JPH11326629A - Infrared absorption filter - Google Patents

Infrared absorption filter

Info

Publication number
JPH11326629A
JPH11326629A JP13303098A JP13303098A JPH11326629A JP H11326629 A JPH11326629 A JP H11326629A JP 13303098 A JP13303098 A JP 13303098A JP 13303098 A JP13303098 A JP 13303098A JP H11326629 A JPH11326629 A JP H11326629A
Authority
JP
Japan
Prior art keywords
transmittance
infrared
filter
wavelengths
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13303098A
Other languages
Japanese (ja)
Inventor
Tetsuo Shimomura
哲生 下村
Shinya Onomichi
晋哉 尾道
Masanori Kobayashi
正典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP13303098A priority Critical patent/JPH11326629A/en
Priority to DE69932521T priority patent/DE69932521T8/en
Priority to KR10-2000-7012718A priority patent/KR100441301B1/en
Priority to US10/897,393 priority patent/USRE39857E1/en
Priority to US10/897,394 priority patent/USRE39858E1/en
Priority to EP99919619A priority patent/EP1087243B1/en
Priority to DE69942918T priority patent/DE69942918D1/en
Priority to US09/700,299 priority patent/US6522463B1/en
Priority to EP04018016A priority patent/EP1482332B1/en
Priority to KR10-2004-7002098A priority patent/KR100429076B1/en
Priority to PCT/JP1999/002554 priority patent/WO1999060430A1/en
Priority to KR10-2004-7002099A priority patent/KR100446049B1/en
Publication of JPH11326629A publication Critical patent/JPH11326629A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To absorb unwanted infrared rays for preventing malfunctions of a remote controller using infrared rays by setting the transmittance of an infrared region in a specific wavelength range to a specific value or lower. SOLUTION: The difference between a maximum value and a minimum value of the transmittance in a visible region of wavelengths from 450 to 650 nm is less than 10%, and the transmittance for wavelength 550 nm is higher than or equal to 50%. It is desirable that the transmittance in a near-infrared region of the wavelengths 800 to 1,100 nm be less than or equal to 30%, and the difference between a maximum value and a minimum value of the transmittance in the visible region of wavelengths from 450 to 650 nm be less than a equal to 10% after a filter is left standing for 1,000 hours in the atmosphere of 60 deg.C and 90% humidity. If the difference in transmittance for wavelengths from 450 to 650 nm is within this range, the tone is gray, and the tone emitted from a display is represented without changing at the time of placing this filter in the front of the display. It is desirable that the filter have a constitution such that infrared absorbing coloring matters are dispersed in a polymer and a transparent substrate coated with them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学フィルタに関
するもので、特に可視光線領域に透過率が高く、赤外線
を遮断する光学フィルタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical filter, and more particularly to an optical filter having a high transmittance in a visible light region and blocking infrared rays.

【0002】[0002]

【従来の技術】従来、熱線吸収フィルタや、ビデオカメ
ラ視感度補正用フィルター、等には次に示されるような
物が広く使われてきた。 (1)燐酸系ガラスに、銅や鉄などの金属イオンを含有
したフィルター(特開昭60−235740、特開昭6
2−153144など) (2)基板上に屈折率の異なる層を積層し、透過光を干
渉させることで特定の波長を透過させる干渉フィルター
(特開昭55−21091、特開昭59−184745
など) (3)共重合体に銅イオンを含有するアクリル系樹脂フ
ィルター(特開平6−324213) (4)バインダー樹脂に色素を分散した構成のフィルタ
ー(特開昭57−21458、特開昭57−19841
3、特開昭60−43605など)
2. Description of the Related Art Conventionally, the following materials have been widely used as a heat ray absorption filter, a video camera visibility correction filter, and the like. (1) Filters containing phosphoric acid-based glass and metal ions such as copper and iron (JP-A-60-235740;
(2) Layers having different refractive indices are laminated on a substrate, and an interference filter that transmits a specific wavelength by causing transmitted light to interfere (Japanese Patent Laid-Open Nos. 55-21091 and 59-184745).
(3) Acrylic resin filter containing copper ions in the copolymer (JP-A-6-324213) (4) Filter having a structure in which a pigment is dispersed in a binder resin (JP-A-57-21458, JP-A-57-21857) -19841
3, JP-A-60-43605, etc.)

