals are processed by light-receiving signal processing circuits which correspond to the respective photodiodes 20, they are inputted to a CPU 27 as pieces of intensity data on the light transmitted through the respective frequency regions, and they are converted into data on the internal quality by a prescribed computing operation. When a sensor array composed of, e.g. MOS image sensors as charge storage-type light receiving elements is constituted, the transmitted light can be analyzed fine in many divided channels. In addition, the signal processing circuits can be constituted so as to be unified by using a multiplexer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ミカン、メロン、
スイカ等の青果物の内部糖度等の品質を非破壊で測定す
る装置に関し、より詳細には測定により得られた初期デ
ータをより高速且つ高精度で処理する処理回路に関す
る。
TECHNICAL FIELD The present invention relates to oranges, melons,
The present invention relates to a device for non-destructively measuring the quality such as internal sugar content of fruits and vegetables such as watermelon, and more particularly to a processing circuit for processing initial data obtained by measurement at higher speed and with higher accuracy.

【0002】[0002]

【従来技術】一般に、出荷前に於ける青果物の内部品質
の評価は、主として熟練した検査員による目視により行
われていた。又、特定の青果物に於いては、完熟状態で
収穫あるいは出荷を行うと、販売時に於ける食味の低
下、果肉の粉質化等が発生することから未熟状態での収
穫が行われ、その後一定温度下で放置することにより追
熟を行い食用に適した状態とする。従来、このような追
熟の完了についても上述のように検査員による目視によ
り判断を行っていたが、この様な青果物の内部品質評価
には明確な基準が無く、正確な判断を行うことは困難で
あった。
2. Description of the Related Art Generally, the evaluation of the internal quality of fruits and vegetables before shipment has been mainly carried out visually by a skilled inspector. In addition, in the case of certain fruits and vegetables, harvesting or shipping in a ripe state results in a decrease in taste at the time of sale, flouring of the pulp, etc. By leaving it at a temperature, it ripens to make it edible. Conventionally, the completion of such ripening was judged visually by the inspector as described above. However, there is no clear standard for the internal quality evaluation of such fruits and vegetables, and it is impossible to make an accurate judgment. It was difficult.

【0003】一方、近赤外光を青果物に投射した場合、
青果物内の糖質等の成分が特定の波長の光を吸収するた
め、青果物を透過した透過光を分析することにより、青
果物の糖度等の内部品質を知ることが可能であり、この
近赤外光の透過光を用いて、青果物の内部品質を非破壊
で判定する方法が知られている。
On the other hand, when near-infrared light is projected on fruits and vegetables,
Since components such as carbohydrates in fruits and vegetables absorb light of a specific wavelength, it is possible to know the internal quality such as sugar content of fruits and vegetables by analyzing the transmitted light transmitted through the fruits and vegetables. There is known a method of non-destructively determining the internal quality of fruits and vegetables using transmitted light.

【0004】具体的に、青果物の内部品質測定器の概略
図の例を図4に示す。図4に於いて、青果物である被検
体5は、例えばコンベヤ等の搬送手段10上を搬送され
た状態で、複数の被検体5についての内部品質が連続的
に測定される。まず被検体5は搬送手段上で位置センサ
11によりその存在が確認される。次に搬送手段上の所
定の位置Aに於いて被検体5に対して光源1より所定の
周波領域を有する光(以降は単に光と述べる。)を照射
する。照射された光は、被検体5の中に存在する糖質等
により所定の波長の光が吸収された後、被検体5の外部
に透過される。この透過された光を受光素子2において
測定し、この測定により得られた透過光を信号処理装置
12に於いて分析することにより被検体5の内部品質を
知ることが可能となる。
[0004] Specifically, FIG. 4 shows an example of a schematic diagram of a device for measuring the internal quality of fruits and vegetables. In FIG. 4, the internal quality of a plurality of subjects 5 is continuously measured while the subject 5 which is a fruit or vegetable is conveyed on a conveying means 10 such as a conveyor. First, the presence of the subject 5 is confirmed by the position sensor 11 on the transport means. Next, light (hereinafter, simply referred to as light) having a predetermined frequency range is irradiated from the light source 1 to the subject 5 at a predetermined position A on the transport means. The irradiated light is transmitted to the outside of the subject 5 after light of a predetermined wavelength is absorbed by a saccharide or the like existing in the subject 5. The transmitted light is measured by the light receiving element 2, and the transmitted light obtained by the measurement is analyzed by the signal processing device 12, so that the internal quality of the subject 5 can be known.

【0005】しかしながら、青果物の分光分析に用いる
光の周波領域は広く、実際に信号処理を行い正確な内部
品質を得るためには、周波領域を複数に分割して各分割
された周波領域毎に信号処理を行う必要がある。この周
波領域の分割−信号処理の方法として、以下に述べる
(1)、(2)の方法が考えられている。
However, the frequency range of light used for spectroscopic analysis of fruits and vegetables is wide, and in order to actually perform signal processing and obtain accurate internal quality, the frequency range is divided into a plurality of portions and each divided frequency region is It is necessary to perform signal processing. The following methods (1) and (2) are considered as a method of dividing the frequency domain and processing the signals.

