JPH11281863A - Optical axis adjusting device - Google Patents

Optical axis adjusting device

Info

Publication number
JPH11281863A
JPH11281863A JP10085872A JP8587298A JPH11281863A JP H11281863 A JPH11281863 A JP H11281863A JP 10085872 A JP10085872 A JP 10085872A JP 8587298 A JP8587298 A JP 8587298A JP H11281863 A JPH11281863 A JP H11281863A
Authority
JP
Japan
Prior art keywords
light
optical axis
receiving
detecting
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10085872A
Other languages
Japanese (ja)
Inventor
Masahiko Maruyama
真佐彦 丸山
Haruo Watabe
晴夫 渡部
Koichi Matsukawa
公一 松川
Masami Hasegawa
雅己 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP10085872A priority Critical patent/JPH11281863A/en
Publication of JPH11281863A publication Critical patent/JPH11281863A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate the optical axis adjusting operation of an optical space communicating system. SOLUTION: This optical axis adjusting device 10 is provided with a light reflecting part 12 reflecting light radiated from a light projecting and receiving device on a light projecting side arranged at a distance, a light projecting and receiving part 11 receiving the light reflected from the reflector 12A of the part 12, a light quantity measuring part 13 detecting the light receiving level of the part 11, a driving part 14 setting and driving the reflector 12A, and a control part 15 detecting a reflector position where the light receiving level becomes maximum based on the reflector position set by the part 14 and the light receiving level measured on the position and controlling the driving of the part 14 so as to set the reflector 12A on a maximum light receiving level position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空間を介して光を
伝送する場合の光軸調整装置に関し、特に、投光−受光
間の光軸調整作業が極めて容易にできる光軸調整装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical axis adjusting apparatus for transmitting light through a space, and more particularly, to an optical axis adjusting apparatus capable of extremely easily adjusting an optical axis between light emission and light reception.

【0002】[0002]

【従来の技術】近年、種々の分野で光空間通信技術が多
く利用されており、例えば、交通信号の分野でも光空間
通信技術が用いられている。その一例として、交通信号
機による交通制御の地点感知制御方式における車両感知
器と交通信号制御機間の情報伝送に用いられているもの
がある。
2. Description of the Related Art In recent years, space optical communication technology has been widely used in various fields. For example, the space optical communication technology has been used also in the field of traffic signals. As an example, there is a method used for information transmission between a vehicle detector and a traffic signal controller in a point detection control system of traffic control using a traffic signal.

【0003】前記地点感知制御方式は、交通信号機手前
の離れた地点に車両感知器を設置し、この車両感知器に
よって車両の有無を検出して交通量を計測し、その計測
情報を交通信号制御機側に伝送する。交通信号制御機
は、交通信号機側に付設されて交通信号機の信号現示を
制御するものであり、受信した交通量情報に基づき交通
信号機の青点灯時間を自動的に伸縮制御する。このよう
に、その時の交通量に応じて信号現示を制御することで
交通の円滑化を図る制御方式である。そして、車両感知
器から交通信号制御機への交通量情報伝送に光空間通信
技術が用いられる場合がある。
In the point detection control system, a vehicle detector is installed at a remote point in front of a traffic signal, the presence or absence of a vehicle is detected by the vehicle detector to measure a traffic volume, and the measurement information is used as traffic signal control. To the machine. The traffic signal controller is attached to the traffic signal side to control the signal display of the traffic signal, and automatically controls the expansion and contraction of the blue lighting time of the traffic signal based on the received traffic information. As described above, the control method aims to smooth the traffic by controlling the signal indication according to the traffic volume at that time. In some cases, optical space communication technology is used for transmitting traffic information from the vehicle detector to the traffic signal controller.

【0004】この場合、車両感知器と交通信号制御機の
双方に、光通信用の投受光装置をそれぞれ設け、両投受
光装置間で空間伝播によって光通信を行う。光空間通信
を用いることによる利点として、交通信号制御機と車両
感知器間の通信が無線で行えるため両者間を接続する通
信用配線設備が不要となり、また、電磁ノイズに対して
高い信頼性が得られる等が挙げられる。
In this case, both the vehicle sensor and the traffic signal controller are provided with light emitting and receiving devices for optical communication, and optical communication is performed between the two light emitting and receiving devices by spatial propagation. The advantage of using optical space communication is that the communication between the traffic signal controller and the vehicle detector can be performed wirelessly, eliminating the need for communication wiring equipment for connecting the two, and ensuring high reliability against electromagnetic noise. And the like.

【0005】[0005]

【発明が解決しようとする課題】ところで、かかる光空
間通信を用いる場合、設置作業時の双方の光軸合わせが
難しいという欠点がある。従来では、光軸合わせを行う
場合、離れた場所に設置する双方の投受光装置の向きを
同時に調整し、通信が可能か否かを確認した後に投受光
部を固定するが、互いの投受光装置の方向決めが難しく
設置作業が大変であった。また、上述した車両感知器と
交通信号制御機との間で行うような場合には、車両の通
過に伴う振動や地盤沈下等により、設置後に光軸がずれ
る虞れがあり、ずれた場合には、設置時と同様に面倒な
光軸合わせ作業をしなければならない。
However, when such optical space communication is used, there is a disadvantage that it is difficult to align both optical axes during installation work. Conventionally, when performing optical axis alignment, the directions of both light emitting and receiving devices installed at remote locations are adjusted at the same time, and after confirming whether communication is possible, the light emitting and receiving unit is fixed. It was difficult to determine the direction of the device, and the installation work was difficult. In addition, in the case where the above-described operation is performed between the vehicle sensor and the traffic signal controller, there is a possibility that the optical axis may be shifted after installation due to vibration or ground subsidence due to the passage of the vehicle. Must perform the complicated optical axis alignment work as in installation.

【0006】本発明は上記の事情に鑑みなされたもの
で、光空間通信を行う場合の投光−受光間の光軸調整作
業が極めて容易にできる光軸調整装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide an optical axis adjusting apparatus that can extremely easily perform an optical axis adjusting operation between light emission and light reception when performing optical space communication. .