【0003】[0003]

【発明が解決しようとする課題】上記の従来使用されて
きた赤外線吸収フィルタには、それぞれ以下に示すよう
な問題点がある。前述(1)の方式では近赤外領域に急
峻に吸収が有り、赤外線遮断率は非常に良好であるが、
可視領域の赤色の一部も大きく吸収してしまい、透過色
は青色に見える。ディスプレー用途では色バランスを重
視され、このような場合、使用するのに困難である。ま
た、ガラスであるために加工性にも問題がある。前述
(2)の方式の場合、光学特性は自由に設計でき、ほぼ
設計と同等のフィルタを製造することが可能であるが、
その為には、屈折率差のある層の積層枚数が非常に多く
なり、製造コストが高くなる欠点がある。また、大面積
を必要とする場合、全面積にわたって高い精度の膜厚均
一性が要求され、製造が困難である。前記(3)の方式
の場合、(1)の方式の加工性は改善される。しかし
(1)方式と同様に、急峻な吸収特性が有るが、やは
り、赤色部分にも吸収が有りフィルタが青く見えてしま
う問題点は変わらない。前記(4)の方式は、赤外線吸
収色素として、フタロシアニン系、ニッケル錯体系、ア
ゾ化合物、ポリメチン系、ジフェニルメタン系、トリフ
ェニルメタン系、キノン系、など多くの色素が持ちいら
れている。しかし、それぞれ単独では、吸収が不十分で
あったり、可視領域で特定の波長の吸収が有るなどの問
題点を有している。さらに、同フィルターを高温下、や
加湿下に長時間放置すると、色素の分解や、酸化が起こ
り可視領域での吸収が発生したり、赤外領域での吸収が
無くなってしまうなどの問題がある。
The above-mentioned conventionally used infrared absorption filters have the following problems. In the above-mentioned method (1), absorption is sharp in the near-infrared region, and the infrared cutoff rate is very good.
Part of the red in the visible region is also greatly absorbed, and the transmitted color looks blue. In display applications, color balance is emphasized, and in such a case, it is difficult to use. Moreover, since it is glass, there is a problem in workability. In the case of the above-mentioned method (2), the optical characteristics can be freely designed, and a filter almost equivalent to the designed one can be manufactured.
For this reason, there is a disadvantage that the number of layers having a difference in the refractive index becomes extremely large and the manufacturing cost becomes high. In addition, when a large area is required, high-accuracy film thickness uniformity is required over the entire area, and manufacturing is difficult. In the case of the method (3), the workability of the method (1) is improved. However, similar to the method (1), although there is a steep absorption characteristic, the problem that the red portion also absorbs and the filter looks blue remains unchanged. In the method (4), many infrared absorbing dyes such as phthalocyanine, nickel complex, azo compound, polymethine, diphenylmethane, triphenylmethane, and quinone are used. However, each of them has problems such as insufficient absorption and absorption of a specific wavelength in the visible region. Furthermore, if the filter is left under high temperature or humidification for a long time, there is a problem that the decomposition and oxidation of the dye occur, absorption in the visible region occurs, and absorption in the infrared region disappears. .

【0004】[0004]

