JPH11269652A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPH11269652A
JPH11269652A JP10176197A JP17619798A JPH11269652A JP H11269652 A JPH11269652 A JP H11269652A JP 10176197 A JP10176197 A JP 10176197A JP 17619798 A JP17619798 A JP 17619798A JP H11269652 A JPH11269652 A JP H11269652A
Authority
JP
Japan
Prior art keywords
reactant
thin film
chamber
substrate
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10176197A
Other languages
Japanese (ja)
Inventor
Somin Ri
相 ▲みん▼ 李
Eikan Kin
榮 寛 金
Chang-Soo Park
昌 洙 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH11269652A publication Critical patent/JPH11269652A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium

Abstract

PROBLEM TO BE SOLVED: To provide a thin film producing method by an atomic layer vapor deposition method. SOLUTION: This method comprises a stage 100 in which the temp. and pressure in a chamber loaded with a substrate are held to prescribed ones, a stage 200 in which a primary reactant is poured into the chamber and is chemically adsorbed on the substrate, a stage 300 in which the chamber contg. the substrate in which chemically adsorbed primary reactant has been formed is primarily purged with an inert gas, and the physically adsorbed primary reactant is left on the chemically adsorbed primary reactant, a stage 400 in which a secondary reactant is poured into the chamber contg. the substrate in which the chemically adsorbed and physically adsorbed primary reactant has been formed and is reacted therewith to form a thin film and a stage 500 in which the chamber in which the thin film has been formed is secondarily purged with an inert gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜製造方法に係
り、特に原子層蒸着法(Atomic Layer Deposition:以
下,”ALD法”と呼ぶ。)による薄膜製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film, and more particularly, to a method for producing a thin film by atomic layer deposition (hereinafter, referred to as "ALD").

【0002】[0002]

【従来の技術】一般的に、薄膜は半導体素子の誘電体、
液晶表示素子の透明な導電体及び電子発光薄膜表示素子
(electroluminescent thin film display)の保護層等
として多様に使用される。前記薄膜は吸着法、化学気相
吸着法(chemical vapor deposition)およびALD法
等により形成される。
2. Description of the Related Art Generally, a thin film is a dielectric of a semiconductor device,
It is widely used as a transparent conductor of a liquid crystal display device and a protective layer of an electroluminescent thin film display device. The thin film is formed by an adsorption method, a chemical vapor deposition method (chemical vapor deposition), an ALD method, or the like.

【0003】この中で、前記ALD法は表面調節工程で
あって、2次元的な層間蒸着を用いる。このようなAL
D法は吸着が常に表面運動領域(surface kinetic regi
me)で成り立つので、非常に優秀な段差被覆性(step c
overage)を有する。更に、熱分解(pyrolysis)では各
反応物の周期的な供給を通じる化学的な置換で反応物を
分解するので、膜密度が高くて正確な化学量論的な(st
oichoimetry)膜が得られる。併せて、化学吸着(chemi
sorption)のみを利用して層間成長が出来るために優秀
な均一度と微細な膜厚さ調節が可能である。また、工程
中発生する化学的な置換による副産物は常に気体なので
除去し易く、チャンバの洗浄が容易であり、温度のみが
工程変数なので工程調節と維持とが容易である。
[0003] Among them, the ALD method is a surface adjustment step and uses two-dimensional interlayer deposition. AL like this
In the D method, adsorption is always in the surface kinetic region (surface kinetic regi
me), so very excellent step coverage (step c
overage). Further, in pyrolysis, the reactants are decomposed by chemical displacement through the periodic supply of each reactant, resulting in a high film density and accurate stoichiometric (st
oichoimetry) film is obtained. At the same time, chemisorption (chemi
Since the interlayer growth can be performed using only the sorption, excellent uniformity and fine adjustment of the film thickness can be achieved. In addition, the by-products of the chemical substitution generated during the process are always gaseous, so that they can be easily removed, the chamber can be easily cleaned, and only the temperature is a process variable, so that the process can be easily adjusted and maintained.

