JPH11330000A - Laser annealing method for non-single crystal thin film - Google Patents

Laser annealing method for non-single crystal thin film

Info

Publication number
JPH11330000A
JPH11330000A JP12936598A JP12936598A JPH11330000A JP H11330000 A JPH11330000 A JP H11330000A JP 12936598 A JP12936598 A JP 12936598A JP 12936598 A JP12936598 A JP 12936598A JP H11330000 A JPH11330000 A JP H11330000A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
laser beam
thin film
non
irradiation
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12936598A
Other languages
Japanese (ja)
Inventor
Ikunori Kobayashi
Shigeki Maekawa
Tatsuo Yoshioka
茂樹 前川
達男 吉岡
郁典 小林
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To enhance yield of an element, which is manufactured by using a crystallized thin film, by reducing uneven crystallization while using a currently used pulse laser beam. SOLUTION: In a method whereby a pulse laser beam 1 is allowed to scan a non-single crystal thin film 2 on a substrate 4 and superposed irradiation is performed thereon so as to achieve crystallization, the pulse laser beam 1 is emitted at an angle α of 5 to 85 deg. formed by a major axis direction and the scanning direction of the pulse laser beam 1, and crystallization is carried out. In this case, regarding the pulse laser beam, when a ratio of a major axis diameter and a minor axis diameter is 100 or more, a scanning pitch for each irradiation is d, and an angle is α, d.cosα is 2 μm or more. Further, the pulse laser beam has a space average intensity of 200 to 400 mJ/cm<2> .

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、液晶表示装置用の薄膜トランジスタ、イメージセンサ、あるいはSRAM BACKGROUND OF THE INVENTION The present invention relates to a thin film transistor for a liquid crystal display device, an image sensor or SRAM,
等の製造工程に用いられる非単結晶薄膜のレーザーアニール方法に関するものである。 It relates laser annealing method of the non-single-crystal film used in the production process and the like.

【0002】 [0002]

【従来の技術】近年、液晶表示装置はノートパソコンやビデオカメラのモニター等の需要により、大型化、高精細化の要求がますます高まっている。 In recent years, the liquid crystal display device by the demand of the monitor, such as laptops and video cameras, large in size, the demand for high definition is increasing more and more. この要求に答えるものとして低温ポリシリコン薄膜トランジスタアレイを用いた液晶表示装置は、最近の製造技術の進展により量産化への動きが本格化してきた。 The liquid crystal display device using low-temperature polysilicon thin-film transistor array as to meet this requirement, the movement of the mass production have been earnest with the progress of recent production technology.

【0003】低温ポリシリコン薄膜トランジスタアレイに用いられるポリシリコン層の形成には、一般に非晶質Si薄膜をエキシマレーザー照射によるアニール(以下、エキシマレーザーアニールとする)する方法が用いられる。 [0003] For the formation of the polysilicon layer for use in low-temperature polysilicon thin film transistor array, typically annealing an amorphous Si thin film by excimer laser irradiation (hereinafter referred to as an excimer laser annealing) method of is used.

【0004】図5〜図7に従来のレーザーアニール方法を示す。 [0004] A conventional laser annealing method in FIGS. 5-7. この従来のレーザーアニール方法は、基板4の上の非晶質Si薄膜2に対してパルスレーザービーム1 The conventional laser annealing method, a pulse laser beam 1 with respect to the amorphous Si thin film 2 on the substrate 4
aを照射して照射領域に多結晶Si薄膜3を形成する。 By irradiating a to form a polycrystalline Si thin film 3 in the irradiated region.
続いてパルスレーザービーム1aの照射領域に重畳するようにパルスレーザービーム1bを矢印B方向に走査して照射する。 Followed by irradiation by scanning the pulsed laser beam 1b in the direction of the arrow B so as to overlap the irradiation region of the pulsed laser beam 1a. 同様の過程を繰り返すことによって基板全面に隙間なく多結晶Si薄膜を形成する。 To form a gap no polycrystalline Si thin film on the entire surface of the substrate by repeating the same process.