【課題を解決するための手段】本発明は、近赤外領域に
吸収があり、可視領域の光透過性が高く、且つ、可視領
域に特定波長の大きな吸収を持つことがなく、更に、加
工性及び生産性の良好である近赤外線吸収フィルタを提
供する物である。即ち本発明は、波長800nm から1100nm
の近赤外線領域の透過率が30%以下である事を特徴とす
る赤外線吸収フィルタである。この領域の透過率が低い
事によって、プラズマディスプレー等に用いた場合、デ
ィスプレーから放射される、不要赤外線を吸収し、赤外
線を使ったリモコンの誤動作を防ぐ事が出来る。また、
本発明は、波長450nm から650nm の可視領域での透過率
の最大値と最小値の差が10%以内であり、かつ、波長
550nm での透過率が50%以上である赤外線吸収フィルタ
において、60℃湿度90%の空気雰囲気中に1000時間放置
した後の、波長800nm から1100nmの近赤外線領域の透過
率が30%以下で、且つ波長450nm から650nmの可視領域
での透過率の最大値と最小値の差が10%以内である事
が望ましい。波長450nm から650nm の透過率差がこの範
囲にあると、色調がグレーとなり、ディスプレー前面に
おいた場合、ディスプレーから発せられる色調が変らず
に表現する事が出来る。
SUMMARY OF THE INVENTION The present invention has an absorption in the near-infrared region, a high light transmittance in the visible region, and does not have a large absorption of a specific wavelength in the visible region. The object of the present invention is to provide a near-infrared absorption filter having good productivity and productivity. That is, the present invention provides a wavelength of 800 nm to 1100 nm.
Wherein the transmittance in the near infrared region is 30% or less. Due to the low transmittance in this region, when used for a plasma display or the like, unnecessary infrared rays radiated from the display can be absorbed and malfunction of a remote controller using infrared rays can be prevented. Also,
According to the present invention, the difference between the maximum value and the minimum value of the transmittance in the visible region of wavelengths from 450 nm to 650 nm is within 10%, and
In the infrared absorption filter whose transmittance at 550nm is 50% or more, the transmittance in the near infrared region from 800nm to 1100nm after leaving in an air atmosphere of 60 ° C and 90% humidity for 1000 hours is 30% or less, Further, it is desirable that the difference between the maximum value and the minimum value of the transmittance in the visible region of the wavelength of 450 nm to 650 nm is within 10%. When the transmittance difference between the wavelengths of 450 nm and 650 nm is within this range, the color tone becomes gray, and when placed in front of the display, the color tone emitted from the display can be expressed without change.

【0005】波長550nm での透過率が50%以下である
と、ディスプレー前面に設置された場合、非常に暗いデ
ィスプレーとなってしまうため、該波長での透過率は5
0%以上が好ましい。本発明では、赤外線吸収色素をポ
リマー中に分散し、更にこれを透明な基板上にコーティ
ングした構成が好ましい。このような構成とする事によ
って、製作が簡単になり、小ロットの生産にも対応可能
となる。また、本発明での色素を分散するポリマーは、
そのガラス転移温度が、本発明フィルタを使用する想定
保証温度以上の温度である事が好ましい。これにより、
色素の安定性が向上する。
If the transmittance at a wavelength of 550 nm is less than 50%, the display at the front of the display becomes very dark, so that the transmittance at the wavelength is 5%.
0% or more is preferable. In the present invention, it is preferable that an infrared absorbing dye is dispersed in a polymer, and this is further coated on a transparent substrate. By adopting such a configuration, the production becomes simple and it is possible to cope with the production of small lots. Further, the polymer for dispersing the dye in the present invention,
It is preferable that the glass transition temperature is a temperature equal to or higher than the assumed guaranteed temperature at which the filter of the present invention is used. This allows
The stability of the dye is improved.

【0006】本発明に使用する赤外線吸収色素は特に限
定されるものではないが、一例を挙げるとすれば、以下
のようなものが挙げられる。
[0006] The infrared absorbing dye used in the present invention is not particularly limited, but the following may be mentioned as an example.

【0007】日本化薬社製Kayasorb IRG−022、IRG
−023、日本触媒社製 ExcolorIR1、IR2 、IR3 、I
R4 、三井化学社製SIR-128 、SIR-130 、SIR-132 、SIR
-159 などが挙げられるが、上記赤外吸収色素は一例で
あり、特に限定される物ではない。
[0007] Kayasorb IRG-022, IRG manufactured by Nippon Kayaku
-023, ExcolorIR1, IR2, IR3, I manufactured by Nippon Shokubai Co., Ltd.
R4, Mitsui Chemicals SIR-128, SIR-130, SIR-132, SIR
-159 and the like, but the infrared absorbing dye is only an example and is not particularly limited.

【0008】また、本発明において、赤外線吸収色素を
分散したポリマーを基材にコーティングする場合に用い
る透明基材としても、特に限定される物ではないが、ポ
リエステル系、アクリル系、セルロース系、ポリエチレ
ン系、ポリプロピレン系、ポリオレフィン系、ポリ塩化
ビニル系、ポリカーボネート、フェノール系、ウレタン
系樹脂などが挙げられるが、特に好ましくは、分散安定
性、環境負荷などの観点から、ポリエステル系樹脂が好
ましい。
In the present invention, the transparent substrate used for coating the substrate with a polymer in which an infrared absorbing dye is dispersed is not particularly limited, but polyester, acrylic, cellulose, polyethylene Examples thereof include a resin, a polypropylene, a polyolefin, a polyvinyl chloride, a polycarbonate, a phenol, and a urethane resin, and a polyester resin is particularly preferable from the viewpoint of dispersion stability, environmental load, and the like.

