JPH11337481A - Apparatus and method for measurement of internal quality of fruits and vegetables - Google Patents

Apparatus and method for measurement of internal quality of fruits and vegetables

Info

Publication number
JPH11337481A
JPH11337481A JP14768098A JP14768098A JPH11337481A JP H11337481 A JPH11337481 A JP H11337481A JP 14768098 A JP14768098 A JP 14768098A JP 14768098 A JP14768098 A JP 14768098A JP H11337481 A JPH11337481 A JP H11337481A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
light
fruit
fruits
internal quality
vegetables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14768098A
Other languages
Japanese (ja)
Inventor
Toyohiko Aoki
豊彦 青木
Original Assignee
Mitsui Mining & Smelting Co Ltd
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/02Food
    • G01N33/025Fruits or vegetables

Abstract

PROBLEM TO BE SOLVED: To obtain an apparatus and a method in which the time required for a data processing operation is shortened and in which the internal quality of fruits and vegetables can be measured at high speed and with high accuracy, by a method wherein light which is passed through the fruits and vegetables is divided into the prescribed number of frequency regions and light-receiving signal processing circuits corresponding to the respective regions are installed. SOLUTION: In a measuring apparatus for the internal quality of fruits and vegetables, light which is passed through an object 5 to be inspected is divided into the prescribed number of frequency regions by, e.g. a diffraction grating 3, and it is measured by photodiodes 20 which are arranged so as to correspond to the respective frequency regions. Obtained signals are processed by light-receiving signal processing circuits which correspond to the respective photodiodes 20, they are inputted to a CPU 27 as pieces of intensity data on the light transmitted through the respective frequency regions, and they are converted into data on the internal quality by a prescribed computing operation. When a sensor array composed of, e.g. MOS image sensors as charge storage-type light receiving elements is constituted, the transmitted light can be analyzed fine in many divided channels. In addition, the signal processing circuits can be constituted so as to be unified by using a multiplexer.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、ミカン、メロン、 The present invention relates is, oranges, melons,
スイカ等の青果物の内部糖度等の品質を非破壊で測定する装置に関し、より詳細には測定により得られた初期データをより高速且つ高精度で処理する処理回路に関する。 Relates to a device for measuring the quality of the internal sugar content such as vegetables and fruits watermelon etc. in a non-destructive, to processing circuitry for processing faster and accurate initial data obtained by the measurement is more.

【0002】 [0002]

【従来技術】一般に、出荷前に於ける青果物の内部品質の評価は、主として熟練した検査員による目視により行われていた。 Description of the Prior Art In general, the evaluation of the internal quality of fruit and vegetables in prior to shipment, has been carried out by visual primarily due to skilled inspector. 又、特定の青果物に於いては、完熟状態で収穫あるいは出荷を行うと、販売時に於ける食味の低下、果肉の粉質化等が発生することから未熟状態での収穫が行われ、その後一定温度下で放置することにより追熟を行い食用に適した状態とする。 Also, at the particular fruit and vegetables, when harvest or shipped in ripe state, decrease in the in taste, harvest of immature state since the floury, etc. of pulp occurs done at the time of sale, then constant a state suitable for edible perform ripening by standing at a temperature. 従来、このような追熟の完了についても上述のように検査員による目視により判断を行っていたが、この様な青果物の内部品質評価には明確な基準が無く、正確な判断を行うことは困難であった。 Conventionally, had also performed visually evaluated by inspector as described above for the completion of such a ripening, no clear criteria for internal quality evaluation of such vegetables and fruits, to make accurate judgments It was difficult.

【0003】一方、近赤外光を青果物に投射した場合、 [0003] On the other hand, if you project the near-infrared light to the fruit and vegetables,
青果物内の糖質等の成分が特定の波長の光を吸収するため、青果物を透過した透過光を分析することにより、青果物の糖度等の内部品質を知ることが可能であり、この近赤外光の透過光を用いて、青果物の内部品質を非破壊で判定する方法が知られている。 Since the components of the carbohydrate or the like in the fruits or vegetables absorb light of a particular wavelength, by analyzing the light transmitted through the fruit or vegetable, it is possible to know the internal quality of the sugar content such as vegetables and fruits, the near infrared using transmission light of light, a method of determining the internal quality of fruits or vegetables in a nondestructive manner has been known.

【0004】具体的に、青果物の内部品質測定器の概略図の例を図4に示す。 [0004] Specifically, an example of a schematic diagram of an internal quality measuring instrument of fruits or vegetables in FIG. 図4に於いて、青果物である被検体5は、例えばコンベヤ等の搬送手段10上を搬送された状態で、複数の被検体5についての内部品質が連続的に測定される。 In FIG. 4, the object 5 which is a fruit or vegetable, for example while being conveyed on the conveying means 10 of the conveyor or the like, the internal quality of the plurality of subjects 5 is continuously measured. まず被検体5は搬送手段上で位置センサ11によりその存在が確認される。 First specimen 5 its presence is confirmed by the position sensor 11 on the conveying means. 次に搬送手段上の所定の位置Aに於いて被検体5に対して光源1より所定の周波領域を有する光(以降は単に光と述べる。)を照射する。 Then light having a predetermined frequency region from the light source 1 to the subject 5 at a predetermined position A on the conveying means (hereinafter simply described as light.) Irradiating. 照射された光は、被検体5の中に存在する糖質等により所定の波長の光が吸収された後、被検体5の外部に透過される。 The irradiated light, after the light of the predetermined wavelength is absorbed by the carbohydrate or the like present in the subject 5, is transmitted to the outside of the subject 5. この透過された光を受光素子2において測定し、この測定により得られた透過光を信号処理装置12に於いて分析することにより被検体5の内部品質を知ることが可能となる。 The transmitted light measured in the light receiving element 2, it is possible to know the internal quality of the object 5 by analyzing at a transmitted light obtained by this measurement to the signal processor 12.