【0005】ここでパルスレーザービーム1a,1bの長軸径は200mm、短軸径は400μm、平均ビーム強度は300mJ/cm 2であり、ビーム重畳照射方向はビーム長軸方向に対して90度をなす方向で20μm [0005] Here the pulsed laser beam 1a, the long axis diameter of 1b 200 mm, minor axis is 400 [mu] m, the average beam intensity is 300 mJ / cm 2, the beam superimposed irradiation direction 90 degrees with respect to the beam long axis direction 20μm in Nasu direction
ピッチで重畳照射している。 Superimposed irradiation with pitch.

【0006】また、一般にライン状のレーザービームは一軸方向のみの重畳照射で基板全面の結晶化が可能であるため、主にレーザーアニール工程時間の短縮の観点から用いられることが多い。 [0006] In general linear laser beam, capable of crystallization of the substrate whole surface by superimposing irradiation uniaxial only, it is often used in view of mainly shortening of laser annealing process time.

【0007】 [0007]

【発明が解決しようとする課題】図6に示す基板4の面内の定点A−A'線上のパルスレーザービーム毎の照射強度履歴の例を図7に示す。 Examples of irradiation intensity history of a fixed point A-A 'each pulsed laser beam on a line in the plane of the substrate 4 shown in FIG. 6 [0008] shown in FIG.

【0008】現有するライン状レーザービームの成形光学系の性能では、ビームの長軸上でピーク−ピーク値幅が数%の強度ムラが存在しており、ビーム長軸方向に対して90度をなす方向に重畳照射しているため同一強度のビーム部分が重畳照射されることになる。 [0008] In the performance of the shaping optical system of the line-shaped laser beam existing the peak on the long axis of the beam - and peak width exists several percent of uneven intensity, at 90 degrees with respect to the beam long axis direction so that the beam portions of the same strength because of the superimposed irradiation direction is superimposed irradiation.

【0009】この図7から分かるように、ビーム長軸上の強度の小さい部分が最初照射される領域はそれ以降も強度の小さい部分のみ重畳照射され、同様に最初強度の大きい部分はそれ以降も強度の大きい部分のみ重畳照射されている。 [0009] As can be seen from FIG. 7, a region in which the intensity of a small part of the beam long axis is first irradiated superimposed irradiated only portion smaller intensity thereafter, similarly large part of the initial strength even after it only a large part of the intensity is superimposed irradiation.

【0010】したがって、レーザーアニールにより形成する多結晶Si薄膜の結晶化率はビーム強度に依存することから、ビーム強度ムラの重畳照射部分が直線状の結晶化ムラを生じさせることになる。 Accordingly, the crystallization rate of the polycrystalline Si thin film formed by laser annealing since it depends on the beam intensity, superposition irradiated portion of the beam intensity unevenness will cause a linear crystallization unevenness.

【0011】本発明者らの実験によれば、従来のレーザーアニール方法にて形成した多結晶Si薄膜を用いて薄膜トランジスタアレイを作製したところ、ビーム走査軸の平行方向に直線状の特性が不良あるいは劣るトランジスタ群が数箇所見られた。 According to the present inventors' experiments, it was a thin film transistor array with a polycrystalline Si thin film formed by the conventional laser annealing method, a linear characteristic in the direction parallel beam scanning axis or bad inferior transistor group was seen several places.

【0012】そこで本発明は、現行のパルスレーザービームを用いながら結晶化のムラを低減して、この結晶化後の薄膜を用いて作製される素子の歩留まりを向上することを目的とする。 [0012] The present invention is to reduce the unevenness of crystallization while using current pulse laser beam, and an object thereof is to improve the yield of devices fabricated using the thin film after the crystallization.

【0013】 [0013]

【課題を解決するための手段】本発明は、パルスレーザービームの走査方向に対して長軸方向を傾けて基板に照射することを特徴とする。 The present invention SUMMARY OF] is characterized by irradiating the substrate by tilting the long axis direction to the scanning direction of the pulsed laser beam.