【0009】また、本発明赤外線吸収フィルターでは耐
光性を向上させる目的で、UV吸収剤を添加したものが好
ましい。さらに、本発明では、耐候性、耐溶剤性を付与
させるために、赤外線吸収色素を分散するポリマーを、
架橋剤を用いて架橋させても良い。
The infrared absorbing filter of the present invention preferably contains a UV absorber for the purpose of improving light resistance. Furthermore, in the present invention, in order to impart weather resistance and solvent resistance, a polymer dispersing an infrared absorbing dye,
Crosslinking may be performed using a crosslinking agent.

【0010】実施例1 分散媒となるベースポリエステルを以下の要領で製作し
た。温度計、撹拌機を備えたオ−トクレ−ブ中に、 テレフタル酸ジメチル 136重量部、 イソフタル酸ジメチル 58重量部 エチレングリコール 96重量部、 トリシクロデカンジメタノール 137重量部 三酸化アンチモン 0.09重量部 を仕込み170〜220℃で180分間加熱してエステ
ル交換反応を行った。次いで反応系の温度を245℃ま
で昇温し、系の圧力1〜10mmHgとして180分間
反応を続けた結果、共重合ポリエステル樹脂(A1)を
得た。共重合ポリエステル樹脂(A1)の固有粘度は、
0.4 、ガラス転移温度は90℃であった。またNMR分析
による共重合組成比は 酸成分に対して テレフタル酸 71mol%、 イソフタル酸 29mol%、 アルコール成分に対して エチレングリコール 28mol%、 トリシクロデカンジメタノール 72mol% であった。
Example 1 A base polyester as a dispersion medium was produced in the following manner. In an autoclave equipped with a thermometer and a stirrer, 136 parts by weight of dimethyl terephthalate, 58 parts by weight of dimethyl isophthalate 96 parts by weight of ethylene glycol, 137 parts by weight of tricyclodecane dimethanol 0.09 part by weight of antimony trioxide The part was charged and heated at 170 to 220 ° C. for 180 minutes to perform a transesterification reaction. Next, the temperature of the reaction system was raised to 245 ° C., and the reaction was continued for 180 minutes at a system pressure of 1 to 10 mmHg, thereby obtaining a copolymerized polyester resin (A1). The intrinsic viscosity of the copolymerized polyester resin (A1) is
0.4, glass transition temperature 90 ° C. The copolymer composition ratio by NMR analysis was 71 mol% of terephthalic acid and 29 mol% of isophthalic acid with respect to the acid component, 28 mol% of ethylene glycol with respect to the alcohol component, and 72 mol% of tricyclodecane dimethanol.

【0011】次にこの樹脂を用いて表1に示すような組
成で、赤外線吸収色素と製作した樹脂、溶剤を、フラス
コにいれ、加熱しながら攪拌し、色素及びバインダー樹
脂を溶解した。更に溶解した樹脂を高透明性ポリエステ
ルフィルム基材(東洋紡績製コスモシャインA410
0)に、ギャップが100μmのアプリケーターを用い
てコーティングし、乾燥温度約90℃で1時間乾燥させ
た。この時コーティング厚さは約25μmであった。得
られた赤外線吸収フィルムは、目視での色目はダークグ
レーであった。また、図1にその分光特性を示す。図1
に示すように、波長400nmから650nmまでの可
視領域においては吸収が平らで、波長450から650
nm間での透過率の最大値と最小値の差は4.8%、透
過率は最小でも69.4%あった。また、波長700n
m以上では急峻に吸収があるフィルムが得ら、波長800n
m か1100nmの範囲での透過率は最大でも23.4%であ
った。
Next, an infrared absorbing dye, a prepared resin and a solvent having the composition shown in Table 1 were placed in a flask and stirred while heating to dissolve the dye and the binder resin. Further, the dissolved resin is applied to a highly transparent polyester film substrate (Cosmo Shine A410 manufactured by Toyobo Co., Ltd.).
0) was coated using an applicator having a gap of 100 μm, and dried at a drying temperature of about 90 ° C. for 1 hour. At this time, the coating thickness was about 25 μm. The color of the obtained infrared absorbing film was dark gray visually. FIG. 1 shows the spectral characteristics. FIG.
As shown in the figure, the absorption is flat in the visible region from 400 nm to 650 nm, and the absorption is 450 to 650 nm.
The difference between the maximum value and the minimum value of the transmittance between nm was 4.8%, and the minimum transmittance was 69.4%. In addition, wavelength 700n
m or more, a film with sharp absorption is obtained, and the wavelength is 800n
The transmission in the m or 1100 nm range was at most 23.4%.