【0005】しかしながら、青果物の分光分析に用いる光の周波領域は広く、実際に信号処理を行い正確な内部品質を得るためには、周波領域を複数に分割して各分割された周波領域毎に信号処理を行う必要がある。 However, frequency range of light used for the spectral analysis of fruits or vegetables is widely in order to obtain the accurate internal quality perform actual signal processing, by dividing the frequency region into a plurality for each of the divided frequency region it is necessary to perform signal processing. この周波領域の分割−信号処理の方法として、以下に述べる(1)、(2)の方法が考えられている。 This division of frequency domain - as a method of signal processing, described below (1), has been considered a method of (2).

【0006】(1)所定の周波領域の光のみを透過する干渉フィルターを、周波領域が測定周波領域の分割数と一致する数だけ設け、当該各フィルターを受光素子の受光部分に於いて連続的に変更することにより、分割された周波領域の透過光を信号処理装置に連続的に送り信号処理を行う。 [0006] (1) an interference filter which transmits only light in a predetermined frequency range, provided the number of frequency regions coincides with the division number of the measurement frequency range, continuously the respective filters at the light receiving portion of the receiving element by changing, continuously to the feed signal processing transmitted light of the divided frequency domain into a signal processing device performs the. 各フィルターが全て受光部分を通過することにより測定周波領域についての一回の測定が終了する。 Each filter is a single measurement of the measurement frequency range by passing all received portion ends. (2)例えば、特開平7−22984に記載されているように、受光部分に測定波長を分割する回折格子を設け、分割後の透過光を、分割数に応じた蓄積型のセンサーを有するアレイに導き、一測定の終了後に蓄積されたデータについて順次単一の信号処理回路(増幅器等を含む。)によって信号処理を行う。 (2) For example, as described in JP-A 7-22984, a diffraction grating for dividing the measurement wavelength to the light receiving portion is provided, the transmitted light after the division, the array having a storage type sensor in accordance with the number of divisions the leading, performs signal processing by sequential single signal processing circuit for the stored data after completion of one measurement (. which includes an amplifier, etc.).

【0007】 [0007]

【発明が解決しようとする課題】青果物の選別過程上での品質評価に許容される時間は非常に短時間であり、上記搬送手段上で搬送状態のままの青果物の評価を、複数個の青果物について連続的に行う必要がある。 [0007] time allowed for the quality evaluation on selection process of fruits or vegetables is very short, the evaluation of the left fruits or vegetables conveyance state on the conveying means, a plurality of fruits or vegetables continuously it is necessary to perform for. しかし、 But,
青果物の内部品質は、その測定部位により大きく異なるため、できる限り連続的且つ広範囲の部分の評価を行わなければならない。 Internal quality of fruits or vegetables is different greatly depending the measurement site must be made to evaluate the continuous and extensive part as possible. 又、正確な評価を行うためには、透過光についても充分な光量を蓄積する必要がある。 Further, in order to make an accurate evaluation, it is necessary to accumulate a sufficient amount of light also transmitted light.

【0008】しかし、上述の(1)の方法の場合、干渉フィルターの変更を行う間に青果物が移動するため、周波領域を変更するにつれて測定領域もずれていき、各分割された周波領域の内の一つの周波領域についてのデータは青果物上の測定領域に対して不連続且つ部分的にしか得られない。 However, if the method of the above (1), for moving the vegetables and fruits while to change the interference filter, the measurement region will shift as to change the frequency region, among the divided frequency region data for a single-frequency region of the obtained only discontinuously and partially the measurement region on the fruit or vegetable. 更に、同様の理由により各分割周波領域それぞれについて得られるデータは異なる測定領域についてのデーターとなるため、正確な内部品質の測定結果を得ることが困難である。 Moreover, the data obtained for each of the divided frequency regions for the same reason for the data for the different measurement regions, it is difficult to obtain a measurement result of accurate internal quality. 又、各分割周波領域についての測定時間は、周波領域の分割数が多くなるほど短くなり、充分な透過光量を得ることが困難となる等の問題がある。 The measurement time for each split frequency region becomes shorter as the number of divisions of the frequency region is increased, it is a problem such that it becomes difficult to obtain a sufficient quantity of transmitted light.