【0014】この本発明によれば、仮に1ショットだけ平均ビーム強度に対して大きく外れた強度にて照射した領域においても、パルスレーザービームは基板に対して長軸方向に照射位置がずれて他ショットは平均ビーム強度近傍の強度部分最も頻繁に重畳照射されることから、 According to the present invention, even in a region irradiated with larger off strength against only the average beam intensity if one shot pulse laser beam other displaced irradiation position in the longitudinal direction with respect to the substrate shots from being superimposed irradiation most intense part of the average beam intensity near frequently,
基板面内において平均的な結晶化率にほぼ収束して結晶化のムラが低減され、この結晶化膜を用いて作製される素子の歩留まりを向上することが可能である。 Unevenness of approximately convergence to crystallize the average crystallization rate is reduced in the substrate surface, it is possible to improve the yield of devices fabricated using this crystallized film.

【0015】 [0015]

【発明の実施の形態】本発明の非単結晶薄膜のレーザーアニール方法は、基板上の非単結晶薄膜に対してパルスレーザービームを走査させて照射して結晶化するに際し、パルスレーザービームを前記走査の方向に対して長軸方向を傾けて照射することを特徴とする。 Laser annealing method of the non-single-crystal thin film of the embodiment of the present invention, upon crystallized by irradiation by scanning the pulsed laser beam to the non-single crystal thin film on a substrate, wherein the pulsed laser beam tilt the long axis direction to the direction of scanning and irradiating.

【0016】具体的には、パルスレーザービームの長軸方向とその走査方向とのなす角度を5〜85度にして照射する。 [0016] Specifically, irradiated with an angle between the long axis direction of the pulsed laser beam and the scanning direction in 5 to 85 degrees. パルスレーザービームの長軸径と短軸径との比が100以上、パルスレーザービームの照射毎の走査ピッチをd、前記角度をαとしたとき、d・cosαが2 Pulsed laser ratio of the major axis diameter and a minor axis diameter of the beam is more than 100, when the scan pitch for each of the pulse laser beam d, the angle was set to alpha, d · cos [alpha] 2
μm以上である。 It is μm or more. また、パルスレーザービームの空間平均強度が200〜400mJ/cm 2である。 Moreover, spatial average intensity of the pulsed laser beam is 200 to 400 mJ / cm 2.

【0017】以下、本発明の非単結晶薄膜のレーザーアニール方法を具体的な実施の形態に基づいて説明する。 [0017] Hereinafter, will be described with reference to specific embodiments the laser annealing method of the non-single-crystal thin film of the present invention. (実施の形態)図1〜図4は本発明の実施の形態を示している。 FIGS. 4 (Embodiment) shows an embodiment of the present invention.

【0018】図1に示すように基板4の面上の非単結晶薄膜2に対してパルスレーザービーム1を走査させて照射して結晶化するに際し、パルスレーザービーム1の長軸方向Lを走査方向Bに対して傾けて照射した。 [0018] Upon crystallized by irradiation by scanning the pulsed laser beam 1 with respect to the non-single-crystal film 2 on the surface of the substrate 4 as shown in FIG. 1, scan the long axis direction L of the pulsed laser beam 1 It was irradiated inclined with respect to the direction B. 具体的には、パルスレーザービーム1の長軸方向Lと走査方向Bのなす角度αを45度に設定して重畳照射して多結晶Si薄膜3を形成した。 Specifically, to form the pulsed laser beam 1 between the long axis direction L the angle α of the scanning direction B by overlapping irradiation is set to 45 degrees polycrystalline Si thin film 3.

【0019】ここで、ビームの短軸径は400μm、長軸径は200mm、平均ビーム強度は300mJ/cm [0019] Here, the short axis diameter of the beam is 400 [mu] m, major axis length is 200 mm, the average beam intensity is 300 mJ / cm
2であり、約1mm間隔で最大±10%の強度ムラがある。 2, there is a maximum ± 10% of the intensity unevenness of about 1mm spacing. また1ショット毎のビームの走査ピッチdは20μ The scanning pitch d of the beam of each shot 20μ
mである。 A m.