【0012】得られたフィルムを60℃95%雰囲気中に1
000時間放置し、再度分光特性を測定したところ図2
のようになり、若干の色変化は見られるが、波長450
から650nm間での透過率の最大値と最小値の差は
9.8%、透過率は最小でも65.5%であった、また、
波長800nm か1100nmの範囲での透過率は最大でも29.
1%で近赤外吸収特性を維持していた。また、得られた
フィルムを、プラズマディスプレー等の前面に配置した
ところ、色目の変化はなく、コントラストが向上しか
つ、近赤外線の放射も低減された。
The obtained film is placed in an atmosphere of 60% at 95%.
After leaving for 000 hours, the spectral characteristics were measured again.
And a slight color change can be seen,
The difference between the maximum value and the minimum value of the transmittance between
9.8%, transmittance was at least 65.5%,
The maximum transmittance in the wavelength range of 800 nm or 1100 nm is 29.
Near infrared absorption characteristics were maintained at 1%. Further, when the obtained film was arranged on the front surface of a plasma display or the like, there was no change in color tone, the contrast was improved, and the emission of near-infrared rays was reduced.

【0013】[0013]

【表1】 [Table 1]

【0014】比較例1 ベースポリマーとして東洋紡績製バイロンRV200 (比重
1.26、ガラス転移温度67℃)を用いて表2に示すよ
うな組成で、赤外線吸収色素とバインダー樹脂、溶剤
を、フラスコにいれ、加熱しながら攪拌し、色素及びバ
インダー樹脂を溶解した。次に溶解した樹脂を高透明性
ポリエステルフィルム基材(東洋紡績製コスモシャイン
A4100)に、ギャップが100μmのアプリケータ
ーを用いてコーティングし、乾燥温度約90℃で1時間乾
燥させた。コーティング厚さは約25μmであった。得
られた赤外線吸収フィルムは、目視での色目は、褐色に
着色してしまっていた。また、図3にその分光特性を示
す。図3に示されるように、波長400nmから650
nmまでの可視領域において約550nm にピークを持つよ
うな山形の特性になり、波長450から650nm間で
の透過率の最大値と最小値の差は11.5%、透過率は
最小で71.4%あった、また、波長700nm以上で
は急峻に吸収があるフィルムが得られ、波長800nm か11
00nmの範囲での透過率は最大で44.0%である赤外線
吸収フィルムがえられた。得られたフィルムを60℃95%
雰囲気中に1000時間放置し、再度分光特性を測定し
たところ、波長450から650nm間での透過率の最
大値と最小値の差は11.5%であったものが28.6
%に増加し、透過率は最小で54%であった、また、波
長800nm から1100nmの範囲での透過率は最大で49.0
%に増加してしまった。また、見た目がかなり緑色に変
化してしまっていた。図4にその分光特性を示す。ま
た、見た目が緑色に変化してしまっていた。また、得ら
れたフィルムをプラズマディスプレー等の前面に配置し
たところ、色バランスが崩れ、緑がかった色調となって
しまった。
Comparative Example 1 An infrared-absorbing dye, a binder resin and a solvent having a composition shown in Table 2 were used in a flask using Toyobo Byron RV200 (specific gravity 1.26, glass transition temperature 67 ° C.) as a base polymer. The mixture was stirred while heating to dissolve the dye and the binder resin. Next, the melted resin was coated on a highly transparent polyester film substrate (Cosmoshine A4100 manufactured by Toyobo Co., Ltd.) using an applicator having a gap of 100 μm, and dried at a drying temperature of about 90 ° C. for 1 hour. The coating thickness was about 25 μm. The obtained infrared absorbing film had a visual coloration of brown. FIG. 3 shows the spectral characteristics. As shown in FIG.
In a visible region up to 550 nm, a peak-shaped characteristic having a peak at about 550 nm is obtained. The difference between the maximum value and the minimum value of the transmittance between wavelengths 450 to 650 nm is 11.5%, and the minimum transmittance is 71. When the wavelength was 700 nm or more, a film having sharp absorption was obtained.
An infrared absorbing film having a maximum transmittance of 44.0% in the range of 00 nm was obtained. 95% of the obtained film at 60 ° C
When left for 1000 hours in an atmosphere and the spectral characteristics were measured again, the difference between the maximum value and the minimum value of the transmittance between wavelengths 450 and 650 nm was 11.5%, and 28.6 was obtained.
% And the transmittance was a minimum of 54%, and the transmittance in the wavelength range from 800 nm to 1100 nm was a maximum of 49.0.
% Has increased. Also, the appearance had changed considerably to green. FIG. 4 shows the spectral characteristics. Also, the appearance had changed to green. In addition, when the obtained film was placed on the front surface of a plasma display or the like, the color balance was lost, and the color became greenish.