【0004】しかし、従来のALD法は一つのウェーハ
方法で使用するとき、スループット(throughput)が非
常に低くて、工程自体が反応物に大きく依存するため、
既に開発されている物質以外の新物質を開発するとき、
相当制限される。
However, when the conventional ALD method is used in a single wafer method, the throughput is very low and the process itself largely depends on a reactant.
When developing new substances other than those already developed,
Limited.

【0005】特に、前記従来のALD法は純粋に化学吸
着だけを用いて吸着させる場合に、一つのサイクル当た
りの成長厚さ(成長速度)が理論的に可能な膜の厚さ
(結晶構造上の最密充填面間の距離、例えば酸化膜の場
合は酸素の最密充填面と酸素との最密充填面間の距離)
に及ばなくて、膜質の特性が低くなる問題点がある。
[0005] In particular, in the conventional ALD method, when the film is adsorbed purely by using only chemisorption, the film thickness (growth rate) that can theoretically be the growth thickness per one cycle (growth rate) is obtained. (For example, in the case of an oxide film, the distance between the closest packing surface of oxygen and the closest packing surface of oxygen)
However, there is a problem that the characteristics of the film quality are lowered.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、一つ
のサイクル当たりの成長厚さを理論的な厚さ(結晶構造
上の最密充填面の周期的な距離)に近接させることによ
り、膜質の特性を改善できる薄膜製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to make the growth thickness per cycle close to the theoretical thickness (the periodic distance of the closest-packed surface on the crystal structure). It is an object of the present invention to provide a method for manufacturing a thin film that can improve the characteristics of film quality.

【0007】[0007]

【課題を解決するための手段】前記技術的な課題を達成
するために,本発明の薄膜製造方法は、基板がローディ
ングされたチャンバを所定の温度と圧力に保った後、前
記チャンバに第1反応物を注入して前記基板上に化学吸
着させる段階を含む。そして、前記化学吸着した第1反
応物が形成された基板を含むチャンバに不活性ガスで1
次パージして前記化学吸着した第1反応物上に物理吸着
した第1反応物を残す。前記化学吸着及び物理吸着した
第1反応物が形成された基板を含むチャンバに第2反応
物を注入及び反応させ薄膜を形成する。前記薄膜が形成
されたチャンバに不活性ガスで2次パージする。
In order to achieve the above technical object, a method of manufacturing a thin film according to the present invention comprises the steps of: maintaining a chamber loaded with a substrate at a predetermined temperature and pressure; Injecting a reactant and chemisorbing the reactant onto the substrate. Then, the chamber containing the substrate on which the chemisorbed first reactant is formed is filled with an inert gas for 1 hour.
Next purge is performed to leave the first reactant physically adsorbed on the first chemically adsorbed reactant. A second reactant is injected and reacted into a chamber including the substrate on which the chemically adsorbed and physically adsorbed first reactant is formed to form a thin film. The chamber in which the thin film has been formed is secondly purged with an inert gas.

【0008】前記基板上に第1反応物を化学吸着させる
段階から前記チャンバに不活性ガスを2次パージする段
階を順次反復遂行して所望の薄膜厚さが得られる。前記
薄膜としては酸化アルミニウム膜が挙げられ、この際、
第1反応物及び第2反応物は各々トリメチルアルミニウ
ム(Al(CH3 3 )及び水蒸気(H2 O)を利用す
ることが好ましい。前記第1反応物及び第2反応物は1
m秒〜10秒間供給して、前記チャンバの温度は200
〜400℃に保ち、前記チャンバの圧力は1〜10、0
00mTorrに保つことが好ましい。前記1次パージ
及び2次パージは0、1〜100秒間パージすることが
好ましい。
The steps of chemically adsorbing the first reactant onto the substrate and secondary purging the chamber with an inert gas are sequentially and repeatedly performed to obtain a desired thin film thickness. Examples of the thin film include an aluminum oxide film,
The first reactant and the second reactant are each trimethylaluminum (Al (CH 3) 3) and it is preferable to use the water vapor (H 2 O). The first reactant and the second reactant are 1
m seconds to 10 seconds, the temperature of the chamber is 200
~ 400 ° C and the pressure in the chamber is 1-10,0
It is preferable to keep the pressure at 00 mTorr. The primary purge and the secondary purge are preferably performed for 0 to 1 to 100 seconds.