【0009】上述(2)の方法の場合に於いても、透過光の分割は回折格子により同時に行われるが、アレイからは蓄積されたデータをシリアルに信号処理回路に送らざるを得ないため、各分割周波領域についてのデータ蓄積開始時刻及び蓄積終了時刻はデータ転送時間に応じて順次ずらされることとなる。 [0009] Since even in the case of the above-described methods (2), the division of the transmitted light are simultaneously performed by the diffraction grating, which inevitably transmitted to the signal processing circuit stored data serially from the array, data accumulation start time and the storage end time for each of the divided frequency region so that the sequentially shifted in accordance with the data transfer time. この様な各分割波長毎のデータ蓄積タイミングの時間的ズレは十数msecと僅かではあるため、青果物上の測定領域が不連続になる、或いは分割周波領域毎に得られたデータの測定位置が異なるという問題、更には単位時間当たりに蓄積される光量の減少の問題は(1)の方法の場合における程顕著ではない。 Since the time lag of such data storage timing for each split wavelength is a slight and ten msec, the measurement region is discontinuous on the fruits or vegetables, or the measurement position of the data obtained for each divided frequency region different that problems, further problems of decrease in the light amount accumulated per unit time is not as pronounced extent in the case of the method (1). しかし、より正確な青果物の内部品質の測定の結果を得る、或いは品質測定に許容される時間の短縮を図る上でやはり不十分であった。 However, it was still insufficient in terms of more obtain results accurate internal quality measurement of the fruits or vegetables, or shorten the time allowed for quality measurement. 更に、一測定終了後にアレイ上の各センサーに蓄積されたデータを消去し初期化するという工程を行う必要があり、このことも測定に要する時間を短縮する上で問題となっていた。 Furthermore, it is necessary to perform the step of initializing erases the data stored in each sensor on the array after one end of measurement, was also a problem in order to shorten the time required for measuring this.

【0010】上述の(2)に於いて、上述の問題を解決する方法としては、個々の周波領域についての蓄積時間を数十msecと長くする方法が考えられる。 [0010] In the above (2), as a method for solving the above problems, it is conceivable way to increase the tens msec accumulation time for each frequency region. しかし、蓄積時間の内のある期間に、例えば受光素子に透過光以外の外光が受光される、或いは青果物に付着するゴミ等により異常な強度データが生じた場合、当該方法は蓄積時間中の強度データのプロファイルを知ることは困難であり、異常値を含んだデータをそのまま用いてしまう恐れがあった。 However, the period in which certain of the accumulation time, for example, if the outside light other than the transmitted light is received by the light receiving element, or by dust or the like adhering to vegetables and fruits abnormal intensity data has occurred, the method in storage time it is difficult to know the profile of the intensity data, there is a fear that used as the containing outlier data.

【0011】又、実際の透過光の強度は各周波領域毎で大きく異なり、蓄積データを信号処理する際に適当な増幅率を選択し、その増幅率に応じたベースラインの設定を行い、その上で内部品質を算出する信号処理を行わなければならない。 [0011] Also, the strength of the actual transmitted light varies greatly in each frequency range, and select the appropriate amplification factor when the signal processing stored data, performs baseline settings in accordance with the amplification factor, the It must perform signal processing for calculating the internal quality above. 蓄積時間の短縮に応じて、この信号処理を行う回数及び各センサーの初期化を行う回数も増加し、信号処理回路の付加の増加による熱の発生に起因する測定誤差の増加や許容時間以上となるような測定時間の増加が生じる恐れがあった。 Depending on the shortening of the accumulation time, and the number of performing the signal processing and the number of times for initializing the respective sensor is also increased, the signal increase in measurement error due to generation of heat due to the increase of the addition of the processing circuit and the permissible time or increased made such measurement time there may occur.

【0012】本発明は上記の問題に鑑み、青果物を透過した光を分析することにより青果物の内部品質を測定する装置に於いて、高速且つ高精度の測定が可能な内部品質測定装置の提供を目的とする。 [0012] The present invention has been made in view of the above problems, in the apparatus for measuring the internal quality of fruits or vegetables by analyzing the light transmitted through the fruit or vegetable, the provision of internal quality measuring apparatus capable of measuring high-speed and high-precision for the purpose.

【0013】 [0013]

【課題を解決するための手段】上記課題を解決するために、本発明に係る青果物内部品質測定装置は、所定の方向に青果物を搬送する搬送手段と、搬送中の青果物の存在を確認するセンサーと、青果物に対して所定の周波領域を有する光を投光する投光手段と、青果物を透過した光を受光する受光手段と、受光手段により受光された透過光に応じた強度データを算出する受光信号処理回路と、強度データを用いて青果物の内部品質を算出する内部品質算出回路とを有する青果物内部品質定装置であって、更に受光手段は所定の周波領域を有する光を所定の数の周波領域に分割する周波領域分割手段を有し、受光信号処理回路は所定の数に応じた数だけ有されているものとしている。 In order to solve the above problems SUMMARY OF THE INVENTION, vegetables and fruits internal quality measuring apparatus according to the present invention comprises a conveying means for conveying the fruit or vegetable in a predetermined direction, a sensor to confirm the presence of fruits or vegetables being conveyed When, calculates the light projecting means for projecting light having a predetermined frequency region with respect to fruits or vegetables, light receiving means for receiving light transmitted through the fruit or vegetable, the intensity data corresponding to the transmitted light received by the light receiving means a light receiving signal processing circuit, a fruit or vegetable internal quality constant device having an internal quality calculating circuit for calculating the internal quality of fruits or vegetables using the intensity data, further receiving means light a predetermined number having a predetermined frequency region has a frequency range dividing means for dividing the frequency region, the light receiving signal processing circuit is assumed to have no number corresponding to the predetermined number.