【0007】[0007]

【課題を解決するための手段】このため、請求項1に記
載の本発明の光軸調整装置では、距離を隔てて配置され
た投光側から放射された光を反射する駆動可能な光反射
手段と、該光反射手段からの反射光を受光する受光手段
と、該受光手段の受光レベルを検出する光レベル検出手
段と、前記光反射手段を任意の設定位置に駆動可能な駆
動手段と、該駆動手段で設定された光反射手段位置と当
該位置において前記レベル検出手段で検出された受光レ
ベルとに基づいて、受光レベルが最大となる光反射手段
位置を検出する位置検出手段と、該位置検出手段で検出
された最大受光レベル位置に前記光反射手段をセットす
るよう前記駆動手段を制御する制御手段とを備えて構成
した。
Therefore, in the optical axis adjusting device according to the first aspect of the present invention, a drivable light reflecting member for reflecting light emitted from a light projecting side arranged at a distance. Means, light receiving means for receiving the reflected light from the light reflecting means, light level detecting means for detecting the light receiving level of the light receiving means, driving means capable of driving the light reflecting means to any set position, Position detecting means for detecting the position of the light reflecting means having the maximum light receiving level based on the light reflecting means position set by the driving means and the light receiving level detected by the level detecting means at the position; And control means for controlling the driving means so as to set the light reflection means at the maximum light receiving level position detected by the detection means.

【0008】かかる構成では、駆動手段で光反射手段を
例えば所定角度毎に位置をずらしながら、投光側からの
光を反射させて受光手段に導く。レベル検出手段は、受
光手段からの受光出力に基づいて受光レベルを検出す
る。位置検出手段は、光反射手段の各位置と各位置毎の
受光レベルに基づいて最大受光レベルとなる光反射手段
の位置を検出する。制御手段は、位置検出手段で検出し
た最大受光レベルとなった位置に光反射手段をセットす
るよう駆動手段の駆動を制御する。
In this configuration, the light from the light projecting side is reflected and guided to the light receiving means while the position of the light reflecting means is shifted by, for example, a predetermined angle by the driving means. The level detecting means detects a light receiving level based on a light receiving output from the light receiving means. The position detecting means detects the position of the light reflecting means having the maximum light receiving level based on each position of the light reflecting means and the light receiving level at each position. The control means controls the driving of the driving means so as to set the light reflecting means at the position where the maximum light receiving level is detected by the position detecting means.

【0009】また、請求項2に記載のように、前記光反
射手段を介して信号光を前記投光側に向けて投光する信
号光発生手段を設ける一方、前記投光側に、前記信号光
を受光した時に前記光反射手段に向けて光を投光する投
光制御手段を設ける構成とするとよい。かかる構成で
は、信号光発生手段からの信号光を投光側で受光するこ
とで、光軸調整を自動的に行うことが可能となる。
According to a second aspect of the present invention, there is provided signal light generating means for projecting the signal light toward the light projecting side via the light reflecting means, while the signal light is provided on the light projecting side. It is preferable to provide a light projection control means for projecting light toward the light reflection means when receiving light. With such a configuration, the optical axis can be automatically adjusted by receiving the signal light from the signal light generating means on the light projecting side.

【0010】また、請求項3に記載のように、前記受光
手段の受光レベルが設定値以下になったことを検出した
時に前記信号光を発生するよう前記信号光発生手段を制
御する信号光制御手段を備える構成とするとよい。かか
る構成では、受光レベルが低下すると自動的に光軸調整
が行えるようになるので、常に良好な状態で投光側の光
を受光できるようになる。
The signal light control means controls the signal light generating means to generate the signal light when it is detected that the light receiving level of the light receiving means has fallen below a set value. It is good to have composition provided with a means. In such a configuration, the optical axis can be automatically adjusted when the light receiving level decreases, so that the light on the light projecting side can always be received in a good state.

【0011】前記光反射手段は、請求項4に記載のよう
に、半導体製造技術を用いて製造した半導体ガルバノミ
ラーを用いるとよい。かかる構成では、半導体ガルバノ
ミラーを用いることで、光軸調整装置の小型化を図れ
る。本発明の光軸調整装置は、請求項5に記載のよう
に、路側に距離を隔て設置される交通信号制御機と車両
感知器との間で光空間通信を行うため、前記交通信号制
御機と車両感知器に設備される一対の投受光装置間の光
軸調整に適用することが可能である。
The light reflecting means may use a semiconductor galvanomirror manufactured by using a semiconductor manufacturing technique. In such a configuration, by using the semiconductor galvanometer mirror, the size of the optical axis adjusting device can be reduced. An optical axis adjusting device according to the present invention is configured to perform spatial light communication between a traffic signal controller installed on a road side and a vehicle sensor at a distance from the traffic signal controller. The present invention can be applied to adjustment of an optical axis between a pair of light emitting and receiving devices provided in a vehicle sensor.

【0012】車両の通行に伴う振動等で光軸がずれる虞
れがある、交通信号制御機と車両感知器との間の光空間
通信装置に適用すれば、光軸合わせ作業が容易になるだ
けでなく、設定設置後も容易に光軸調整ができるように
なり、メンテナンス等が容易となる。また、本発明の光
軸調整装置は、請求項6に記載のように、パーソナルコ
ンピュータに設けた光空間通信用の投受光装置に適用す
ることも可能である。
If the present invention is applied to an optical space communication device between a traffic signal controller and a vehicle detector, the optical axis may be shifted due to vibration or the like accompanying the traffic of the vehicle, only the optical axis alignment work becomes easy. In addition, the optical axis can be easily adjusted even after the setting and installation, so that maintenance and the like become easy. Further, the optical axis adjusting device of the present invention can be applied to a light emitting and receiving device for optical space communication provided in a personal computer, as described in claim 6.

【0013】かかる構成では、パーソナルコンピュータ
相互の設置場所の自由度が増すようになる。
[0013] With this configuration, the degree of freedom of the installation location between the personal computers is increased.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明の光軸調整装置の一
実施形態を示し、交通信号制御機と車両感知器との間の
光通信装置に適用した例である。図1において、道路1
の路側に設置された交通信号機2は、直立する支柱に信
号灯3の信号現示等を制御する交通信号制御機4が設け
られ、道路1側に張り出した信号灯3を支持する支柱
に、後述する本実施形態の光軸調整装置を備えた光空間
通信用の投受光装置5が、交通信号制御機4と電気的に
接続されて設けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the optical axis adjusting device of the present invention, which is an example applied to an optical communication device between a traffic signal controller and a vehicle detector. In FIG. 1, road 1
The traffic signal 2 installed on the road side of the road is provided with a traffic signal controller 4 for controlling the signal display of the signal light 3 on an upright column, and the traffic signal controller 4 supporting the signal lamp 3 projecting toward the road 1 will be described later. A light emitting and receiving device 5 for optical space communication including the optical axis adjusting device of the present embodiment is provided so as to be electrically connected to the traffic signal controller 4.