【0006】(1)所定の周波領域の光のみを透過する
干渉フィルターを、周波領域が測定周波領域の分割数と
一致する数だけ設け、当該各フィルターを受光素子の受
光部分に於いて連続的に変更することにより、分割され
た周波領域の透過光を信号処理装置に連続的に送り信号
処理を行う。各フィルターが全て受光部分を通過するこ
とにより測定周波領域についての一回の測定が終了す
る。 (2)例えば、特開平7−22984に記載されている
ように、受光部分に測定波長を分割する回折格子を設
け、分割後の透過光を、分割数に応じた蓄積型のセンサ
ーを有するアレイに導き、一測定の終了後に蓄積された
データについて順次単一の信号処理回路(増幅器等を含
む。)によって信号処理を行う。
(1) An interference filter that transmits only light in a predetermined frequency region is provided in a number corresponding to the number of divisions of the frequency region corresponding to the division number of the measurement frequency region, and the filters are continuously provided in the light receiving portion of the light receiving element. , The transmitted light in the divided frequency region is continuously sent to the signal processing device to perform signal processing. One measurement in the measurement frequency range is completed when all the filters pass through the light receiving portion. (2) For example, as described in Japanese Patent Application Laid-Open No. 7-22984, an array having a diffraction grating that divides a measurement wavelength in a light receiving portion and transmits the divided transmitted light in accordance with the number of divisions with an accumulation type sensor And a signal processing circuit sequentially performs signal processing on the data accumulated after the completion of one measurement by a single signal processing circuit (including an amplifier and the like).

【0007】[0007]

【発明が解決しようとする課題】青果物の選別過程上で
の品質評価に許容される時間は非常に短時間であり、上
記搬送手段上で搬送状態のままの青果物の評価を、複数
個の青果物について連続的に行う必要がある。しかし、
青果物の内部品質は、その測定部位により大きく異なる
ため、できる限り連続的且つ広範囲の部分の評価を行わ
なければならない。又、正確な評価を行うためには、透
過光についても充分な光量を蓄積する必要がある。
The time allowed for quality evaluation in the process of sorting fruits and vegetables is very short, and the evaluation of the fruits and vegetables in the transport state on the transport means is performed by a plurality of fruits and vegetables. Need to be performed continuously. But,
Since the internal quality of a fruit or vegetable varies greatly depending on its measurement site, it is necessary to evaluate a continuous and wide area as much as possible. In addition, in order to perform accurate evaluation, it is necessary to accumulate a sufficient amount of transmitted light.

【0008】しかし、上述の(1)の方法の場合、干渉
フィルターの変更を行う間に青果物が移動するため、周
波領域を変更するにつれて測定領域もずれていき、各分
割された周波領域の内の一つの周波領域についてのデー
タは青果物上の測定領域に対して不連続且つ部分的にし
か得られない。更に、同様の理由により各分割周波領域
それぞれについて得られるデータは異なる測定領域につ
いてのデーターとなるため、正確な内部品質の測定結果
を得ることが困難である。又、各分割周波領域について
の測定時間は、周波領域の分割数が多くなるほど短くな
り、充分な透過光量を得ることが困難となる等の問題が
ある。
However, in the case of the above method (1), since the fruits and vegetables move during the change of the interference filter, the measurement region shifts as the frequency region is changed. Is obtained discontinuously and only partially for the measurement area on fruits and vegetables. Further, for the same reason, the data obtained for each of the divided frequency regions is data for a different measurement region, so that it is difficult to obtain accurate internal quality measurement results. In addition, the measurement time for each divided frequency area becomes shorter as the number of divisions of the frequency area increases, and it is difficult to obtain a sufficient amount of transmitted light.

【0009】上述(2)の方法の場合に於いても、透過
光の分割は回折格子により同時に行われるが、アレイか
らは蓄積されたデータをシリアルに信号処理回路に送ら
ざるを得ないため、各分割周波領域についてのデータ蓄
積開始時刻及び蓄積終了時刻はデータ転送時間に応じて
順次ずらされることとなる。この様な各分割波長毎のデ
ータ蓄積タイミングの時間的ズレは十数msecと僅かでは
あるため、青果物上の測定領域が不連続になる、或いは
分割周波領域毎に得られたデータの測定位置が異なると
いう問題、更には単位時間当たりに蓄積される光量の減
少の問題は(1)の方法の場合における程顕著ではな
い。しかし、より正確な青果物の内部品質の測定の結果
を得る、或いは品質測定に許容される時間の短縮を図る
上でやはり不十分であった。更に、一測定終了後にアレ
イ上の各センサーに蓄積されたデータを消去し初期化す
るという工程を行う必要があり、このことも測定に要す
る時間を短縮する上で問題となっていた。
In the case of the above method (2), the transmitted light is divided by the diffraction grating at the same time. However, since the data stored in the array must be sent to the signal processing circuit serially, The data accumulation start time and the accumulation end time for each divided frequency region are sequentially shifted according to the data transfer time. Since such a time lag of the data accumulation timing for each divided wavelength is as small as tens of msec, the measurement area on the fruit or vegetable becomes discontinuous, or the measurement position of the data obtained for each division frequency area is different. The problem of the difference and the problem of the decrease in the amount of light accumulated per unit time are not as noticeable as in the case of the method (1). However, it is still insufficient to obtain a more accurate result of measuring the internal quality of fruits and vegetables or to reduce the time allowed for the quality measurement. Furthermore, it is necessary to perform a step of erasing and initializing data accumulated in each sensor on the array after one measurement is completed, which also poses a problem in reducing the time required for measurement.