【0014】 [0014]

【作用】上述のように、青果物内部品質測定装置を、例えば回折格子等により受光手段が受光した透過光を所定の数の周波領域に分割し、更に所定の数に分割された周波領域個々に応じた複数の受光信号処理回路が同時に各分割領域に応じた強度データを算出すること構成とした。 [Action] As described above, the fruit or vegetable internal quality measuring apparatus, for example, a transmitted light receiving means has received the diffraction grating or the like is divided into frequency regions of the predetermined number, the further frequency range individual divided into a predetermined number a plurality of light-receiving signal processing circuit according been is configured to calculate the intensity data corresponding to the divided regions at the same time. これにより搬送状態での測定に於いても、連続した各測定位置について全ての周波領域についての測定が行われ、且つ時間的な測定位置のズレの発生に起因した測定位置の不連続化を生じることなく、更に測定毎の受光部の初期化を行うことなく正確な青果物の内部品質分析を行うことが可能となる。 Even Thus at the measurement in the conveying state, is measured for all the frequency region is performed for each measurement position continuously, resulting in discontinuity of the measurement position due to and temporal occurrence of displacement of the measuring position it not, it is possible to perform the internal quality analysis of accurate fruits or vegetables without further initializes the light receiving portion of each measurement.

【0015】又、単位時間当たりにデータとして用いられる光量は、全ての分割領域の透過光を同時に処理するために、従来技術に於いて述べた蓄積型のセンサーを用いた場合に対して大きくすることが可能であり、より正確な青果物の内部品質評価を行うことが可能となる。 [0015] Also, the amount of light to be used as data per unit time, in order to simultaneously process the transmitted light of all divided regions, increased with respect to the case of using the accumulation type sensor described In the prior art it is possible, it is possible to perform internal quality evaluation of more accurate fruits and vegetables. 更に本発明の構成に於いては、より高精度な測定が要求される場合には周波領域の分割数を増加させ、又精度的に低くても良い場合には分割数を減少させることが容易であり、非検体の大きさあるいは測定条件等に応じて当該装置を稼働させたままで分割数を変更する構成とすることも可能である。 It is further at the construction of the present invention, when measurement with higher accuracy is required to increase the number of divisions of the frequency region, and in the case may be accurate to low easily reduce the number of divisions , and the it is possible to adopt a configuration for changing the number of divisions while not operate the device in accordance with the size or the measurement conditions such as the non-analyte.

【0016】蓄積型センサを用いる方法は測定時間の遅延を生じさせる恐れがあることは上述の通りである。 [0016] that the method using the storage-type sensors which may cause a delay of the measurement time is as described above. しかし例えば、比較的長い測定時間が許容される研究開発等に当該内部品質測定装置が用いられる場合には、上述の蓄積型センサーアレイは一般的には周波領域を非常に細かく分割することが可能であり、これを用いる測定法は有用である。 However For example, when a relatively long measurement times the internal quality measuring device is research and development allowed is used, the accumulation type sensor array described above generally are capable of dividing a very finely-frequency region , and the measurement method using this is useful. 特に個々の周波領域についての蓄積時間を数msecと短く設定し、青果物の内部品質を微細な範囲に分割して測定する手法は青果物の品質をより正確に知るとともに、上述の強度データのプロファイルを知ることも可能であり特に研究開発等の用途に於いては有用と考えられる。 Especially set short as several msec accumulation time for each frequency region, together with the method of measuring by dividing the internal quality of the fruits or vegetables into a fine range know the quality of the fruits or vegetables to be more precise, the profile of the aforementioned intensity data considered useful is also possible in particular at the use of such research and development to know.

【0017】本発明によれば、蓄積型センサを用いた場合に於いても、受光信号処理回路を並列に有するため各周波領域に関する信号処理を待つことなく、順次蓄積データを受光信号処理回路に送って準並列的に信号処理を行い且つ初期化を行うことが可能であるため、多数の受光素子からなる蓄積型のセンサーアレイを用いて周波領域の分割数を大きくすると共に個々の周波領域についての蓄積時間を数msecと短く設定した場合に於いても、実際に測定時間の増加はわずかで抑えられる。 According to the present invention, even in a case where a storage sensor, without waiting for the signal processing for each frequency region because it has a light-receiving signal processing circuit in parallel, sequentially stored data in the received light signal processing circuit for each frequency region with send it because it is possible to perform and initialization performed quasi parallel signal processing, to increase the number of divisions of the frequency region by using a storage-type sensor array comprising a plurality of light receiving elements also in the storage time in the case of setting as short as several msec, actually increased measurement time is slightly in suppressing. 又、同様の効果により測定位置のズレ量の減少及び単位時間当たりに受光される透過光量の増加も図れる効果を奏する。 Further, it exhibits an increase in amount of transmitted light is also attained the effect to be received per reduction and unit time of the deviation of the measurement position by the same effects.

【0018】なお、所定の数の周波数領域に分割する周波領域分割手段としては、受光手段と組み合わせる形で分光器及びフォトセンサーを用いても良く、受光手段としてCCDセンサー等を用いても良い。 [0018] As the frequency region dividing means for dividing the predetermined number of frequency domain may be used a spectroscope and a photosensor in a form combined with the light receiving means may be a CCD sensor or the like as light receiving means. 即ち、受光手段と周波領域分割手段とは特に用途により区別する必要はなく、透過光を所定の周波領域に分割する機能と光エネルギーを電気的信号に変換する機能とにより複数の電気的信号を発生する構成であれば良い。 That is, there is no need to distinguish the applications to the light receiving means and frequency region splitting means, a function and a plurality of electrical signals by the function of converting the light energy into an electrical signal that divides the transmitted light in a predetermined frequency range it may be a configuration that occurs.