【0015】交通信号機2から距離を隔てた所定の地点
の路側に設けられる投光側としての車両感知器6は、直
立する支柱に設けられる感知器本体6Aと、道路1側に
張り出した支柱に支持されて下方の道路1を通過する自
動車7を感知するセンサ部6Bとを備えている。また、
センサ部6Bを支持する支柱先端側に、交通信号機2側
の投受光装置5との間で光空間通信を行う投受光装置8
が設けられる。
A vehicle sensor 6 as a light emitting side provided on a road side at a predetermined point separated from the traffic signal 2 is provided with a sensor main body 6A provided on an upright support and a support protruding toward the road 1 side. And a sensor unit 6B for supporting and detecting a vehicle 7 passing through the lower road 1. Also,
A light emitting and receiving device 8 for performing spatial optical communication with the light emitting and receiving device 5 on the traffic signal 2 side on the tip end side of the support supporting the sensor unit 6B.
Is provided.

【0016】次に、前記投受光装置5に内蔵される光軸
調整装置の概略構成を図2に基づいて説明する。図2に
おいて、本実施形態の光軸調整装置10は、光を投光及
び受光する投受光部11と、外部からの光を前記投受光
部11に向けて反射し、また、前記投受光部11からの
出射光を外部に向けて反射する駆動可能な反射板12A
を備える反射手段としての光反射部12と、前記投受光
部11の受光した反射光の受光レベルを検出する光レベ
ル検出手段としての光量測定部13と、前記光反射部1
2の反射板12Aを任意の設定位置に駆動可能な駆動手
段としての駆動部14と、駆動部14で設定された反射
板位置と、その位置における光量測定部13で計測され
た受光レベルとに基づいて、受光レベルが最大となった
反射板位置を検出し、反射板を最大受光レベル位置にセ
ットするよう前記駆動部14を制御する例えばマイクロ
コンピュータを内蔵する制御手段としての制御部15と
を備えて構成される。従って、制御部15は位置検出手
段の機能を備えている。
Next, the schematic configuration of the optical axis adjusting device built in the light emitting and receiving device 5 will be described with reference to FIG. In FIG. 2, an optical axis adjusting device 10 of the present embodiment includes a light emitting and receiving unit 11 that emits and receives light, an external light that reflects toward the light emitting and receiving unit 11, Drivable reflector 12A for reflecting the light emitted from light source 11 to the outside
A light reflecting unit 12 as a reflecting unit, a light amount measuring unit 13 as a light level detecting unit for detecting a light receiving level of the reflected light received by the light emitting and receiving unit 11, and the light reflecting unit 1
The drive unit 14 as a drive unit capable of driving the second reflector 12A to an arbitrary set position, the reflector position set by the drive unit 14, and the light reception level measured by the light amount measurement unit 13 at that position. And a control unit 15 as a control unit incorporating a microcomputer, for example, for detecting the position of the reflection plate at which the light reception level becomes maximum and controlling the driving unit 14 to set the reflection plate at the maximum light reception level position. It is configured with. Therefore, the control unit 15 has a function of a position detecting unit.

【0017】前記投受光部11は、車両感知器6から送
信された光信号による交通量情報を光反射部12を介し
て受信し、その交通量情報を信号現示に反映させるよう
交通信号制御機4に送信する。交通信号制御機4は、受
信した交通量情報に基づいて信号灯3の現示を適正に制
御する。具体的には、例えば青信号灯の点灯時間(進行
現示)を伸縮制御する。また、交通信号制御機4には、
投受光部11から信号光を出射させるための投光制御手
段に相当する機能が備えられている。従って、投受光部
11は信号光発生手段として機能する。この場合、車両
感知器6側の投受光装置8には、前記信号光を受光した
時に交通信号機2側の投受光装置5に向けて光を出射す
る投光制御手段の機能を設ける。
The light emitting and receiving unit 11 receives traffic information based on an optical signal transmitted from the vehicle detector 6 through the light reflecting unit 12 and controls the traffic signal so as to reflect the traffic information on the signal display. To the machine 4. The traffic signal controller 4 appropriately controls the indication of the traffic light 3 based on the received traffic information. Specifically, for example, the extension / contraction control of the lighting time (indicating the progress) of the green traffic light is performed. In addition, the traffic signal controller 4 includes:
A function corresponding to light projection control means for emitting signal light from the light emitting / receiving unit 11 is provided. Therefore, the light emitting and receiving unit 11 functions as a signal light generating unit. In this case, the light emitting and receiving device 8 on the vehicle sensor 6 side has a function of light emitting control means for emitting light toward the light emitting and receiving device 5 on the traffic light 2 when receiving the signal light.

【0018】次に、光反射部12の具体的構成について
説明する。本実施形態では、光反射部12に半導体製造
技術を用いて製造する半導体ガルバノミラーを用いてい
る。この半導体ガルバノミラーは、本出願人により特開
平7−175005号公報及び特開平7−218857
号公報等により先に提案されたものであり、上記各公報
に詳細に説明されているので、ここでは簡単に説明す
る。
Next, a specific configuration of the light reflecting section 12 will be described. In the present embodiment, a semiconductor galvanomirror manufactured using a semiconductor manufacturing technique is used for the light reflecting portion 12. This semiconductor galvanomirror is disclosed in Japanese Patent Application Laid-Open Nos. 7-175005 and 7-218857 by the present applicant.
Since these have been proposed in Japanese Unexamined Patent Publications and the like and are described in detail in each of the above publications, they will be briefly described here.