【0010】上述の(2)に於いて、上述の問題を解決
する方法としては、個々の周波領域についての蓄積時間
を数十msecと長くする方法が考えられる。しかし、蓄積
時間の内のある期間に、例えば受光素子に透過光以外の
外光が受光される、或いは青果物に付着するゴミ等によ
り異常な強度データが生じた場合、当該方法は蓄積時間
中の強度データのプロファイルを知ることは困難であ
り、異常値を含んだデータをそのまま用いてしまう恐れ
があった。
In the above (2), as a method of solving the above-mentioned problem, a method of increasing the accumulation time of each frequency region to several tens msec is considered. However, in the case where external light other than transmitted light is received by the light receiving element or abnormal intensity data is generated due to dust or the like adhering to fruits and vegetables during a certain period of the accumulation time, the method is applied during the accumulation time. It is difficult to know the profile of the intensity data, and there is a risk that data containing an abnormal value may be used as it is.

【0011】又、実際の透過光の強度は各周波領域毎で
大きく異なり、蓄積データを信号処理する際に適当な増
幅率を選択し、その増幅率に応じたベースラインの設定
を行い、その上で内部品質を算出する信号処理を行わな
ければならない。蓄積時間の短縮に応じて、この信号処
理を行う回数及び各センサーの初期化を行う回数も増加
し、信号処理回路の付加の増加による熱の発生に起因す
る測定誤差の増加や許容時間以上となるような測定時間
の増加が生じる恐れがあった。
Further, the actual intensity of the transmitted light greatly differs in each frequency region, and an appropriate amplification factor is selected when the stored data is signal-processed, and a baseline is set in accordance with the amplification factor. Above, signal processing for calculating the internal quality must be performed. As the accumulation time is shortened, the number of times that this signal processing is performed and the number of times that each sensor is initialized also increase. There was a risk that the measurement time would increase.

【0012】本発明は上記の問題に鑑み、青果物を透過
した光を分析することにより青果物の内部品質を測定す
る装置に於いて、高速且つ高精度の測定が可能な内部品
質測定装置の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides an apparatus for measuring the internal quality of fruits and vegetables by analyzing light transmitted through the fruits and vegetables and capable of performing high-speed and high-accuracy measurement. Aim.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る青果物内部品質測定装置は、所定の方
向に青果物を搬送する搬送手段と、搬送中の青果物の存
在を確認するセンサーと、青果物に対して所定の周波領
域を有する光を投光する投光手段と、青果物を透過した
光を受光する受光手段と、受光手段により受光された透
過光に応じた強度データを算出する受光信号処理回路
と、強度データを用いて青果物の内部品質を算出する内
部品質算出回路とを有する青果物内部品質定装置であっ
て、更に受光手段は所定の周波領域を有する光を所定の
数の周波領域に分割する周波領域分割手段を有し、受光
信号処理回路は所定の数に応じた数だけ有されているも
のとしている。
In order to solve the above-mentioned problems, an apparatus for measuring the internal quality of fruits and vegetables according to the present invention comprises a conveying means for conveying fruits and vegetables in a predetermined direction, and a sensor for confirming the presence of the fruits and vegetables being conveyed. A light projecting means for projecting light having a predetermined frequency range to the fruits and vegetables, a light receiving means for receiving the light transmitted through the fruits and vegetables, and calculating intensity data according to the transmitted light received by the light receiving means. A light-receiving signal processing circuit and an internal-quality-determination device for fruits and vegetables having an internal quality calculation circuit for calculating the internal quality of fruits and vegetables using intensity data, wherein the light-receiving means further converts a light having a predetermined frequency range into a predetermined number of lights. It has frequency domain dividing means for dividing into frequency domains, and it is assumed that the number of light receiving signal processing circuits is equal to the predetermined number.

【0014】[0014]

【作用】上述のように、青果物内部品質測定装置を、例
えば回折格子等により受光手段が受光した透過光を所定
の数の周波領域に分割し、更に所定の数に分割された周
波領域個々に応じた複数の受光信号処理回路が同時に各
分割領域に応じた強度データを算出すること構成とし
た。これにより搬送状態での測定に於いても、連続した
各測定位置について全ての周波領域についての測定が行
われ、且つ時間的な測定位置のズレの発生に起因した測
定位置の不連続化を生じることなく、更に測定毎の受光
部の初期化を行うことなく正確な青果物の内部品質分析
を行うことが可能となる。
As described above, the apparatus for measuring the internal quality of fruits and vegetables divides the transmitted light received by the light receiving means by, for example, a diffraction grating into a predetermined number of frequency regions, and further separates the transmitted light into the predetermined number of frequency regions. A plurality of corresponding light receiving signal processing circuits calculate the intensity data corresponding to each divided region at the same time. As a result, even in the measurement in the transport state, the measurement is performed for all the frequency regions at each of the continuous measurement positions, and the measurement positions are discontinuous due to the occurrence of the temporal measurement position shift. This makes it possible to accurately analyze the internal quality of fruits and vegetables without resetting the light receiving unit for each measurement.