【0009】本発明の薄膜製造方法によると、基板上に
形成されるサイクル当たり薄膜の成長厚さを結晶構造上
の最密充填面の周期的な距離に一致させることにより、
薄膜の特性を向上させ得る。
According to the thin film manufacturing method of the present invention, the growth thickness of a thin film per cycle formed on a substrate is made to coincide with the periodic distance of the closest-packed surface on the crystal structure.
The properties of the thin film can be improved.

【0010】[0010]

【発明の実施の形態】以下、添付図面に基づき本発明を
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

【0011】図1は本発明の薄膜製造に利用された薄膜
製造装置を説明するために示す概略図で、図2は本発明
の薄膜製造方法を説明するために示す流れ図である。
FIG. 1 is a schematic view illustrating a thin film manufacturing apparatus used for manufacturing a thin film according to the present invention, and FIG. 2 is a flowchart illustrating a thin film manufacturing method according to the present invention.

【0012】先ず、チャンバ1に基板3、例えばウェー
ハをローディングした後、ヒーター5及びポンプ7を用
いてチャンバ1を200〜400℃の温度と1〜10、
000mTorrの圧力を維持する(ステップ10
0)。前記200〜400℃の温度と1〜10、000
mTorrの圧力は後続の薄膜製造工程で保ち続ける工
程温度と工程圧力である。続いて、前記200〜400
℃の工程温度と1〜10、000mTorr工程圧力を
維持した状態でチャンバ1にバルブ9aを選択的に作動
させ、第1反応物11、例えばトリメチルアルミニウム
(Al(CH3 3)をガスライン13a及びシャワー
ヘッド15を通じて、前記基板3の表面を十分に覆いう
る時間、例えば1m秒〜10秒間をガスバブリング方式
で注入する(ステップ200)。この際、基板3上に原
子サイズ程度で化学吸着した第1反応物と前記化学吸着
した第1反応物上に物理吸着した第1反応物が形成され
る。
First, after loading a substrate 3, for example, a wafer, into the chamber 1, the chamber 1 is heated to a temperature of 200 to 400 ° C. and 1 to 10
000 mTorr (step 10)
0). The temperature of 200 to 400 ° C. and 1 to 10,000
The mTorr pressure is a process temperature and a process pressure that are maintained in a subsequent thin film manufacturing process. Subsequently, the 200 to 400
While maintaining the process temperature of 1 ° C. and the process pressure of 1 to 10,000 mTorr, the valve 9a is selectively operated in the chamber 1 to supply the first reactant 11, for example, trimethyl aluminum (Al (CH 3 ) 3 ) to the gas line 13a. Then, a time that can sufficiently cover the surface of the substrate 3, for example, 1 ms to 10 seconds is injected through the shower head 15 by a gas bubbling method (Step 200). At this time, a first reactant chemically adsorbed on the substrate 3 with an atomic size and a first reactant physically adsorbed on the chemically adsorbed first reactant are formed.

【0013】次に、前記200〜400℃の工程温度と
1〜10、000mTorrの工程圧力とを維持した状
態でチャンバ1に選択的にバルブ9aを作動させ、ガス
ソース16を通じて不活性ガス、例えばアルゴンを所望
のサイクル当たりの成長厚さが得られる時間、例えば
0、1〜100秒間1次パージする(ステップ30
0)。ここで、本発明は前記第1反応物の注入時間及び
不活性ガスのパージ時間を調節して化学吸着している第
1反応物だけではなく、前記化学吸着した第1反応物上
に物理吸着している反応物も一定に基板3上に残して後
続工程で理想的なサイクル当たりの成長厚さが得られ
る。
Next, while maintaining the process temperature of 200 to 400 ° C. and the process pressure of 1 to 10,000 mTorr, the valve 9 a is selectively operated in the chamber 1, and an inert gas, for example, Primary purge with argon for a time to achieve the desired growth thickness per cycle, e.g., 0, 1-100 seconds (step 30)
0). Here, the present invention adjusts the injection time of the first reactant and the purge time of the inert gas to control not only the first reactant chemically adsorbed but also the physically adsorbed first reactant. The remaining reactants are also left on the substrate 3 to obtain an ideal growth thickness per cycle in the subsequent process.