【0020】図1に示す基板4の面内の定点A−A'線上のパルスレーザービーム毎の照射強度履歴の例を図2 FIG. Examples of fixed point A-A 'line illumination intensity history for each pulsed laser beam in the plane of the substrate 4 shown in FIG. 1 2
に示す。 To show. この図2と従来例を示した図7とを比較して分かるように、この実施の形態では従来例とは異なり、図2に示すように1ショット毎に20・cos45゜=1 As can be seen by comparison of FIGS. 7 and FIG. 2 shows a conventional example, unlike the conventional In the present embodiment, as shown in FIG. 2 in every shot 20 · cos 45 ° = 1
4.1μmだけ長軸方向にずれながら重畳照射されることになる。 4.1μm will be superimposed irradiated while shifted in the axial direction. ここで、d・cosαが2μm以上であれば同様の効果が得られる。 Here, d · cos [alpha] is obtained the same effect as long 2μm or more.

【0021】図3と図4に、基板4上の非晶質Si薄膜2に対してビーム強度300mJ/cm 2の多重ショットに加えて、一定数の270mJ/cm 2あるいは33 [0021] Figure 3 and Figure 4, in addition with respect to the amorphous Si thin film 2 on the substrate 4 to the multi-shot beam intensity 300 mJ / cm 2, a certain number of 270mJ / cm 2 or 33
0mJ/cm2のショットを混在させてスポット照射した領域の結晶化率を示す。 0 mJ / cm @ 2 shots mix of indicating the crystallinity of the regions spot irradiation.

【0022】この図3と図4から分かるように、多重ショットに加えて異なる強度のショットが少数混在する場合でも、同一強度でショット(重畳照射)を重ねていくとショットの強度が一定であれば結晶化率はある一定の値C 0に飽和する傾向がある。 [0022] As can be seen from FIG. 3 and FIG. 4, even when the shots different intensities in addition to multiple shots are few mixed and to superimpose the shot (superimposed irradiation) with the same intensity shot strength is constant if the field crystallization rate tends to be saturated to a constant value C 0 in. ここで多重ショットの強度が200〜400mJ/cm 2の範囲であれば同様の効果が得られる。 Here the same effect so long as the strength of the multiple shots of 200 to 400 mJ / cm 2 is obtained.

【0023】したがって、本発明のレーザーアニール方法であれば最初のビーム内の最小270mJ/cm 2あるいは最大330mJ/cm 2である照射領域においても、次ショット以降においてビーム強度300mJ/c [0023] Therefore, even at the minimum 270mJ / cm 2 or irradiated region which is the maximum 330 mJ / cm 2 in the first beam if a laser annealing method of the present invention, the beam intensity 300 mJ / c in subsequent shot
2近傍で重畳照射されるため、照射領域の結晶化率はほぼC 0に収束される。 Since superimposed irradiated in m 2 near the crystallization rate of the irradiated region is focused substantially C 0.

【0024】上記実施の形態では、角度α=45°であったが、α=90°の従来の方法と比べると、85度〜 [0024] In the above embodiment has been an angle alpha = 45 °, compared with conventional methods of alpha = 90 °, 85 ° to
5度の範囲で良好な結果が得られた。 Good results in 5-degree range is obtained. 上記実施の形態では、ビームの短軸径が400μm、長軸径が200mm In the above embodiment, the minor axis diameter of the beam is 400 [mu] m, the major axis diameter 200mm
であったが、ビームの長軸径と短軸径との比が100以上であれば同様の結果が得られた。 Although there was a major axis diameter and short ratio of the shaft diameter is equal if the same 100 or more results of the beam are obtained.

【0025】 [0025]

【発明の効果】以上のように本発明によれば、現行のパルスレーザービームを用いながら、容易に形成されるべき多結晶薄膜の結晶化ムラを低減することができ、この結晶化後の薄膜を用いて作製される素子の歩留まり向上に有効である。 According to the present invention as described above, according to the present invention, while using the current pulse laser beam, it is possible to reduce the crystallization unevenness of the polycrystalline thin film to be easily formed, the thin film after the crystallization it is effective in improvement in yield element manufactured using.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の非単結晶薄膜のレーザーアニール方法のレーザーアニールの照射状態を示す平面図 Plan view showing the irradiation state of the laser annealing of the laser annealing method of the non-single-crystal thin film of the present invention; FIG