【0015】又、単位時間当たりにデータとして用いら
れる光量は、全ての分割領域の透過光を同時に処理する
ために、従来技術に於いて述べた蓄積型のセンサーを用
いた場合に対して大きくすることが可能であり、より正
確な青果物の内部品質評価を行うことが可能となる。更
に本発明の構成に於いては、より高精度な測定が要求さ
れる場合には周波領域の分割数を増加させ、又精度的に
低くても良い場合には分割数を減少させることが容易で
あり、非検体の大きさあるいは測定条件等に応じて当該
装置を稼働させたままで分割数を変更する構成とするこ
とも可能である。
Further, the amount of light used as data per unit time is made larger than that in the case of using the accumulation type sensor described in the prior art in order to simultaneously process the transmitted light of all the divided areas. It is possible to perform more accurate internal quality evaluation of fruits and vegetables. Further, in the configuration of the present invention, it is easy to increase the number of divisions in the frequency domain when more accurate measurement is required, and to reduce the number of divisions when accuracy may be low. However, it is also possible to adopt a configuration in which the number of divisions is changed while the apparatus is operated according to the size of the non-sample or the measurement conditions.

【0016】蓄積型センサを用いる方法は測定時間の遅
延を生じさせる恐れがあることは上述の通りである。し
かし例えば、比較的長い測定時間が許容される研究開発
等に当該内部品質測定装置が用いられる場合には、上述
の蓄積型センサーアレイは一般的には周波領域を非常に
細かく分割することが可能であり、これを用いる測定法
は有用である。特に個々の周波領域についての蓄積時間
を数msecと短く設定し、青果物の内部品質を微細な範囲
に分割して測定する手法は青果物の品質をより正確に知
るとともに、上述の強度データのプロファイルを知るこ
とも可能であり特に研究開発等の用途に於いては有用と
考えられる。
As described above, the method using the accumulation type sensor may cause a delay in the measurement time. However, if the internal quality measurement device is used for research and development, for example, where a relatively long measurement time is allowed, the above-mentioned accumulation type sensor array can generally divide the frequency domain very finely. The measurement method using this is useful. In particular, the method of setting the accumulation time for each frequency region as short as a few milliseconds and dividing and measuring the internal quality of fruits and vegetables in a fine range more accurately knows the quality of fruits and vegetables, and the profile of the intensity data described above. It is also possible to know it, and it is considered to be particularly useful in research and development.

【0017】本発明によれば、蓄積型センサを用いた場
合に於いても、受光信号処理回路を並列に有するため各
周波領域に関する信号処理を待つことなく、順次蓄積デ
ータを受光信号処理回路に送って準並列的に信号処理を
行い且つ初期化を行うことが可能であるため、多数の受
光素子からなる蓄積型のセンサーアレイを用いて周波領
域の分割数を大きくすると共に個々の周波領域について
の蓄積時間を数msecと短く設定した場合に於いても、実
際に測定時間の増加はわずかで抑えられる。又、同様の
効果により測定位置のズレ量の減少及び単位時間当たり
に受光される透過光量の増加も図れる効果を奏する。
According to the present invention, even when the storage type sensor is used, since the light receiving signal processing circuit is provided in parallel, the accumulated data is sequentially sent to the light receiving signal processing circuit without waiting for the signal processing for each frequency domain. Since it is possible to perform signal processing and initialization in quasi-parallel by sending, it is possible to increase the number of divisions of the frequency domain using a storage type sensor array consisting of a large number of light receiving elements and to Even when the accumulation time of the measurement is set to be as short as several milliseconds, the increase in the measurement time is actually slightly suppressed. In addition, the same effect is obtained that the amount of displacement of the measurement position can be reduced and the amount of transmitted light received per unit time can be increased.

【0018】なお、所定の数の周波数領域に分割する周
波領域分割手段としては、受光手段と組み合わせる形で
分光器及びフォトセンサーを用いても良く、受光手段と
してCCDセンサー等を用いても良い。即ち、受光手段
と周波領域分割手段とは特に用途により区別する必要は
なく、透過光を所定の周波領域に分割する機能と光エネ
ルギーを電気的信号に変換する機能とにより複数の電気
的信号を発生する構成であれば良い。
As the frequency domain dividing means for dividing into a predetermined number of frequency domains, a spectroscope and a photo sensor may be used in combination with the light receiving means, and a CCD sensor or the like may be used as the light receiving means. That is, the light receiving means and the frequency domain dividing means do not need to be particularly distinguished depending on the application, and a plurality of electrical signals are divided by a function of dividing transmitted light into a predetermined frequency domain and a function of converting light energy into electrical signals. Any configuration that generates this may be used.