【0014】この後、前記200〜400℃の工程温度
と1〜10、000mTorrの工程圧力を維持した状
態でチャンバ1に選択的にバルブ9bを作動させて第2
反応物17、例えば水蒸気をガスライン13b及びシャ
ワーヘッド15を通じて前記化学吸着した第1反応物と
物理吸着した第1反応物が形成されたウェーハの表面を
十分に覆い得る時間、例えば1m秒〜10秒間ガスバブ
リング方式を利用して注入する(ステップ400)。こ
の際、前記第1反応物と第2反応物は反応して基板3上
に薄膜、例えば酸化アルミニウム膜が形成される。
Thereafter, while maintaining the process temperature of 200 to 400 ° C. and the process pressure of 1 to 10,000 mTorr, the valve 9b is selectively operated in the chamber 1 to perform the second process.
A time during which the reactant 17, for example, water vapor can sufficiently cover the surface of the wafer on which the first reactant chemically adsorbed and the first reactant physically adsorbed through the gas line 13b and the shower head 15 are formed, for example, 1 ms to 10 ms. The injection is performed using a gas bubbling method for a second (step 400). At this time, the first reactant and the second reactant react to form a thin film, for example, an aluminum oxide film on the substrate 3.

【0015】続けて、前記200〜400℃の工程温度
と1〜10、000mTorrの工程圧力を維持した状
態でチャンバ1にバルブ9bを選択的に作動させ、ガス
ソース16を通じて不活性ガス、例えばアルゴンガスを
所望のサイクル当たりの成長厚さが得られる時間、例え
ば0、1〜100秒間2次パージすることにより、薄膜
を形成する一つのサイクルを完了する(ステップ50
0)。ここで、本発明は前記第2反応物の注入時間及び
不活性ガスのパージ時間を調節して化学吸着している第
2反応物だけではなく、物理吸着している第2反応物も
一定に基板3上に残して継続される後続工程で理想的な
サイクル当たりの成長厚さが得られる。
Subsequently, while maintaining the process temperature of 200 to 400 ° C. and the process pressure of 1 to 10,000 mTorr, the valve 9 b is selectively operated in the chamber 1, and an inert gas such as argon is passed through the gas source 16. One cycle of thin film formation is completed by secondary purging of the gas with the desired growth thickness per cycle, e.g., 0, 1-100 seconds (step 50).
0). Here, according to the present invention, not only the chemically adsorbed second reactant but also the physically adsorbed second reactant are controlled by adjusting the injection time of the second reactant and the purge time of the inert gas. An ideal growth thickness per cycle is obtained in a subsequent process that is left on the substrate 3.

【0016】この後、前記のような原子サイズ程度の厚
さの薄膜を形成する段階、即ち第1反応物注入から2次
パージする段階までを周期的に反復遂行して、適正厚
さ、例えば10Å乃至1000Å程度の薄膜が形成され
たのかを確認する(ステップ600)。適正厚さになる
と、前記サイクルを反復せずにチャンバの工程温度と工
程圧力を常温及び常圧に保つことにより、薄膜製造過程
を完了する(ステップ700)。
Thereafter, the step of forming a thin film having a thickness of about the atomic size as described above, that is, the steps from the injection of the first reactant to the step of secondary purging are periodically repeated to obtain an appropriate thickness, for example, It is confirmed whether a thin film of about 10 to 1000 degrees has been formed (step 600). When the thickness becomes an appropriate thickness, the process temperature and pressure of the chamber are maintained at room temperature and pressure without repeating the cycle, thereby completing the thin film manufacturing process (step 700).