【0019】 [0019]

【実施例】本発明の第一の実施例に係る信号処理ブロック図を図1に示す。 A signal processing block diagram according to a first embodiment of the embodiment of the present invention shown in FIG. 搬送手段10、位置センサ11及び光源1と、光源1から非検体5に照射された所定の周波領域を有する光(以降は光と述べる、)が非検体5から透過するまでは従来技術と異なる部分はないため、ここでの説明は省略する。 Conveying means 10, a position sensor 11 and the light source 1, light having a predetermined frequency range emitted from the light source 1 to the non-sample 5 (later described as light,) until the transmission from the non-analyte 5 is different from the prior art because portions are not, and description thereof is omitted here. 本実施例に於いては、非検体5を透過した光は、フォトダイオード20の直前に於いて回折格子3によりn個の周波数領域λa〜λxに分割される。 In the present embodiment, the light transmitted through the non-analyte 5 is divided by the diffraction grating 3 at just before the photodiode 20 into n frequency domain Ramudaei~ramudax. 更にフォトダイオード20は分割された周波領域の数に対応して配置されており、所定の周波領域の透過光は所定のフォトダイオード20により測定される。 Further photodiode 20 are arranged corresponding to the number of the divided frequency region, the transmitted light of the predetermined frequency region is measured by a predetermined photodiode 20. 尚、 still,
各フォトダイオード20に応じた、電流電圧変換アンプ、ゲインアンプ、ローパスフィルタ、電圧周波数変換器及びカウンタからなる受光信号処理回路に於ける信号処理ルーチンは、全ての受光素子に於いて同一であるため、以下λ1の場合の信号処理ルーチンについて述べる。 Corresponding to the respective photodiodes 20, the current-voltage conversion amplifier, since gain amplifier, low-pass filter, in the signal processing routine in the light receiving signal processing circuit consisting of a voltage frequency converter and the counter, which is identical at all of the light-receiving element describes signal processing routines of the following cases .lambda.1.

【0020】分割された透過光は、フォトダイオード2 The divided transmitted light, the photodiode 2
0により電流に変換され、更に当該電流は電流電圧変換アンプ22aにより電圧信号に変換される。 0 is converted into a current by, and is converted further the current by the current-voltage conversion amplifier 22a to a voltage signal. 得られた電圧信号はゲインアンプ23aにより増幅された後、ローパスフィルタ24aによりノイズ成分がカットされ、更に電圧周波数変換器25aにより周波数変換が行われる。 After obtained voltage signal is amplified by the gain amplifier 23a, the noise component is cut by the low-pass filter 24a, the frequency conversion is performed by the further voltage-to-frequency converter 25a. その後所定の積算時間tの間、カウンタ26aによって周波数がカウントされる。 During the subsequent predetermined integration time t, frequency is counted by the counter 26a. カウントされた周波数はフォトダイオード20に照射された透過光λaの強度データDa=fa×tとしてCPU27に入力される。 Counted frequency is inputted to the CPU27 as the intensity data Da = fa × t of the transmitted light λa irradiated to the photodiode 20.

【0021】次に、本発明の第二の実施例に係る信号ブロック図を図2に示す。 Next, a signal block diagram according to a second embodiment of the present invention shown in FIG. 第一の実施例と異なる点は、フォトダイオード20に変えて複数のMOS型イメージセンサ(蓄積型センサー)からなるセンサーアレイ7を用いる点である。 The difference from the first embodiment in that using the sensor array 7 formed of a plurality of MOS type image sensor (accumulation type sensor) instead of the photodiode 20. 本実施例に於いては、非検体5を透過した光は、センサーアレイ7の直前に於いて回折格子3によりn個の周波数領域λ1〜λnに分割される。 In the present embodiment, the light transmitted through the non-analyte 5 is divided into n frequency domain λ1~λn by the diffraction grating 3 at just before the sensor array 7. センサーアレイ7からは各分割周波領域に対応した電荷(蓄積データ)が、順次シリアルに対応する電流電圧変換アンプに送られる。 From the sensor array 7 charges corresponding to each divided frequency region (storage data) is sent to the current-voltage conversion amplifiers corresponding to sequential serial. 以下の信号処理については第一の実施例と同様である。 The following signal processing is similar to the first embodiment.

【0022】本実施例に於いては、センサーアレイ7からシリアルに送られる蓄積データを準並列的に処理するために、各蓄積データ毎に最適ゲインを選択しても信号処理時間の大幅な増加は生じない。 [0022] In the present embodiment, in order to process the stored data sent from the sensor array 7 to the serial quasi parallel, a significant increase also the signal processing time by selecting the optimum gain for each stored data It does not occur. このため、一般に分割チャネル数が数百以上であるMOS型イメージセンサを用い透過光を細かく分析することを可能とする効果を奏する。 Therefore, in general the number of divisions channels an effect that allows the finely analyze the transmitted light using a MOS image sensor is several hundred. 又、センサーアレイ7について、蓄積された電荷をパラレルに交接された電流電圧変換回路に送ることが可能となれば実施例一と同様の効果が得られる。 Further, the sensor array 7, the same effect can send the charge accumulated in the current-voltage conversion circuit which is copulating in parallel with one example embodiment if obtained.