【0019】[0019]

【実施例】本発明の第一の実施例に係る信号処理ブロッ
ク図を図1に示す。搬送手段10、位置センサ11及び
光源1と、光源1から非検体5に照射された所定の周波
領域を有する光(以降は光と述べる、)が非検体5から
透過するまでは従来技術と異なる部分はないため、ここ
での説明は省略する。本実施例に於いては、非検体5を
透過した光は、フォトダイオード20の直前に於いて回
折格子3によりn個の周波数領域λa〜λxに分割され
る。更にフォトダイオード20は分割された周波領域の
数に対応して配置されており、所定の周波領域の透過光
は所定のフォトダイオード20により測定される。尚、
各フォトダイオード20に応じた、電流電圧変換アン
プ、ゲインアンプ、ローパスフィルタ、電圧周波数変換
器及びカウンタからなる受光信号処理回路に於ける信号
処理ルーチンは、全ての受光素子に於いて同一であるた
め、以下λ1の場合の信号処理ルーチンについて述べ
る。
FIG. 1 is a block diagram showing a signal processing according to a first embodiment of the present invention. It differs from the prior art until the light (hereinafter, referred to as light) having a predetermined frequency range irradiated from the light source 1 to the non-sample 5 from the light source 1 is transmitted from the non-sample 5. Since there is no portion, the description is omitted here. In this embodiment, the light transmitted through the non-sample 5 is divided into n frequency regions λa to λx by the diffraction grating 3 immediately before the photodiode 20. Further, the photodiodes 20 are arranged corresponding to the number of divided frequency regions, and transmitted light in a predetermined frequency region is measured by the predetermined photodiode 20. still,
The signal processing routine in the light-receiving signal processing circuit including the current-voltage conversion amplifier, the gain amplifier, the low-pass filter, the voltage-frequency converter, and the counter according to each photodiode 20 is the same in all the light-receiving elements. Hereinafter, a signal processing routine in the case of λ1 will be described.

【0020】分割された透過光は、フォトダイオード2
0により電流に変換され、更に当該電流は電流電圧変換
アンプ22aにより電圧信号に変換される。得られた電
圧信号はゲインアンプ23aにより増幅された後、ロー
パスフィルタ24aによりノイズ成分がカットされ、更
に電圧周波数変換器25aにより周波数変換が行われ
る。その後所定の積算時間tの間、カウンタ26aによ
って周波数がカウントされる。カウントされた周波数は
フォトダイオード20に照射された透過光λaの強度デ
ータDa=fa×tとしてCPU27に入力される。
The divided transmitted light is supplied to the photodiode 2
The current is converted to a current by 0, and the current is further converted to a voltage signal by the current / voltage conversion amplifier 22a. After the obtained voltage signal is amplified by the gain amplifier 23a, the noise component is cut by the low-pass filter 24a, and the frequency is converted by the voltage-frequency converter 25a. Thereafter, the frequency is counted by the counter 26a for a predetermined integration time t. The counted frequency is input to the CPU 27 as intensity data Da = fa × t of the transmitted light λa applied to the photodiode 20.

【0021】次に、本発明の第二の実施例に係る信号ブ
ロック図を図2に示す。第一の実施例と異なる点は、フ
ォトダイオード20に変えて複数のMOS型イメージセ
ンサ(蓄積型センサー)からなるセンサーアレイ7を用
いる点である。本実施例に於いては、非検体5を透過し
た光は、センサーアレイ7の直前に於いて回折格子3に
よりn個の周波数領域λ1〜λnに分割される。センサ
ーアレイ7からは各分割周波領域に対応した電荷(蓄積
データ)が、順次シリアルに対応する電流電圧変換アン
プに送られる。以下の信号処理については第一の実施例
と同様である。
Next, FIG. 2 shows a signal block diagram according to a second embodiment of the present invention. The difference from the first embodiment is that a sensor array 7 including a plurality of MOS type image sensors (accumulation type sensors) is used instead of the photodiode 20. In this embodiment, the light transmitted through the non-sample 5 is divided into n frequency regions λ1 to λn by the diffraction grating 3 immediately before the sensor array 7. Charges (accumulated data) corresponding to the respective divided frequency regions are sequentially sent from the sensor array 7 serially to the corresponding current-voltage conversion amplifiers. The following signal processing is the same as in the first embodiment.

【0022】本実施例に於いては、センサーアレイ7か
らシリアルに送られる蓄積データを準並列的に処理する
ために、各蓄積データ毎に最適ゲインを選択しても信号
処理時間の大幅な増加は生じない。このため、一般に分
割チャネル数が数百以上であるMOS型イメージセンサ
を用い透過光を細かく分析することを可能とする効果を
奏する。又、センサーアレイ7について、蓄積された電
荷をパラレルに交接された電流電圧変換回路に送ること
が可能となれば実施例一と同様の効果が得られる。
In this embodiment, since the stored data sent serially from the sensor array 7 is processed in a quasi-parallel manner, the signal processing time is greatly increased even if an optimum gain is selected for each stored data. Does not occur. For this reason, there is an effect that it is possible to analyze transmitted light in detail using a MOS image sensor in which the number of divided channels is generally several hundred or more. Further, if it becomes possible for the sensor array 7 to transmit the accumulated electric charge to the current-voltage conversion circuit connected in parallel, the same effect as in the first embodiment can be obtained.