【図2】同実施の形態の定点A−A'におけるレーザービームの照射履歴の説明図 FIG. 2 is an explanatory view of the irradiation history of the laser beam at the fixed point A-A 'of the same embodiment

【図3】同実施の形態のパルスレーザービームを同一強度の多重ショットに異なる強度のショットを混在させてスポット照射した比と結晶化率の測定結果図 [3] Measurement results view of a multi-shot a mix of shots different intensity spot irradiated ratio and the crystallization rate of the same intensity pulsed laser beam of the same embodiment

【図4】パルスレーザービーム重畳照射による非晶質S [4] Amorphous by pulsed laser beam superimposed irradiation S
i薄膜のレーザーアニール工程を説明する模式図 Schematic diagram illustrating a laser annealing step i film

【図5】従来のレーザービームの照射状態の斜視図 5 is a perspective view of the irradiation state of the conventional laser beam

【図6】同従来例の平面図 [6] the conventional plan view of the

【図7】同従来例の定点A−A'におけるレーザービームの照射履歴の説明図 Figure 7 is an illustration of the irradiation history of the laser beam in the conventional fixed-point A-A '

【符号の説明】 DESCRIPTION OF SYMBOLS

1 パルスレーザービーム 1a 照射パルスレーザービーム 1b 次照射パルスレーザービーム 2 非晶質Si薄膜 3 多結晶Si薄膜 4 基板 1 pulsed laser beam 1a irradiation pulsed laser beam 1b following irradiation pulsed laser beam 2 amorphous Si thin film 3 polycrystalline Si thin film 4 substrate

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】基板上の非単結晶薄膜に対してパルスレーザービームを走査させて照射して結晶化するに際し、 パルスレーザービームを前記走査の方向に対して長軸方向を傾けて照射する非単結晶薄膜のレーザーアニール方法。 1. A upon against non-single crystal thin film on a substrate by scanning the pulsed laser beam to crystallize irradiated, non-irradiating by tilting the long axis direction of the pulsed laser beam with respect to the direction of the scan laser annealing method of the single crystal thin film.
  2. 【請求項2】パルスレーザービームの長軸方向とその走査方向とのなす角度を5〜85度にして照射する請求項1記載の非単結晶薄膜のレーザーアニール方法。 2. A pulse laser beam laser annealing method of the non-single-crystal thin film of claim 1 wherein the irradiation with the angle between the long axis direction and the scanning direction 5 and 85 degrees.
  3. 【請求項3】前記パルスレーザービームの長軸径と短軸径との比が100以上であることを特徴とする請求項1 3. A process according to claim 1, ratio of the major axis diameter and minor axis diameter of the pulsed laser beam and wherein the at least 100
    または請求項2記載の非単結晶薄膜のレーザーアニール方法。 Or claim 2 laser annealing method of a non-single crystal thin film according.
  4. 【請求項4】前記パルスレーザービームの照射毎の走査ピッチをd、前記角度をαとしたとき、d・cosαが2μm以上であることを特徴とする請求項3記載の非単結晶薄膜のレーザーアニール方法。 Wherein said pulsed laser beam d the scan pitch for each irradiation, wherein, when the angle was alpha, laser non-single crystal thin film according to claim 3, wherein the d · cos [alpha] is 2μm or more annealing method.
  5. 【請求項5】前記パルスレーザービームの空間平均強度が200〜400mJ/cm 2であることを特徴とする請求項4記載の非単結晶薄膜のレーザーアニール方法。 5. A laser annealing method of the non-single crystal thin film according to claim 4, wherein the spatial average intensity of the pulsed laser beam is characterized by a 200 to 400 mJ / cm 2.
JP12936598A 1998-05-13 1998-05-13 Laser annealing method for non-single crystal thin film Pending JPH11330000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12936598A JPH11330000A (en) 1998-05-13 1998-05-13 Laser annealing method for non-single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12936598A JPH11330000A (en) 1998-05-13 1998-05-13 Laser annealing method for non-single crystal thin film

Publications (1)