【0015】[0015]

【表2】 [Table 2]

【0016】比較例2 ベースポリマーとして東洋紡績製バイロンRV200 (比重
1.26、ガラス転移温度67℃)を用いて表3に示すよ
うな組成で、赤外線吸収色素とバインダー樹脂、溶剤
を、フラスコにいれ、加熱しながら攪拌し、色素及びバ
インダー樹脂を溶解した。次に溶解した樹脂を高透明性
ポリエステルフィルム基材(東洋紡績製コスモシャイン
A4100)に、ギャップが100μmのアプリケータ
ーを用いてコーティングし、乾燥温度約90℃で1時間乾
燥させた。コーティング厚さは約25μmであった。得
られた赤外線吸収フィルムは、目視での色目はダークグ
レーであった。その分光特性は実施例1とほぼ同じであ
った。波長400nmから650nmまでの可視領域に
おいては吸収が平らで、波長700nm以上では急峻に
吸収があるフィルムが得られた。得られたフィルムを60
℃95%雰囲気中に1000時間放置し、再度分光特性を測定
したところ図5のようになり、波長450から650n
m間での透過率の最大値と最小値の差は4.8%であっ
たものが27.4%に増加し、透過率は最小で44.0
%であった、また、波長800nm から1100nmの範囲での透
過率は最大で47.2%に増加してしまった。さらに見
た目が緑色に変化してしまった。また、得られたフィル
ムを、プラズマディスプレー等の前面に配置したとこ
ろ、緑色に着色して見えてしまった。
Comparative Example 2 An infrared-absorbing dye, a binder resin and a solvent having the composition shown in Table 3 were used in a flask by using Toyobo's Byron RV200 (specific gravity 1.26, glass transition temperature 67 ° C.) as a base polymer. The mixture was stirred while heating to dissolve the dye and the binder resin. Next, the melted resin was coated on a highly transparent polyester film substrate (Cosmoshine A4100 manufactured by Toyobo Co., Ltd.) using an applicator having a gap of 100 μm, and dried at a drying temperature of about 90 ° C. for 1 hour. The coating thickness was about 25 μm. The color of the obtained infrared absorbing film was dark gray visually. Its spectral characteristics were almost the same as in Example 1. Absorption was flat in the visible region from a wavelength of 400 nm to 650 nm, and absorption was sharp at a wavelength of 700 nm or more. Take the resulting film 60
When left in an atmosphere of 95 ° C. for 95 hours and spectral characteristics were measured again, the result was as shown in FIG.
The difference between the maximum value and the minimum value of the transmittance between m was 4.8%, but increased to 27.4%, and the transmittance was 44.0 at the minimum.
%, And the transmittance in the wavelength range from 800 nm to 1100 nm increased to a maximum of 47.2%. In addition, the appearance has changed to green. Further, when the obtained film was disposed on the front surface of a plasma display or the like, it was colored green.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】近赤外線領域に広く吸収を持ち、かつ、
可視領域の透過率が高く、特定の可視領域波長を大きく
吸収することのない赤外線吸収フィルターが得られ、ビ
デオカメラ、ディスプレーなどに使用しても色ずれが少
ない。また、環境安定性に優れ、長い期間での使用に耐
える。
The present invention has a wide absorption in the near infrared region, and
An infrared absorption filter that has high transmittance in the visible region and does not significantly absorb a specific visible region wavelength is obtained, and has little color shift even when used in a video camera, display, or the like. In addition, it has excellent environmental stability and can be used for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1で得られた赤外線吸収フィルタ
の分光特性を示す。
FIG. 1 shows the spectral characteristics of an infrared absorption filter obtained in Example 1.