【0023】第二の実施例に於いては、分割数に応じた
数の受光信号処理回路を有する構成としたが、ゲインア
ンプ以下を複数有する構成とした場合には、受光信号処
理回路全体の製造コストが大幅に増加し実際的でない。
そこで第三の実施例に於いては、図3に示す信号ブロッ
ク図のように、各周波領域に対応した電荷を電流電圧変
換アンプにより電圧信号に変換した後、マルチプレクサ
28を通して単一のゲインアンプ23当該電圧信号を伝
える構成とした。これにより製造コストを大幅に増加さ
せることなく第二の実施例と同様の効果が得られること
となる。
In the second embodiment, the number of light receiving signal processing circuits is equal to the number of divisions. Manufacturing costs increase significantly and are impractical.
Therefore, in the third embodiment, as shown in the signal block diagram of FIG. 3, the charge corresponding to each frequency region is converted into a voltage signal by a current / voltage conversion amplifier, and then a single gain amplifier is passed through a multiplexer 28. 23 The voltage signal is transmitted. As a result, the same effect as in the second embodiment can be obtained without significantly increasing the manufacturing cost.

【0024】更に第三の実施例に於いては、センサーア
レイ7について、蓄積された電荷をパラレルに交接され
た電流電圧変換回路に送ることが可能となった場合、マ
ルチプレクサ28を配置して多重化処理を行うタイミン
グは電流電圧変換後に限定されるわけではなく、処理時
間を最も必要とする信号増幅後でも良い。この場合には
第一の実施例とほとんど同様の効果が得られる。
Further, in the third embodiment, when it becomes possible to transmit the stored electric charges to the current-to-voltage conversion circuit connected in parallel with respect to the sensor array 7, a multiplexer 28 is arranged and multiplexed. The timing at which the conversion process is performed is not limited to after the current-voltage conversion, but may be after the signal amplification that requires the most processing time. In this case, almost the same effects as in the first embodiment can be obtained.

【0025】CPU27に入力された強度データは、所
定の演算を行うことにより内部品質データに変換され、
CRT等により画像としてこれらが表示される。尚、画
像表示は所定の用度を基準として被検体5の出荷時期の
適否のみを表示する形式としても良く、さらには画像表
示を行わずに適否データのみを出力し、当該測定装置に
連続する搬送装置に於いて被検体5の選別を行うように
しても良い。
The intensity data input to the CPU 27 is converted into internal quality data by performing a predetermined operation.
These are displayed as images on a CRT or the like. It should be noted that the image display may be in a form in which only the suitability of the shipping time of the subject 5 is displayed on the basis of a predetermined utility, and further, only the suitability data is output without performing the image display, and the display is continuously performed to the measuring apparatus. The screening of the subject 5 may be performed in the transport device.

【0026】[0026]

【発明の効果】本発明の実施により、青果物を透過した
透過光のデータ処理及び分析を従来技術に於ける処理時
間に対して大幅に短縮することが可能となり、青果物の
内部品質測定を短時間に且つ高精度で行うことが可能と
なる。
According to the present invention, the data processing and analysis of the transmitted light transmitted through the fruits and vegetables can be greatly reduced with respect to the processing time in the prior art, and the internal quality measurement of the fruits and vegetables can be performed in a short time. And with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例に係る信号処理ブロック
図。
FIG. 1 is a signal processing block diagram according to a first embodiment of the present invention.

【図2】本発明の第二の実施例に係る信号処理ブロック
図。
FIG. 2 is a signal processing block diagram according to a second embodiment of the present invention.

【図3】本発明の第三の実施例に係る信号処理ブロック
図。
FIG. 3 is a signal processing block diagram according to a third embodiment of the present invention.

【図4】近赤外光を用いた青果物の内部品質測定法の概
略構成を示す図。
FIG. 4 is a diagram showing a schematic configuration of a method for measuring the internal quality of fruits and vegetables using near-infrared light.

【符号の説明】[Explanation of symbols]