【0023】第二の実施例に於いては、分割数に応じた数の受光信号処理回路を有する構成としたが、ゲインアンプ以下を複数有する構成とした場合には、受光信号処理回路全体の製造コストが大幅に増加し実際的でない。 [0023] The In the second embodiment, a configuration having a number of light-receiving signal processing circuit in accordance with the number of divisions, in the case of the configuration having more of the following gain amplifier, the entire light-receiving signal processing circuit not a practical manufacturing cost is increased significantly.
そこで第三の実施例に於いては、図3に示す信号ブロック図のように、各周波領域に対応した電荷を電流電圧変換アンプにより電圧信号に変換した後、マルチプレクサ28を通して単一のゲインアンプ23当該電圧信号を伝える構成とした。 So is In the third embodiment, as the signal block diagram shown in FIG. 3, after conversion into voltage signals by current-voltage conversion amplifier electric charges corresponding to each frequency region, a single gain amplifier through a multiplexer 28 23 has a configuration for transmitting the voltage signal. これにより製造コストを大幅に増加させることなく第二の実施例と同様の効果が得られることとなる。 So that the thereby the same effect as the second embodiment without significantly increasing the manufacturing cost can be obtained.

【0024】更に第三の実施例に於いては、センサーアレイ7について、蓄積された電荷をパラレルに交接された電流電圧変換回路に送ることが可能となった場合、マルチプレクサ28を配置して多重化処理を行うタイミングは電流電圧変換後に限定されるわけではなく、処理時間を最も必要とする信号増幅後でも良い。 [0024] In further In the third embodiment, the sensor array 7, when it becomes possible to send the charge accumulated in the current-voltage conversion circuit which is mating in parallel, by arranging the multiplexer 28 multiplexing processing timing of is not limited to after the current-voltage conversion, it may be after signal amplification needed most processing time. この場合には第一の実施例とほとんど同様の効果が得られる。 Most same effect as the first embodiment are obtained in this case.

【0025】CPU27に入力された強度データは、所定の演算を行うことにより内部品質データに変換され、 The intensity data input to CPU27 is converted to internal quality data by performing a prescribed operation,
CRT等により画像としてこれらが表示される。 It is displayed as an image by the CRT or the like. 尚、画像表示は所定の用度を基準として被検体5の出荷時期の適否のみを表示する形式としても良く、さらには画像表示を行わずに適否データのみを出力し、当該測定装置に連続する搬送装置に於いて被検体5の選別を行うようにしても良い。 The image display may be a format for displaying only the propriety of shipping time of the object 5 with reference to a predetermined Yodo, further outputs only propriety data without displaying images, continuous in the measuring device it may be performed sorting the subject 5 at the conveying device.

【0026】 [0026]

【発明の効果】本発明の実施により、青果物を透過した透過光のデータ処理及び分析を従来技術に於ける処理時間に対して大幅に短縮することが可能となり、青果物の内部品質測定を短時間に且つ高精度で行うことが可能となる。 The practice of the present invention, it is possible to significantly reduce relative in processing time in the prior art data processing and analysis of the light transmitted through the fruit or vegetable, a short time internal quality measurement of the fruits or vegetables it is possible to perform and with high accuracy.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第一の実施例に係る信号処理ブロック図。 Signal processing block diagram according to a first embodiment of the present invention; FIG.

【図2】本発明の第二の実施例に係る信号処理ブロック図。 Signal processing block diagram according to a second embodiment of the present invention; FIG.

【図3】本発明の第三の実施例に係る信号処理ブロック図。 Signal processing block diagram according to the third embodiment of the present invention; FIG.

【図4】近赤外光を用いた青果物の内部品質測定法の概略構成を示す図。 4 is a diagram showing the schematic configuration of the internal quality measurement of the fruits or vegetables using near-infrared light.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 光源 2 受光素子 3 回折格子 5 被検体 7 センサーアレイ 10 搬送手段 11 位置センサ 12 信号処理装置 20 フォトダイオード 22 電流電圧変換アンプ 23 ゲインアンプ 24 ローパスフィルタ 25 電圧周波数変換器 26 カウンタ 27 CPU 28 マルチプレクサ 1 light source 2 light receiving elements 3 the diffraction grating 5 specimen 7 sensor array 10 carrying means 11 the position sensor 12 signal processor 20 photodiode 22 current-voltage conversion amplifier 23 gain amplifier 24 low-pass filter 25 a voltage-frequency converter 26 counter 27 CPU 28 multiplexer