【0019】図3に、本実施形態の光反射部12として
好適な半導体ガルバノミラーの一例の分解斜視図を示
す。図3において、半導体ガルバノミラー200は、シ
リコン基板201に外側可動板204Aがトーションバ
ー205Aによって基板上下方向に揺動可能に軸支さ
れ、この外側可動板204Aの内側に、内側可動板20
4Bが前記トーションバー205Aと軸方向が直交する
トーションバー205Bによって基板上下方向に揺動可
能に軸支されている。外側可動板204Aは、枠状に形
成され、その上面にシリコン基板201上面に形成した
一対の外側電極端子209A,209Aにトーションバ
ー205Aの一方の部分を介して電気的に接続する平面
コイル206A(図では模式的に1本線で示す)が絶縁
層で被覆されて設けられている。また、内側可動板20
4Bは、平板状に形成され、その上面にはシリコン基板
201に形成された一対の内側電極端子209B,20
9Bにトーションバー205Bの一方から外側可動板2
04A部分を通り、トーションバー205Aの他方側を
介して電気的に接続する平面コイル206B(図では模
式的に1本線で示す)が絶縁層で被覆されて設けられて
いる。平面コイル206Bで囲まれた内側可動板204
Bの中央部には、全反射ミラー208が形成されてい
る。この全反射ミラー208が、光反射部12の反射板
12Aに相当する。
FIG. 3 is an exploded perspective view of an example of a semiconductor galvanomirror suitable as the light reflecting portion 12 of the present embodiment. In FIG. 3, a semiconductor galvanomirror 200 has an outer movable plate 204A pivotally supported on a silicon substrate 201 by a torsion bar 205A so as to be vertically swingable.
4B is pivotally supported in the vertical direction of the substrate by a torsion bar 205B whose axis is orthogonal to the torsion bar 205A. The outer movable plate 204A is formed in a frame shape, and has a planar coil 206A (which is electrically connected to a pair of outer electrode terminals 209A and 209A formed on the upper surface of the silicon substrate 201 via one portion of the torsion bar 205A on the upper surface thereof). (In the figure, schematically indicated by a single line) is provided covered with an insulating layer. Also, the inner movable plate 20
4B is formed in a plate shape, and a pair of inner electrode terminals 209B, 20B formed on the silicon substrate 201 is formed on the upper surface thereof.
9B to the outer movable plate 2 from one of the torsion bars 205B.
A plane coil 206B (schematically indicated by a single line in the figure) which passes through the portion 04A and is electrically connected to the torsion bar 205A via the other side is provided so as to be covered with an insulating layer. Inner movable plate 204 surrounded by planar coil 206B
At the center of B, a total reflection mirror 208 is formed. The total reflection mirror 208 corresponds to the reflection plate 12A of the light reflection section 12.

【0020】シリコン基板201の上下面には、それぞ
れ例えばホウケイ酸ガラス等からなる上側及び下側ガラ
ス基板202,203が陽極接合されている。上側ガラ
ス基板202は、平板部の中央に角状の開口部202A
を有し、可動板上方部分が開放された形状である。下側
ガラス基板203は、平板部の中央に角状の溝部203
Aを有する。これにより、上側及び下側ガラス基板20
2,203とシリコン基板201とで3層構造とし、両
可動板204A,204Bの揺動空間を確保するように
している。
Upper and lower glass substrates 202 and 203 made of, for example, borosilicate glass are anodically bonded to the upper and lower surfaces of the silicon substrate 201, respectively. The upper glass substrate 202 has a square opening 202A at the center of the flat plate portion.
And the upper portion of the movable plate is open. The lower glass substrate 203 has a square groove 203 in the center of the flat plate.
A. Thereby, the upper and lower glass substrates 20
2, 203 and the silicon substrate 201 have a three-layer structure to secure a swinging space for both movable plates 204A, 204B.

【0021】上側及び下側ガラス基板202,203に
は、2個づつ対となったそれぞれ8個づつ永久磁石21
0A〜213Aと210B〜213Bが図示のように配
置されている。上側ガラス基板202の互いに向き合う
永久磁石210A,211Aは、下側ガラス基板203
の永久磁石210B,211Bとで外側可動板駆動用の
磁界を発生させる。また、上側ガラス基板202の互い
に向き合う永久磁石212Aと213Aは、下側ガラス
基板203の永久磁石212B,213Bとで内側可動
板駆動用の磁界を発生させる。
The upper and lower glass substrates 202 and 203 each have a pair of two permanent magnets 21 each having eight magnets.
0A to 213A and 210B to 213B are arranged as shown. The permanent magnets 210A and 211A of the upper glass substrate 202 facing each other are
Generates a magnetic field for driving the outer movable plate with the permanent magnets 210B and 211B. The permanent magnets 212A and 213A of the upper glass substrate 202 facing each other generate a magnetic field for driving the inner movable plate with the permanent magnets 212B and 213B of the lower glass substrate 203.

【0022】次に、半導体ガルバノミラー200の動作
原理について簡単に説明する。例えば、電極端子209
A,209Aの一方を+極、他方を−極として平面コイ
ル206Aに電流を流す。外側可動板204Aの両側で
は、永久磁石210Aと210B、永久磁石211Aと
211Bによって、外側可動板204Aの平面に沿って
平面コイル206Aを横切るような方向に磁界が形成さ
れる。この磁界中の平面コイル206Aに電流が流れる
と、平面コイル206Aの電流密度と磁束密度に応じて
外側可動板204Aの両端に、電流・磁束密度・力のフ
レミングの左手の法則に従った方向に力が作用し、外側
可動板204Aが回動する。外側可動板204Aが回動
するとトーションバー205Aが捩じられ、これによつ
て発生するトーションバー205Aのばね反力と外側可
動板204Aに作用する電磁力とが釣り合う位置まで外
側可動板204Aは回動する。
Next, the principle of operation of the semiconductor galvanomirror 200 will be briefly described. For example, the electrode terminal 209
A and 209A have one of them as a positive pole and the other as a negative pole, and a current flows through the plane coil 206A. On both sides of the outer movable plate 204A, a magnetic field is formed by the permanent magnets 210A and 210B and the permanent magnets 211A and 211B in a direction crossing the plane coil 206A along the plane of the outer movable plate 204A. When a current flows through the planar coil 206A in the magnetic field, the current is applied to both ends of the outer movable plate 204A in accordance with the current density and the magnetic flux density of the planar coil 206A in a direction according to the left-hand rule of Fleming of current, magnetic flux density, and force. The force acts, and the outer movable plate 204A rotates. When the outer movable plate 204A rotates, the torsion bar 205A is twisted, and the outer movable plate 204A is turned to a position where the spring reaction force of the torsion bar 205A generated thereby and the electromagnetic force acting on the outer movable plate 204A are balanced. Move.