【図2】図2は実施例1で得られた赤外線吸収スペクト
ルの耐久テスト後の分光特性を示す。
FIG. 2 shows spectral characteristics of an infrared absorption spectrum obtained in Example 1 after a durability test.

【図3】図3は比較例1で得られた赤外線吸収フィルタ
の分光特性を示す。
FIG. 3 shows the spectral characteristics of the infrared absorption filter obtained in Comparative Example 1.

【図4】図4は比較例1で得られた赤外線吸収フィルタ
の耐久テスト後の分光特性を示す。
FIG. 4 shows spectral characteristics of the infrared absorption filter obtained in Comparative Example 1 after a durability test.

【図5】図5は比較例2で得られた赤外線吸収フィルタ
の耐久テスト後の分光特性を示す。
FIG. 5 shows the spectral characteristics of the infrared absorption filter obtained in Comparative Example 2 after a durability test.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】波長800nm から1100nmの近赤外線領域の透
過率が30%以下であり、波長450nm から650nm の可視領
域での透過率の最大値と最小値の差が10%以内であり
かつ、波長550nm での透過率が50%以上である赤外線吸
収フィルタであって、60℃湿度95%の空気雰囲気中に10
00時間放置した後の、波長800nm から1100nmの近赤外線
領域の透過率が30%以下で、且つ波長450nm から650nm
の可視領域での透過率の最大値と最小値の差が10%以
内あることを特徴とする赤外線吸収フィルタ。
1. The transmittance in the near infrared region of wavelengths from 800 nm to 1100 nm is 30% or less, the difference between the maximum value and the minimum value in the visible region of wavelengths from 450 nm to 650 nm is within 10%, and An infrared absorption filter with a transmittance of 50% or more at a wavelength of 550 nm that is 10% in an air atmosphere at 60 ° C and 95% humidity.
After standing for 00 hours, the transmittance in the near-infrared region from 800 nm to 1100 nm is 30% or less, and the wavelength is from 450 nm to 650 nm.
Wherein the difference between the maximum value and the minimum value of the transmittance in the visible region is within 10%.
【請求項2】請求項1記載の赤外線吸収フィルムが赤外
線を吸収する色素及び染顔料を分散したポリマーを透明
基材上にコーティングしたことを特徴とする赤外線吸収
フィルタ。
2. An infrared-absorbing filter, wherein the infrared-absorbing film according to claim 1 is coated on a transparent substrate with a polymer in which dyes and dyes that absorb infrared rays are dispersed.
【請求項3】請求項2記載のポリマーがポリエステル樹
脂であることを特徴とする赤外線吸収フィルタ。
3. An infrared absorbing filter, wherein the polymer according to claim 2 is a polyester resin.
【請求項4】請求項2乃至4記載の透明基材がポリエス
テルフィルムであることを特徴とする赤外線吸収フィル
タ。
4. An infrared absorbing filter, wherein the transparent substrate according to claim 2 is a polyester film.
【請求項5】請求項2乃至5記載の色素を分散する分散
媒として用いるポリマーのガラス転移温度が、前記フィ
ルタを利用する機器の使用保証温度以上であることを特
徴とする赤外線吸収フィルタ。
5. An infrared absorption filter, wherein the glass transition temperature of a polymer used as a dispersion medium for dispersing the dye according to claim 2 is higher than the guaranteed use temperature of an apparatus using said filter.
JP13303098A 1998-05-15 1998-05-15 Infrared absorption filter Pending JPH11326629A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP13303098A JPH11326629A (en) 1998-05-15 1998-05-15 Infrared absorption filter
DE69932521T DE69932521T8 (en) 1998-05-15 1999-05-17 INFRARED ABSORPTION FILTER
KR10-2000-7012718A KR100441301B1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
US10/897,393 USRE39857E1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
US10/897,394 USRE39858E1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
EP99919619A EP1087243B1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
DE69942918T DE69942918D1 (en) 1998-05-15 1999-05-17 Infrared absorbing filter
US09/700,299 US6522463B1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
EP04018016A EP1482332B1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
KR10-2004-7002098A KR100429076B1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
PCT/JP1999/002554 WO1999060430A1 (en) 1998-05-15 1999-05-17 Infrared absorption filter
KR10-2004-7002099A KR100446049B1 (en) 1998-05-15 1999-05-17 Infrared absorption filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13303098A JPH11326629A (en) 1998-05-15 1998-05-15 Infrared absorption filter