1 光源 2 受光素子 3 回折格子 5 被検体 7 センサーアレイ 10 搬送手段 11 位置センサ 12 信号処理装置 20 フォトダイオード 22 電流電圧変換アンプ 23 ゲインアンプ 24 ローパスフィルタ 25 電圧周波数変換器 26 カウンタ 27 CPU 28 マルチプレクサ DESCRIPTION OF SYMBOLS 1 Light source 2 Light receiving element 3 Diffraction grating 5 Subject 7 Sensor array 10 Carrier 11 Position sensor 12 Signal processing device 20 Photodiode 22 Current-voltage conversion amplifier 23 Gain amplifier 24 Low-pass filter 25 Voltage-frequency converter 26 Counter 27 CPU 28 Multiplexer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定の方向に青果物を搬送する搬送手段
と、該青果物に対して所定の周波領域を有する光を投光
する投光手段と、該青果物を透過した光を受光する受光
手段と、前記受光手段により受光された前記透過光に応
じた強度データを算出する受光信号処理回路と、前記強
度データを用いて該青果物の内部品質を算出する内部品
質算出回路とを有する青果物内部品質測定装置に於い
て、 前記青果物内部品質測定装置は、該青果物を透過した所
定の周波領域を有する光を所定の数の周波領域に分割し
前記受光手段に導く周波領域分割手段を更に有し、 前記所定の数の周波領域の各周波領域毎に前記受光信号
処理回路が設けられていることを特徴とする青果物内部
品質測定装置。
1. Conveying means for conveying fruits and vegetables in a predetermined direction, light emitting means for projecting light having a predetermined frequency range to the fruits and vegetables, and light receiving means for receiving light transmitted through the fruits and vegetables. And a light-receiving signal processing circuit for calculating intensity data corresponding to the transmitted light received by the light-receiving means, and an internal quality calculation circuit for calculating an internal quality of the fruits and vegetables using the intensity data. In the apparatus, the fruit and vegetable internal quality measuring device further includes a frequency domain dividing unit that divides light having a predetermined frequency region transmitted through the vegetable into a predetermined number of frequency regions and guides the light to the light receiving unit, An apparatus for measuring the internal quality of fruits and vegetables, wherein the light reception signal processing circuit is provided for each of a predetermined number of frequency regions.
【請求項2】 前記受光手段は、前記所定の数の周波領
域に分割された光を各々受光する光電変換素子であるこ
とを特徴とする請求項1記載の青果物内部品質測定装
置。
2. The apparatus for measuring the internal quality of fruits and vegetables according to claim 1, wherein said light receiving means is a photoelectric conversion element which receives each of the lights divided into the predetermined number of frequency regions.
【請求項3】 前記受光手段は、前記所定の数の周波領
域に分割された光を各々受光する電荷蓄積型の受光素子
からなるセンサーアレイであることを特徴とする請求項
1記載の青果物内部品質測定装置。
3. The inside of a vegetable or vegetable according to claim 1, wherein said light receiving means is a sensor array comprising a charge storage type light receiving element for receiving light divided into said predetermined number of frequency regions. Quality measuring device.
【請求項4】 前記受光信号処理回路は、電流電圧変換
器からなる第一の受光信号処理回路部分と、前記第一に
受光信号処理回路部分と接続されるマルチプレクサと、
前記マルチプレクサと接続され強度データを算出する第
二の受光信号処理回路部分とを有し、前記第一の受光信
号処理回路部分は前記各受光素子に対応して設けられて
いることを特徴とする青果物内部品質測定装置。
4. A light receiving signal processing circuit comprising: a first light receiving signal processing circuit portion including a current-voltage converter; a multiplexer connected to the first light receiving signal processing circuit portion;
A second light receiving signal processing circuit portion connected to the multiplexer for calculating intensity data, wherein the first light receiving signal processing circuit portion is provided corresponding to each of the light receiving elements. Equipment for measuring internal quality of fruits and vegetables.
【請求項5】 青果物を搬送させた状態で所定の周波領
域を有する光を該青果物に投光し、該青果物からの透過
光に基づいて強度データを算出する工程が該青果物の搬
送に伴い該青果物の各領域に於いて連続的に行われ、前
記強度データを用いて該青果物の内部品質データを算出
する青果物内部品質測定方法に於いて、 該青果物から
の透過光は所定の数の周波領域に分割されその各々を並
列処理することにより、該所定の数の周波領域に分割さ
れた光に応じた強度データを各々同時に算出し、該強度
データに基づいて積算を行うことにより該青果物の内部
品質データを算出することを特徴とする青果物内部品質
測定方法。
5. A step of projecting light having a predetermined frequency range onto the fruits and vegetables in a state where the fruits and vegetables are transported, and calculating intensity data based on light transmitted from the fruits and vegetables, the step of transporting the fruits and vegetables. In a method for measuring the internal quality of fruits and vegetables, which is performed continuously in each region of the fruits and vegetables, and calculates the internal quality data of the fruits and vegetables using the intensity data, the transmitted light from the fruits and vegetables is a predetermined number of frequency regions. And by processing each of them in parallel, the intensity data corresponding to the light divided into the predetermined number of frequency regions are simultaneously calculated, and the integration is performed based on the intensity data, whereby the inside of the fruits and vegetables is obtained. A method for measuring the internal quality of fruits and vegetables, comprising calculating quality data.
【請求項6】 青果物を搬送させた状態で所定の周波領
域を有する光を該青果物に投光し、該青果物からの透過
光に基づいて強度データを算出する工程が該青果物の搬
送に伴い該青果物の各領域に於いて連続的に行われ、前
記強度データを用いて該青果物の内部品質データを算出
する青果物内部品質測定方法に於いて、 該青果物から
の透過光は所定の数の周波領域に分割されその各々を電
荷蓄積型の受光素子からなる受光手段により受光し、前
記所定の数に分割された周波領域に対応する前記受光手
段からの信号を並列処理することにより、該所定の数の
周波領域に分割された光に応じた強度データを各々算出
し、該強度データに基づいて積算を行うことにより該青
果物の内部品質データを算出することを特徴とする青果
物内部品質測定方法。
6. A step of projecting light having a predetermined frequency range onto the fruits and vegetables in a state where the fruits and vegetables are transported, and calculating intensity data based on transmitted light from the fruits and vegetables, the step of transporting the fruits and vegetables. In the method for measuring the internal quality of fruits and vegetables, which is performed continuously in each region of the fruits and vegetables and calculates the internal quality data of the fruits and vegetables using the intensity data, the transmitted light from the fruits and vegetables is a predetermined number of frequency regions. , Each of which is received by light receiving means comprising a charge storage type light receiving element, and signals from the light receiving means corresponding to the predetermined number of divided frequency regions are processed in parallel to obtain the predetermined number. A method for calculating the internal quality data of the fruits and vegetables by calculating the intensity data corresponding to the light divided into the frequency regions, and calculating the internal quality data of the fruits and vegetables by performing the integration based on the intensity data.
【請求項7】 青果物を搬送させた状態で所定の周波領
域を有する光を該青果物に投光し、該青果物からの透過
光に基づいて強度データを算出する工程が該青果物の搬
送に伴い該青果物の各領域に於いて連続的に行われ、前
記強度データを用いて該青果物の内部品質データを算出
する青果物内部品質測定方法に於いて、 該青果物から
の透過光は所定の数の周波領域に分割されその各々を電
荷蓄積型の受光素子からなる受光手段により受光し、前
記所定の数に分割された周波領域に対応する前記受光手
段からの信号を並列処理し、多重化処理をすることによ
り、該所定の数の周波領域に分割された光に応じた強度
データを各々算出し、該強度データに基づいて積算を行
うことにより該青果物の内部品質データを算出すること
を特徴とする青果物内部品質測定方法。
7. A step of projecting light having a predetermined frequency region onto the fruits and vegetables in a state where the fruits and vegetables are transported, and calculating intensity data based on transmitted light from the fruits and vegetables, the step of transporting the fruits and vegetables. In a method for measuring the internal quality of fruits and vegetables, which is performed continuously in each region of the fruits and vegetables, and calculates the internal quality data of the fruits and vegetables using the intensity data, the transmitted light from the fruits and vegetables is a predetermined number of frequency regions. , And each of them is received by a light receiving means comprising a charge storage type light receiving element, and signals from the light receiving means corresponding to the predetermined number of divided frequency regions are processed in parallel and multiplexed. Calculating the intensity data according to the light divided into the predetermined number of frequency regions, and calculating the internal quality data of the fruits and vegetables by performing the integration based on the intensity data. Parts quality measurement method.
JP14768098A 1998-05-26 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables Pending JPH11337481A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14768098A JPH11337481A (en) 1998-05-28 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables
US09/316,070 US6334092B1 (en) 1998-05-26 1999-05-21 Measurement device and measurement method for measuring internal quality of fruit or vegetable
EP99110130A EP0961112A3 (en) 1998-05-26 1999-05-25 Device and method for measuring the internal quality of fruit or vegetables
KR1019990019059A KR100714736B1 (en) 1998-05-26 1999-05-26 Measurement device and measurement method for measuring internal quality of fruit or vegetable
KR1020060122830A KR100731568B1 (en) 1998-05-26 2006-12-06 Measurement device and measurement method for measuring internal quality of fruit or vegetable
KR1020060122831A KR100713600B1 (en) 1998-05-26 2006-12-06 Measurement device and measurement method for measuring internal quality of fruit or vegetable
KR1020060122832A KR100731569B1 (en) 1998-05-26 2006-12-06 Measurement device and measurement method for measuring internal quality of fruit or vegetable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14768098A JPH11337481A (en) 1998-05-28 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables

Publications (1)

Publication Number Publication Date
JPH11337481A true JPH11337481A (en) 1999-12-10

Family

ID=15435860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14768098A Pending JPH11337481A (en) 1998-05-26 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables

Country Status (1)

Country Link
JP (1) JPH11337481A (en)

Similar Documents

Publication Publication Date Title
KR100731569B1 (en) Measurement device and measurement method for measuring internal quality of fruit or vegetable
US7489398B2 (en) Spectrophotometer
JP7410340B2 (en) Apparatus and method
JP3098768B2 (en) Spectrophotometer and its photometric method
JP2881201B2 (en) Method and apparatus for measuring sugar content of citrus fruit
JPH043492B2 (en)
JPH11337481A (en) Apparatus and method for measurement of internal quality of fruits and vegetables
JP2882824B2 (en) Fruit and vegetable ingredient measuring device
JP3712247B2 (en) Apparatus and method for measuring internal quality of fruits and vegetables
TWI785434B (en) Photoreflectance spectroscopy apparatus, photoreflectance spectroscopy system, and photoreflectance spectroscopy method
JPH11337482A (en) Apparatus and method for measurement of internal quality of fruits and vegetables
JPH11344441A (en) Instrument and method for measuring internal quality of vegetables and fruits
JP2011117942A (en) On-line nondestructive spectroscopic analysis device
JPH10281998A (en) Emission spectroscopic analyzer
JPH04194712A (en) Spectrophotometer
JPH0772713B2 (en) On-line photometric measuring device with variable integration chopping method
US7265824B2 (en) Method and device for obtaining a low-noise optical signal
JP2012008099A (en) Device for inspecting inside of fruit/vegetable
JPH10185816A (en) Infrared analyzer
JPH0658721A (en) Equipment for measuring image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070528