【0023】この時の、外側可動板204Aの変位角は
平面コイル206Aに流れる電流に比例する。従って、
平面コイル206Aに流す電流を制御することにより、
外側可動板204A、即ち全反射ミラー208の変位角
を制御することができる。そして、予め平面コイルに流
す電流量と可動板の変位角との関係を求めておけば、電
流量を制御することで全反射ミラー208を所望の変位
角位置にセットすることができる。
At this time, the displacement angle of the outer movable plate 204A is proportional to the current flowing through the plane coil 206A. Therefore,
By controlling the current flowing through the planar coil 206A,
The displacement angle of the outer movable plate 204A, that is, the total reflection mirror 208 can be controlled. If the relationship between the amount of current flowing through the planar coil and the displacement angle of the movable plate is determined in advance, the total reflection mirror 208 can be set at a desired displacement angle position by controlling the amount of current.

【0024】内側可動板204Bは、外側可動板204
Aと同様の動作原理によってトーションバー205Bを
軸として回動し、平面コイル206Bに流す電流量の制
御によってその変位角を制御できる。このように外側及
び内側可動板204A,204Bをそれぞれ回動制御す
ることで、全反射ミラー208、即ち反射板12Aの反
射位置を可変制御できる。そして、両可動板204A,
204Bを同時に適宜制御すれば、図4に破線で示すよ
うに範囲の入射光を受光反射することが可能となり、光
軸調整可能な範囲が広範囲にできる。図4のAが光軸調
整可能範囲を示す。
The inner movable plate 204B is
By rotating around the torsion bar 205B as an axis according to the same operating principle as that of A, the displacement angle can be controlled by controlling the amount of current flowing through the planar coil 206B. By controlling the rotation of the outer and inner movable plates 204A and 204B in this manner, the reflection position of the total reflection mirror 208, that is, the reflection plate 12A can be variably controlled. And both movable plates 204A,
By appropriately controlling 204B simultaneously, it becomes possible to receive and reflect the incident light in the range as shown by the broken line in FIG. 4, and the range in which the optical axis can be adjusted can be widened. FIG. 4A shows the optical axis adjustable range.

【0025】尚、下側ガラス基板203に、平面コイル
206A,206Bとの相互インダクタンスに基づいて
外側可動板204A,204Bの変位を検出するための
検出コイル(図示せず)を、各トーションバー205
A,205Bに対してそれぞれ対称に設けるとよい。こ
の場合、ミラー208の変位角を制御する際に、平面コ
イル206Aに、駆動電流に重畳して駆動電流周波数に
比べて高周波数の変位角検出用電流を流す。すると、こ
の検出用電流に基づいて、平面コイル206Aと下側ガ
ラス基板203に設けた検出コイルとの間の相互インダ
クタンスによる誘導電圧がそれぞれの検出コイルに発生
する。検出コイルに発生する各誘導電圧は、外側可動板
204Aが水平位置にある時には、各検出コイルと対応
する平面コイル206Aとの距離が等しくその差は零で
ある。外側可動板204Aが電磁力によってトーション
バー205A回りに回動すると、一方の検出コイルでは
接近して相互インダクタンスの増加により誘導電圧は増
大し、他方の検出コイルでは離間して相互インダクタン
スの減少により誘導電圧は低下する。従って、両検出コ
イルに発生する誘導電圧は、可動板の変位角に応じて変
化し、この誘導電圧を検出することで、可動板、即ち、
全反射ミラー208の変位角を検出できる。そして、例
えば、ブリッジ回路等を用いて両検出コイルに発生する
誘導電圧差を差動増幅器を介して外側可動板204Aの
駆動系にフィードバックし、駆動電流を制御するように
すれば、全反射ミラー208の変位角をより精度良く制
御することが可能となる。
A detection coil (not shown) for detecting the displacement of the outer movable plates 204A, 204B based on the mutual inductance with the planar coils 206A, 206B is provided on the lower glass substrate 203, and each torsion bar 205
A and 205B are preferably provided symmetrically. In this case, when controlling the displacement angle of the mirror 208, a displacement angle detection current having a frequency higher than the drive current frequency is supplied to the plane coil 206A so as to be superimposed on the drive current. Then, based on this detection current, an induced voltage is generated in each detection coil by mutual inductance between the planar coil 206A and the detection coil provided on the lower glass substrate 203. When the outer movable plate 204A is in the horizontal position, the distance between the induced coils generated in the detection coils is equal to the distance between each detection coil and the corresponding planar coil 206A, and the difference is zero. When the outer movable plate 204A rotates around the torsion bar 205A due to the electromagnetic force, the one detecting coil approaches and the induced voltage increases due to an increase in the mutual inductance, and the other detecting coil separates to induce an induced voltage due to a decrease in the mutual inductance. The voltage drops. Therefore, the induced voltage generated in both the detection coils changes according to the displacement angle of the movable plate, and by detecting this induced voltage, the movable plate, that is,
The displacement angle of the total reflection mirror 208 can be detected. Then, for example, a bridge circuit or the like is used to feed back an induced voltage difference generated between the two detection coils to a drive system of the outer movable plate 204A via a differential amplifier to control the drive current. It is possible to control the displacement angle of 208 more precisely.

【0026】次に本実施形態の光軸調整装置10の動作
を説明する。交通信号制御機4側の投受光装置5側から
光軸調整動作開始を知らせる信号光を車両感知器6側の
投受光装置8側に送信する。投受光装置8側では、前記
信号光を受光すると投受光装置5側に向けて光を出射す
る。この光は、光反射部12の反射板12Aで反射され
投受光部11に入射し、光量測定部13でその受光レベ
ルが計測される。この際に、制御部15には予め駆動電
流値と反射板12Aの位置の関係データが記憶されてお
り、かかるデータに基づいて駆動部14を介して光反射
部12の反射板12Aの位置をセットする。そして、反
射板12Aの位置を予め設定した間隔で可変しつつ反射
板位置毎の受光レベルを計測する。このようにして、受
光レベルが最大となる反射板12Aの位置を検出し、最
大受光レベルの位置に反射板12Aを固定し、光軸調整
を終了する。
Next, the operation of the optical axis adjusting device 10 of the present embodiment will be described. A signal light for notifying the start of the optical axis adjustment operation is transmitted from the light emitting and receiving device 5 of the traffic signal controller 4 to the light emitting and receiving device 8 of the vehicle detector 6. Upon receiving the signal light, the light emitting and receiving device 8 emits light toward the light emitting and receiving device 5. This light is reflected by the reflection plate 12A of the light reflection unit 12, enters the light projection / reception unit 11, and the light reception level is measured by the light amount measurement unit 13. At this time, the control unit 15 stores in advance the relationship data between the drive current value and the position of the reflector 12A, and based on the data, determines the position of the reflector 12A of the light reflector 12 via the drive unit 14. set. Then, while varying the position of the reflector 12A at a preset interval, the light receiving level at each reflector position is measured. In this way, the position of the reflector 12A at which the light receiving level becomes maximum is detected, the reflector 12A is fixed at the position of the maximum light receiving level, and the optical axis adjustment ends.