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 所定の方向に青果物を搬送する搬送手段と、該青果物に対して所定の周波領域を有する光を投光する投光手段と、該青果物を透過した光を受光する受光手段と、前記受光手段により受光された前記透過光に応じた強度データを算出する受光信号処理回路と、前記強度データを用いて該青果物の内部品質を算出する内部品質算出回路とを有する青果物内部品質測定装置に於いて、 前記青果物内部品質測定装置は、該青果物を透過した所定の周波領域を有する光を所定の数の周波領域に分割し前記受光手段に導く周波領域分割手段を更に有し、 前記所定の数の周波領域の各周波領域毎に前記受光信号処理回路が設けられていることを特徴とする青果物内部品質測定装置。 And 1. A conveying means for conveying the fruit or vegetable in a predetermined direction, a light projecting means for projecting light having a predetermined frequency region with respect 該青 fruit, light receiving means for receiving light transmitted through the 該青 fruit , fruit or vegetable internal quality measurement having a light-receiving signal processing circuit for calculating intensity data according to the transmitted light received by said light receiving means, and an internal quality calculating circuit for calculating the internal quality of 該青 fruits by using the intensity data in a combination, the fruit or vegetable internal quality measuring apparatus further comprises a frequency region splitting means for splitting the light having the predetermined frequency region that has passed through the 該青 fruit predetermined number of frequency regions leads to the light receiving means, wherein fruit or vegetable internal quality measuring apparatus wherein the light receiving signal processing circuit is provided for each frequency for each area of ​​a predetermined number of frequency regions.
  2. 【請求項2】 前記受光手段は、前記所定の数の周波領域に分割された光を各々受光する光電変換素子であることを特徴とする請求項1記載の青果物内部品質測定装置。 Wherein said light receiving means, fruit or vegetable internal quality measuring apparatus according to claim 1, wherein the a predetermined photoelectric conversion elements, each for receiving the light which is divided into frequency range of several.
  3. 【請求項3】 前記受光手段は、前記所定の数の周波領域に分割された光を各々受光する電荷蓄積型の受光素子からなるセンサーアレイであることを特徴とする請求項1記載の青果物内部品質測定装置。 Wherein said light receiving means, the fruits or vegetables inside of claim 1, characterized in that the sensor array of charge storage type light receiving element for each receiving the light split into the predetermined number of frequency regions quality measurement device.
  4. 【請求項4】 前記受光信号処理回路は、電流電圧変換器からなる第一の受光信号処理回路部分と、前記第一に受光信号処理回路部分と接続されるマルチプレクサと、 Wherein said light receiving signal processing circuit comprises a first light receiving signal processing circuit portion consisting of the current-voltage converter, a multiplexer which is connected to the light-receiving signal processing circuit portion to the first,
    前記マルチプレクサと接続され強度データを算出する第二の受光信号処理回路部分とを有し、前記第一の受光信号処理回路部分は前記各受光素子に対応して設けられていることを特徴とする青果物内部品質測定装置。 And a second light receiving signal processing circuit portion for calculating the connected strength data and the multiplexer, the first light receiving signal processing circuit portion is characterized in that provided in correspondence with the respective light receiving elements vegetables and fruits internal quality measurement device.
  5. 【請求項5】 青果物を搬送させた状態で所定の周波領域を有する光を該青果物に投光し、該青果物からの透過光に基づいて強度データを算出する工程が該青果物の搬送に伴い該青果物の各領域に於いて連続的に行われ、前記強度データを用いて該青果物の内部品質データを算出する青果物内部品質測定方法に於いて、 該青果物からの透過光は所定の数の周波領域に分割されその各々を並列処理することにより、該所定の数の周波領域に分割された光に応じた強度データを各々同時に算出し、該強度データに基づいて積算を行うことにより該青果物の内部品質データを算出することを特徴とする青果物内部品質測定方法。 5. A projecting light in a state of being transported vegetables and fruits having a predetermined frequency region 該青 fruit, step of calculating intensity data based on transmitted light from 該青 fruit with the conveyance of 該青 fruit the in each area of ​​the fruits or vegetables are carried out continuously, the intensity data at the fruit or vegetable internal quality measuring method for calculating the internal quality data of 該青 fruits using a transmitted light frequency range of a predetermined number from 該青 fruit It is divided into by parallel processing of each, and each simultaneously calculated intensity data corresponding to the divided light to the predetermined number of frequency regions, internal 該青 fruit by performing integration on the basis of said intensity data fruit or vegetable internal quality measuring method characterized by calculating the quality data.
  6. 【請求項6】 青果物を搬送させた状態で所定の周波領域を有する光を該青果物に投光し、該青果物からの透過光に基づいて強度データを算出する工程が該青果物の搬送に伴い該青果物の各領域に於いて連続的に行われ、前記強度データを用いて該青果物の内部品質データを算出する青果物内部品質測定方法に於いて、 該青果物からの透過光は所定の数の周波領域に分割されその各々を電荷蓄積型の受光素子からなる受光手段により受光し、前記所定の数に分割された周波領域に対応する前記受光手段からの信号を並列処理することにより、該所定の数の周波領域に分割された光に応じた強度データを各々算出し、該強度データに基づいて積算を行うことにより該青果物の内部品質データを算出することを特徴とする青果物内部品質測定方法 6. A projected light having a predetermined frequency region while being transported to fruits or vegetables in 該青 fruit, step of calculating intensity data based on transmitted light from 該青 fruit with the conveyance of 該青 fruit the in each area of ​​the fruits or vegetables are carried out continuously, the intensity data at the fruit or vegetable internal quality measuring method for calculating the internal quality data of 該青 fruits using a transmitted light frequency range of a predetermined number from 該青 fruit the each divided received by the light receiving means composed of a charge storage type light receiving element, by parallel processing the signals from said light receiving means corresponding to the divided frequency region to the predetermined number, the predetermined number of the intensity data calculated respectively in accordance with the split light to frequency area, fruit or vegetable internal quality measuring method characterized by calculating the internal quality data of 該青 fruit by performing integration on the basis of said intensity data
  7. 【請求項7】 青果物を搬送させた状態で所定の周波領域を有する光を該青果物に投光し、該青果物からの透過光に基づいて強度データを算出する工程が該青果物の搬送に伴い該青果物の各領域に於いて連続的に行われ、前記強度データを用いて該青果物の内部品質データを算出する青果物内部品質測定方法に於いて、 該青果物からの透過光は所定の数の周波領域に分割されその各々を電荷蓄積型の受光素子からなる受光手段により受光し、前記所定の数に分割された周波領域に対応する前記受光手段からの信号を並列処理し、多重化処理をすることにより、該所定の数の周波領域に分割された光に応じた強度データを各々算出し、該強度データに基づいて積算を行うことにより該青果物の内部品質データを算出することを特徴とする青果物 7. A projecting light having a predetermined frequency region while being transported to fruits or vegetables in 該青 fruit, step of calculating intensity data based on transmitted light from 該青 fruit with the conveyance of 該青 fruit the in each area of ​​the fruits or vegetables are carried out continuously, the intensity data at the fruit or vegetable internal quality measuring method for calculating the internal quality data of 該青 fruits using a transmitted light frequency range of a predetermined number from 該青 fruit the each divided received by the light receiving means composed of a charge storage type light receiving element, a signal from the light receiving means corresponding to the divided frequency region to the predetermined number of parallel processing, the multiplexing process it in by, respectively calculate the intensity data corresponding to the divided light to the frequency region of the predetermined number, and calculates the internal quality data of 該青 fruit by performing integration on the basis of said intensity data fruits or vegetables 部品質測定方法。 Parts quality measurement method.
JP14768098A 1998-05-28 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables Pending JPH11337481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14768098A JPH11337481A (en) 1998-05-28 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP14768098A JPH11337481A (en) 1998-05-28 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables
US09316070 US6334092B1 (en) 1998-05-26 1999-05-21 Measurement device and measurement method for measuring internal quality of fruit or vegetable
EP19990110130 EP0961112A3 (en) 1998-05-26 1999-05-25 Device and method for measuring the internal quality of fruit or vegetables
KR19990019059A KR100714736B1 (en) 1998-05-26 1999-05-26 Measurement device and measurement method for measuring internal quality of fruit or vegetable
KR20060122832A KR100731569B1 (en) 1998-05-26 2006-12-06 Measurement device and measurement method for measuring internal quality of fruit or vegetable
KR20060122831A KR100713600B1 (en) 1998-05-26 2006-12-06 Measurement device and measurement method for measuring internal quality of fruit or vegetable
KR20060122830A KR100731568B1 (en) 1998-05-26 2006-12-06 Measurement device and measurement method for measuring internal quality of fruit or vegetable