Publication Number Publication Date
JPH11330000A true true JPH11330000A (en) 1999-11-30

Family

ID=15007791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12936598A Pending JPH11330000A (en) 1998-05-13 1998-05-13 Laser annealing method for non-single crystal thin film

Country Status (1)

Country Link
JP (1) JPH11330000A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332493A (en) * 2000-05-19 2001-11-30 Toshiba Corp Laser annealing method and method of manufacturing thin film transistor
US8278659B2 (en) 1996-05-28 2012-10-02 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8411713B2 (en) 2002-08-19 2013-04-02 The Trustees Of Columbia University In The City Of New York Process and system for laser crystallization processing of film regions on a substrate to minimize edge areas, and structure of such film regions
US8415670B2 (en) 2007-09-25 2013-04-09 The Trustees Of Columbia University In The City Of New York Methods of producing high uniformity in thin film transistor devices fabricated on laterally crystallized thin films
US8426296B2 (en) 2007-11-21 2013-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8883656B2 (en) 2002-08-19 2014-11-11 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9466402B2 (en) 2003-09-16 2016-10-11 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859436B2 (en) 1996-05-28 2014-10-14 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8278659B2 (en) 1996-05-28 2012-10-02 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
JP2001332493A (en) * 2000-05-19 2001-11-30 Toshiba Corp Laser annealing method and method of manufacturing thin film transistor
US8411713B2 (en) 2002-08-19 2013-04-02 The Trustees Of Columbia University In The City Of New York Process and system for laser crystallization processing of film regions on a substrate to minimize edge areas, and structure of such film regions
US8883656B2 (en) 2002-08-19 2014-11-11 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US9466402B2 (en) 2003-09-16 2016-10-11 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US8415670B2 (en) 2007-09-25 2013-04-09 The Trustees Of Columbia University In The City Of New York Methods of producing high uniformity in thin film transistor devices fabricated on laterally crystallized thin films
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8426296B2 (en) 2007-11-21 2013-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification

Similar Documents

Publication Publication Date Title
US6310727B1 (en) Beam homogenizer, laser illumination apparatus, and semiconductor device
US6717105B1 (en) Laser annealing optical system and laser annealing apparatus using the same
US6635932B2 (en) Thin film crystal growth by laser annealing
US6943086B2 (en) Laser annealing apparatus, TFT device and annealing method of the same
US6451636B1 (en) Semiconductor device and display device having laser-annealed semiconductor element
US6756614B2 (en) Thin film semiconductor device, polycrystalline semiconductor thin film production process and production apparatus
US6961361B1 (en) Laser irradiation apparatus
US20020179001A1 (en) Method of crystallizing amorphous silicon using a mask
US7164152B2 (en) Laser-irradiated thin films having variable thickness
US20040209447A1 (en) Method of producing crystalline semiconductor material and method of fabricating semiconductor device
US6750424B2 (en) Beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
US20040179807A1 (en) Beam Homogenizer, laser irradiation apparatus, and method of manufacturing a semiconductor device
US20050139830A1 (en) Semiconductor thin film decomposing method, decomposed semiconductor thin film, decomposed semiconductor thin film evaluation method, thin film transistor made of decomposed semiconductor thin film, and image display device having circuit constituted of thin film transistors
US20050036190A1 (en) Beam irradiation apparatus, beam irradiation method, and method for manufacturing a thin film transistor
US6437313B2 (en) Method for forming a semiconductor device having a semiconductor film with a height difference
US20030000455A1 (en) System and method for regulating lateral growth in laser irradiated silicon films
US6596613B1 (en) Laser annealing method
US20090218577A1 (en) High throughput crystallization of thin films
US6495405B2 (en) Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
US6767804B2 (en) 2N mask design and method of sequential lateral solidification
US20060254500A1 (en) Line scan sequential lateral solidification of thin films
US6516009B1 (en) Laser irradiating device and laser irradiating method
US6686978B2 (en) Method of forming an LCD with predominantly &lt;100&gt; polycrystalline silicon regions
US20090001523A1 (en) Systems and Methods for Processing a Film, and Thin Films