【0027】かかる構成によれば、互いの投受光装置
5,8の向きを大まかに設定し固定した後、上述の光軸
調整動作を行って光軸を調整すればよい。従って、従来
のように互いに離れた位置で2つの投受光装置5,8の
方向合わせを精度よく行う必要がないので、光軸調整作
業が格段に容易となり、延いては、投受光装置5,8の
設置作業が容易となる。
According to this configuration, after the directions of the light emitting and receiving devices 5 and 8 are roughly set and fixed, the optical axis adjustment operation described above may be performed to adjust the optical axis. Therefore, since it is not necessary to accurately align the directions of the two light emitting and receiving devices 5 and 8 at positions separated from each other as in the related art, the optical axis adjustment work is greatly facilitated. 8 can be easily installed.

【0028】そして、上述の光軸調整を自動で定期的に
行うことで、振動や地盤沈下等の影響による光軸のずれ
を防止でき、交通信号制御における地点感知制御方式の
信頼性を向上できる。また、図2に点線で示すように、
光量測定部13で計測した受光レベルを交通信号制御機
4に入力し、交通信号制御機4に、前記受光レベルの検
出信号を受信し受光レベルが所定値以下になったことを
検出した時に、投受光部11から信号光を出射させるた
めの信号光制御手段に相当する機能を設ける。
By automatically and periodically performing the above-described optical axis adjustment, it is possible to prevent the optical axis from being shifted due to the influence of vibration, land subsidence, etc., and to improve the reliability of the point sensing control method in traffic signal control. . Also, as shown by the dotted line in FIG.
When the light receiving level measured by the light quantity measuring unit 13 is input to the traffic signal controller 4 and the traffic signal controller 4 receives the detection signal of the light receiving level and detects that the light receiving level has become a predetermined value or less, A function corresponding to signal light control means for emitting signal light from the light emitting and receiving unit 11 is provided.

【0029】かかる構成とすれば、例えば振動や地盤沈
下等で光軸ずれが発生し、受光レベルが所定値以下にな
ると、自動的に光軸調整動作が行われるので、投受光装
置5,8間での光空間通信を常に良好な状態で行うこと
ができ、交通信号制御における地点感知制御方式の信頼
性をより一層向上できる。次に、図5に本発明の光軸調
整装置を、ノート型のパーソナルコンピュータ(以下、
パソコンととする)に適用した場合の例を示す。
With this configuration, when the optical axis shifts due to, for example, vibration or land subsidence, and the light receiving level falls below a predetermined value, the optical axis adjusting operation is automatically performed. Optical space communication between the devices can always be performed in a good state, and the reliability of the point sensing control method in traffic signal control can be further improved. Next, FIG. 5 shows an optical axis adjusting device according to the present invention, which is a notebook-type personal computer (hereinafter, referred to as a personal computer).
Here is an example in which the present invention is applied to a personal computer).

【0030】図5(A)は側面から見た図であり、
(B)は上面から見た図であり、図5に示すように、例
えば、ノート型パソコン21の後面側に、図2に示した
光軸調整装置10を内蔵する。かかる構成では、別のノ
ート型パソコン22との間で、赤外線による光空間通信
を行う場合、互いの光軸調整装置10により上述したよ
うに、反射板位置を可変制御して赤外光を上下・左右に
振って光軸調整を行い、最適な通信条件を設定し後に通
信を行う。
FIG. 5A is a view from the side,
5B is a view as viewed from above. As shown in FIG. 5, for example, the optical axis adjusting device 10 shown in FIG. In this configuration, when performing optical space communication using infrared light with another notebook computer 22, as described above, the mutual optical axis adjustment device 10 variably controls the position of the reflection plate to move infrared light up and down.・ Shift to the left and right to adjust the optical axis, set the optimal communication conditions, and then perform communication.

【0031】従来では、パソコン間で赤外線による光空
間通信を行う場合、赤外線の出射位置を略正対させる必
要があり、互いのパソコンの設置位置の制約が厳しかっ
たが本発明の光軸調整装置10を適用すれば、前記制約
が緩くなりパソコンの設置位置の自由度が増し、使い勝
手がよくなる。次に、図6に本発明の光軸調整装置を、
例えば社内電話の光空間通信に適用した場合の例を示
す。
Conventionally, when optical space communication using infrared rays is performed between personal computers, it is necessary to make the emission positions of the infrared rays substantially confront each other, and the installation positions of the personal computers are severely restricted. By applying 10, the above-mentioned restrictions are relaxed, the degree of freedom of the installation position of the personal computer is increased, and the usability is improved. Next, FIG. 6 shows the optical axis adjusting device of the present invention.
For example, an example in which the invention is applied to optical space communication of a company telephone is shown.

【0032】図6のように、例えば、室内の天井等の高
い位置に、前述の光軸調整装置10を設置する。そし
て、互いに送受信する社内電話31,32の間の信号光
の方向を、受信レベルが最大となるように光軸調整装置
10で調整し、この光軸調整装置10を介して社内電話
31,32間で信号光を送受信して通話する。かかる構
成によれば、社内電話31,32の位置を変更した場合
でも、その光軸合わせが極めて容易にでき、しかも、最
良の通信状態に容易に設定できる利点がある。
As shown in FIG. 6, for example, the above-described optical axis adjusting device 10 is installed at a high position such as a ceiling in a room. Then, the direction of the signal light between the in-house telephones 31 and 32 transmitted and received by each other is adjusted by the optical axis adjusting device 10 so that the reception level is maximized, and the in-house telephones 31 and 32 are transmitted via the optical axis adjusting device 10. Send and receive signal light between them and talk. According to such a configuration, even when the positions of the in-house telephones 31 and 32 are changed, there is an advantage that the optical axis can be extremely easily adjusted and the communication state can be easily set to the best.