Publications (1)

Publication Number Publication Date
JPH11337481A true true JPH11337481A (en) 1999-12-10

Family

ID=15435860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14768098A Pending JPH11337481A (en) 1998-05-28 1998-05-28 Apparatus and method for measurement of internal quality of fruits and vegetables

Country Status (1)

Country Link
JP (1) JPH11337481A (en)

Similar Documents

Publication Publication Date Title
Lammertyn et al. Non-destructive measurement of acidity, soluble solids, and firmness of Jonagold apples using NIR-spectroscopy
US5132538A (en) Measuring percentage of protein in whole grain samples
US6483583B1 (en) Near infrared spectrometry for real time analysis of substances
US5991025A (en) Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis
US3994590A (en) Discrete frequency colorimeter
McGlone et al. Internal quality assessment of mandarin fruit by vis/NIR spectroscopy
US4866644A (en) Optical instrument calibration system
US6667802B2 (en) System and method for self-referencing calibration
US4630923A (en) Fiberoptic spectrophotometer
Saranwong et al. Performance of a portable near infrared instrument for Brix value determination of intact mango fruit
US20100195105A1 (en) Improved stability for optical computing system
US5867265A (en) Apparatus and method for spectroscopic product recognition and identification
US6690464B1 (en) High-volume on-line spectroscopic composition testing of manufactured pharmaceutical dosage units
WO1999040419A1 (en) Grain quality monitor
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
US4259020A (en) Automatic calibration control for color grading apparatus
US4054389A (en) Spectrophotometer with photodiode array
Lammertyn et al. zNose™ technology for the classification of honey based on rapid aroma profiling
US4404642A (en) Apparatus for near infrared quantitative analysis with temperature variation correction
Eustaquio et al. Determination of paracetamol in intact tablets by use of near infrared transmittance spectroscopy
US5021662A (en) Method and apparatus for real-time in-line material monitoring
US4466076A (en) Apparatus for near infrared quantitative analysis with temperature variation correction
Thygesen et al. NIR measurement of moisture content in wood under unstable temperature conditions. Part 1. Thermal effects in near infrared spectra of wood
Peirs et al. Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents
Azzouz et al. Comparison between different data pre-treatment methods in the analysis of forage samples using near-infrared diffuse reflectance spectroscopy and partial least-squares multivariate calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070528