Publications (1)

Publication Number Publication Date
JPH11326629A true JPH11326629A (en) 1999-11-26

Family

ID=15095172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13303098A Pending JPH11326629A (en) 1998-05-15 1998-05-15 Infrared absorption filter

Country Status (1)

Country Link
JP (1) JPH11326629A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055410A (en) * 2000-12-28 2002-07-08 모치즈키 아키히로 Near infrared absorption material
US6879438B2 (en) 2001-03-27 2005-04-12 Mitsubishi Polyester Film Corporation Infrared filter
JP2009215542A (en) * 2008-02-13 2009-09-24 Fujifilm Corp Infrared dye composition, infrared ray absorbing ink using the same and electrophotographic toner
KR20150105407A (en) * 2013-01-08 2015-09-16 바이엘 머티리얼사이언스 아게 Rear-projection film having a "day/night" effect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055410A (en) * 2000-12-28 2002-07-08 모치즈키 아키히로 Near infrared absorption material
US6879438B2 (en) 2001-03-27 2005-04-12 Mitsubishi Polyester Film Corporation Infrared filter
JP2009215542A (en) * 2008-02-13 2009-09-24 Fujifilm Corp Infrared dye composition, infrared ray absorbing ink using the same and electrophotographic toner
KR20150105407A (en) * 2013-01-08 2015-09-16 바이엘 머티리얼사이언스 아게 Rear-projection film having a "day/night" effect
JP2016508899A (en) * 2013-01-08 2016-03-24 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Rear projection film with "day / night" effect

Similar Documents

Publication Publication Date Title
KR100429076B1 (en) Infrared absorption filter
JP3879403B2 (en) Combinations of dyes for multiple bandpass filters in video displays
JP3341741B2 (en) Near infrared absorption filter
JP4232062B2 (en) Infrared absorption filter
KR100678840B1 (en) Film for Image Display Apparatus Comprising NIR-absorbing and Color Compensation Layer and Filter for Image Display Apparatus using the same
KR20060136138A (en) Film for Image Display Apparatus Comprising NIR-absorbing and Color Compensation Layer and Filter for Image Display Apparatus using the same
JP2002138203A (en) Resin composition for screening near infrared rays and laminate for screening near infrared rays
JP2011093958A (en) Near-infrared ray absorbing adhesive composition and near infrared ray absorbing adhesive layer
JPH11326629A (en) Infrared absorption filter
JP2002303720A (en) Near ir ray absorbing filter
JPH11305033A (en) Infrared ray absorption filter
JPH11326630A (en) Infrared-ray absorbing filter
JP2000081510A (en) Ir absorbing filter
JPH1195026A (en) Infrared absorbing filter
JP2001133623A (en) Ir- absorbing filter
JP4031094B2 (en) Film containing transparent polymer and plural pigments and multilayer film or panel containing the film
JP3812590B2 (en) Near-infrared absorbing filter and manufacturing method thereof
JP2005301300A (en) Method of manufacturing near ir absorption filter, and method for using near ir absorption filter
JP3298505B2 (en) Infrared absorption filter
JPH11326631A (en) Infrared absorption filter
JP4544851B2 (en) Optical filter composition and optical filter material
JP2005043921A (en) Near infrared ray absorbing filter
JP2001247526A (en) Near infrared absorption compound composition and near infrared absorption filter
JP2006139274A (en) Method of manufacturing near ir absorption filter, and method for using near ir absorption filter
JP2005099820A (en) Near infrared ray absorption filter