【0033】尚、地点感知方式の交通制御においては、
従来では交通信号制御機と車両感知器との間の情報伝送
は1対1の関係であったが、本発明の光軸調整装置10
を適用すれば、図7に示すように、交通信号制御機4側
の1つの投受光装置5に対して、複数の地点の各車両感
知器6−1〜6−3側の投受光装置8−1〜8−3から
車両感知情報を伝送することが可能となる。
In the traffic control of the point detection system,
Conventionally, the information transmission between the traffic signal controller and the vehicle detector has a one-to-one relationship.
7 is applied to one light emitting / receiving device 5 on the traffic signal controller 4 side, and the light emitting / receiving device 8 on each of the vehicle sensors 6-1 to 6-3 at a plurality of points, as shown in FIG. It becomes possible to transmit vehicle sensing information from -1 to 8-3.

【0034】即ち、光軸調整装置10によって、投受光
装置5と投受光装置8−1との間の光軸を自動調整して
車両感知情報を得る。次に、投受光装置8−2に対して
同様に自動で光軸調整した後、車両感知情報を得る。こ
の動作を全ての車両感知器6−1〜6−3側の投受光装
置8−1〜8−3に対して順次行う。これを周期的に実
行することで、複数場所の車両感知情報を1つの交通信
号制御機4に伝送することが可能となり、より一層交通
制御システムの質を高められる。尚、車両感知器の数は
3つに限らず、これ以上でもよいことは言うまでもな
い。
That is, the optical axis adjusting device 10 automatically adjusts the optical axis between the light emitting and receiving device 5 and the light emitting and receiving device 8-1 to obtain vehicle sensing information. Next, after automatically adjusting the optical axis of the light emitting and receiving device 8-2 in the same manner, vehicle sensing information is obtained. This operation is sequentially performed on all of the light emitting and receiving devices 8-1 to 8-3 on the vehicle sensor 6-1 to 6-3 side. By performing this periodically, it becomes possible to transmit the vehicle sensing information of a plurality of places to one traffic signal controller 4, and the quality of the traffic control system can be further improved. It is needless to say that the number of vehicle sensors is not limited to three but may be more.

【0035】[0035]

【発明の効果】以上説明したように、請求項1の発明に
よれば、光空間通信装置における光軸調整作業が格段に
容易となり、しかも、最適な光の送受条件に設定でき
る。請求項2の発明によれば、請求項1の発明の効果に
加えて、一方から操作で他方から信号光を出射させるこ
とができ、一方からの操作で光軸調整ができるようにな
る。また、自動的な光軸調整が可能となる。
As described above, according to the first aspect of the present invention, the optical axis adjustment work in the optical free space communication apparatus is greatly facilitated, and the optimum light transmission / reception conditions can be set. According to the invention of claim 2, in addition to the effect of the invention of claim 1, signal light can be emitted from one side by operation from one side, and the optical axis can be adjusted by operation from one side. In addition, automatic optical axis adjustment becomes possible.

【0036】請求項3の発明によれば、請求項2の効果
に加えて、常に最適条件で光空間通信を行うことができ
る。請求項4の発明によれば、光軸調整装置を極めて小
型にできる。請求項5の発明によれば、光軸設定後に振
動や地盤沈下等の影響で光軸がずれた場合でも、容易に
光軸ずれを修正することができる。また、請求項3の構
成を設けることで、光軸ずれを未然に防止できるように
なり、地点感知制御方式の信頼性を向上できる。
According to the third aspect of the invention, in addition to the effect of the second aspect, optical space communication can always be performed under optimum conditions. According to the invention of claim 4, the optical axis adjusting device can be made extremely small. According to the fifth aspect of the present invention, even if the optical axis is displaced due to the influence of vibration, land subsidence, or the like after the optical axis is set, the optical axis deviation can be easily corrected. Further, by providing the configuration of claim 3, it is possible to prevent the optical axis deviation beforehand, and it is possible to improve the reliability of the point sensing control method.

【0037】請求項6の発明によれば、パソコン間での
光空間通信時における互いのパソコンの設置場所の制約
が緩和されて使い勝手がよくなる。
According to the sixth aspect of the present invention, the restrictions on the locations of the personal computers at the time of the optical space communication between the personal computers are relaxed, and the usability is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光軸調整装置の一実施形態を適用
した交通制御システム図
FIG. 1 is a traffic control system diagram to which an embodiment of an optical axis adjusting device according to the present invention is applied.

【図2】図1に用いた光軸調整装置のブロック図FIG. 2 is a block diagram of the optical axis adjusting device used in FIG.

【図3】半導体ガルバノミラーの説明図FIG. 3 is an explanatory view of a semiconductor galvanomirror.

【図4】同上第1実施形態の投受光装置を示す図FIG. 4 is a diagram showing a light emitting and receiving device according to the first embodiment;

【図5】本発明の光軸調整装置をパソコンに適用する場
合の説明図
FIG. 5 is an explanatory diagram when the optical axis adjusting device of the present invention is applied to a personal computer.

【図6】本発明の光軸調整装置を社内電話に適用する場
合の説明図
FIG. 6 is an explanatory diagram when the optical axis adjusting device of the present invention is applied to an in-house telephone.

【図7】本発明の光軸調整装置を利用した交通制御シス
テムの別の応用例の説明図
FIG. 7 is an explanatory diagram of another application example of the traffic control system using the optical axis adjusting device of the present invention.

【符号の説明】[Explanation of symbols]

5,8 投受光装置 10 光軸調整装置 11 投受光部 12 光反射部 12A 反射板 13 光量測定部 14 駆動部 15 制御部 5, 8 light emitting and receiving device 10 optical axis adjusting device 11 light emitting and receiving unit 12 light reflecting unit 12A reflector 13 light quantity measuring unit 14 driving unit 15 control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/105 H04B 9/00 R 10/10 10/22 (72)発明者 長谷川 雅己 栃木県宇都宮市平出工業団地11−2 日本 信号株式会社宇都宮事業所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H04B 10/105 H04B 9/00 R 10/10 10/22 (72) Inventor Masami Hasegawa Hirade Industrial Park 11-, Utsunomiya City, Tochigi Prefecture 2 Inside the Utsunomiya Office of Signal Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】距離を隔てて配置された投光側から放射さ
れた光を反射する駆動可能な光反射手段と、 該光反射手段からの反射光を受光する受光手段と、 該受光手段の受光レベルを検出する光レベル検出手段
と、 前記光反射手段を任意の設定位置に駆動可能な駆動手段
と、 該駆動手段で設定された光反射手段位置と当該位置にお
いて前記レベル検出手段で検出された受光レベルとに基
づいて、受光レベルが最大となる光反射手段位置を検出
する位置検出手段と、 該位置検出手段で検出された最大受光レベル位置に前記
光反射手段をセットするよう前記駆動手段を制御する制
御手段と、を備えて構成したことを特徴とする光軸自動
調整装置。
1. A drivable light reflecting means for reflecting light radiated from a light projecting side arranged at a distance, a light receiving means for receiving light reflected from the light reflecting means, and A light level detecting means for detecting a light receiving level; a driving means capable of driving the light reflecting means to an arbitrary set position; a light reflecting means position set by the driving means; and a position detected by the level detecting means at the position. Position detecting means for detecting the position of the light reflecting means at which the light receiving level is maximum based on the received light level, and the driving means for setting the light reflecting means at the position of the maximum light receiving level detected by the position detecting means. And a control means for controlling the optical axis.
【請求項2】前記光反射手段を介して信号光を前記投光
側に向けて投光する信号光発生手段を設ける一方、前記
投光側に、前記信号光を受光した時に前記光反射手段に
向けて光を投光する投光制御手段を設ける構成としたこ
とを特徴とする光軸調整装置。
A signal light generating means for projecting the signal light toward the light projecting side via the light reflecting means; and a light reflecting means for receiving the signal light on the light projecting side. An optical axis adjusting device, characterized in that it is provided with a projection control means for projecting light toward the optical axis.
【請求項3】前記受光手段の受光レベルが設定値以下に
なったことを検出した時に前記信号光を発生するよう前
記信号光発生手段を制御する信号光制御手段を備える構
成としたことを特徴とする請求項2に記載の光軸調整装
置。
3. A signal light control means for controlling said signal light generating means so as to generate said signal light when detecting that the light receiving level of said light receiving means has fallen below a set value. The optical axis adjusting device according to claim 2.
【請求項4】前記光反射手段は、半導体製造技術を用い
て製造した半導体ガルバノミラーである請求項1〜3の
いずれか1つに記載の光軸調整装置。
4. The optical axis adjusting device according to claim 1, wherein said light reflecting means is a semiconductor galvanometer mirror manufactured by using a semiconductor manufacturing technique.
【請求項5】路側に距離を隔て設置される交通信号制御
機と車両感知器との間で光空間通信を行うため、前記交
通信号制御機と車両感知器に設備される一対の投受光装
置間の光軸調整に適用することを特徴とする請求項1〜
4のいずれか1つに記載の光軸調整装置。
5. A pair of light emitting and receiving devices provided in the traffic signal controller and the vehicle sensor for performing optical space communication between the traffic signal controller and the vehicle sensor installed at a distance on the road side. 3. The method according to claim 1, wherein the optical axis is adjusted between
5. The optical axis adjustment device according to any one of 4.
【請求項6】パーソナルコンピュータに設けた光空間通
信用の投受光装置に適用することを特徴とする請求項1
〜4のいずれか1つに記載の光軸調整装置。
6. The method according to claim 1, wherein the light emitting and receiving device is provided in a personal computer for spatial light communication.
The optical axis adjustment device according to any one of items 1 to 4,
JP10085872A 1998-03-31 1998-03-31 Optical axis adjusting device Pending JPH11281863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10085872A JPH11281863A (en) 1998-03-31 1998-03-31 Optical axis adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10085872A JPH11281863A (en) 1998-03-31 1998-03-31 Optical axis adjusting device

Publications (1)

Publication Number Publication Date
JPH11281863A true JPH11281863A (en) 1999-10-15

Family

ID=13870996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10085872A Pending JPH11281863A (en) 1998-03-31 1998-03-31 Optical axis adjusting device

Country Status (1)

Country Link
JP (1) JPH11281863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309899A (en) * 2006-05-22 2007-11-29 Keisoku Res Consultant:Kk Noncontact-type vibration/displacement measuring device
CN100462674C (en) * 2007-06-22 2009-02-18 哈尔滨工业大学 Precision determination method for angle between optical axis and mechanical axis of optical system
JP2010538312A (en) * 2007-08-28 2010-12-09 イファ ユニーバーシティ−インダストリー コラボレーション ファウンデーション Optical module that can launch a beam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309899A (en) * 2006-05-22 2007-11-29 Keisoku Res Consultant:Kk Noncontact-type vibration/displacement measuring device
CN100462674C (en) * 2007-06-22 2009-02-18 哈尔滨工业大学 Precision determination method for angle between optical axis and mechanical axis of optical system
JP2010538312A (en) * 2007-08-28 2010-12-09 イファ ユニーバーシティ−インダストリー コラボレーション ファウンデーション Optical module that can launch a beam
JP4851623B2 (en) * 2007-08-28 2012-01-11 イファ ユニーバーシティ−インダストリー コラボレーション ファウンデーション Optical module that can launch a beam

Similar Documents

Publication Publication Date Title
US6714336B2 (en) Packaged micromirror assembly with in-package mirror position feedback
EP0911995B1 (en) Optical space communication apparatus
EP1038158B1 (en) Rotating head optical transmitter for position measurement system
US4547972A (en) Tilt sensor and monitoring system
WO2013155973A1 (en) Azimuth correction adjustment-based electric tiled antenna and electric tiled antenna system
JP2002267955A (en) Optical wireless network printed circuit board micromirror assembly with in-package mirror position feedback
US6246503B1 (en) Optical barrier apparatus
US5596310A (en) Received light level indicating system for beam sensor
JPH11281863A (en) Optical axis adjusting device
US6639711B2 (en) Packaged micromirror assembly with in-package mirror position passive component feedback
JP4112726B2 (en) Surveying equipment
JPS60181611A (en) Angular encoder for encoding vertical angle between variablydetermined direction and perpendicularity, particularly, altazimuth
JP2000028715A (en) Composite-type radar sensor
CN103901612A (en) Two-dimensional light beam scanning device driven by magnetic field force
KR100804739B1 (en) Performance testing apparatus for free space optics system
JP3535725B2 (en) Light barrier device
JPH11304474A (en) Elevation angle monitor device
EP1450500A2 (en) Optical axis adjusting device
US20020095618A1 (en) Optical wireless network printed circuit board micromirror assembly having in-package mirror position feedback
JPH09329441A (en) Range finder
JPH11310131A (en) Simple railroad worker detector
JP2000020125A (en) Moving body detector and moving body operation controller
JPH11352140A (en) Vehicle speed measuring device
CN220490074U (en) Laser line casting device applied to strong light environment
JP4031464B2 (en) Optical space transmission equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050712