【0017】結果的に、本発明の薄膜製造方法はチャン
バ温度と圧力を工程温度と工程圧力に一定に保った状態
で第1反応物注入、1次パージ、第2反応物注入及び2
次パージをサイクルで反復して遂行する。この際、前記
第1反応物及び第2反応物の注入時間及び不活性ガスの
パージ時間を調節して一つのサイクル当たりの成長厚さ
を理論的な厚さ、即ち結晶構造上の最密充填面の周期的
な距離に近接すように形成できる。
As a result, according to the thin film manufacturing method of the present invention, the first reactant injection, the primary purge, the second reactant injection and the second reactant injection are performed while the chamber temperature and the pressure are kept constant at the process temperature and the process pressure.
The next purge is performed repeatedly in the cycle. At this time, the injection thickness of the first reactant and the second reactant and the purge time of the inert gas are adjusted to reduce the growth thickness per cycle to the theoretical thickness, that is, the closest packing on the crystal structure. It can be formed to be close to the periodic distance of the surface.

【0018】ここで、本発明の薄膜製造方法を用いて製
造されたアルミニウム酸化膜を例に挙げて本発明を詳細
に説明する。
Here, the present invention will be described in detail with reference to an example of an aluminum oxide film manufactured by using the thin film manufacturing method of the present invention.

【0019】図3は本発明及び従来技術の薄膜製造方法
により製造されたアルミニウム酸化膜のサイクル当たり
の成長厚さを示すグラフで、図4は本発明及び従来方法
により製造されたアルミニウム酸化膜のサイクル当たり
の成長厚さに従う屈折率を図示すグラフである。
FIG. 3 is a graph showing the growth thickness per cycle of the aluminum oxide film manufactured by the thin film manufacturing method of the present invention and the prior art, and FIG. 4 is a graph showing the growth thickness of the aluminum oxide film manufactured by the present invention and the conventional method. 5 is a graph illustrating the refractive index according to the growth thickness per cycle.

【0020】具体的に、従来のALD法で蒸着されたア
ルミニウム酸化膜のサイクル当たりの成長厚さ(成長速
度)は図3の参照符号”a”に示すように1.1Åで、
これによる屈折率は図4に示すように1.65である。
つまり、ALD法の基本特性である化学吸着と化学置換
を用いた薄膜蒸着速度がサイクル当たり1.1Å以下で
のみ成ることを意味する。
Specifically, the growth thickness (growth rate) per cycle of the aluminum oxide film deposited by the conventional ALD method is 1.1 ° as shown by reference numeral “a” in FIG.
The resulting refractive index is 1.65 as shown in FIG.
In other words, this means that the thin film deposition rate using the chemical adsorption and chemical substitution, which are the basic characteristics of the ALD method, is only 1.1 ° or less per cycle.

【0021】これに比べて、本発明の方法により吸着し
たアルミニウム酸化膜のサイクル当たりの成長厚さは図
3の参照符号”b”に示すように1.91Åで、これに
従う屈折率は図4に示すように1.694でバルク状態
のアルミニウム酸化膜に近い値を表している。
On the other hand, the growth thickness per cycle of the aluminum oxide film adsorbed by the method of the present invention is 1.91 ° as shown by reference numeral “b” in FIG. 3 and the refractive index according to this is 1.91 °. As shown in the figure, 1.694 represents a value close to that of the aluminum oxide film in a bulk state.

【0022】また、本発明者らはサイクル当たりの成長
厚さが0.5Åの場合、薄膜は優秀なステップカバレー
ジと均一な表面を表しているが、薄膜の屈折率は1.6
2程度であることを確認した。かつ、サイクル当たりの
成長厚さが10Å程度で大きければ、蒸気相での反応に
より薄膜の表面がとても粗くなり、膜の残留不純物が増
える。結果的に、本発明の薄膜製造方法により形成され
た薄膜はサイクル当たりの成長厚さが一定で、段差被覆
性が優れているだけではなく、バルク状態のアルミニウ
ム酸化膜の屈折率と密度に近い物性を有する。
Also, when the growth thickness per cycle is 0.5 °, the thin film exhibits excellent step coverage and a uniform surface, but the refractive index of the thin film is 1.6.
It was confirmed that it was about 2. If the growth thickness per cycle is as large as about 10 °, the surface of the thin film becomes very rough due to the reaction in the vapor phase, and the residual impurities in the film increase. As a result, the thin film formed by the thin film manufacturing method of the present invention has a constant growth thickness per cycle, has excellent step coverage, and is close to the refractive index and density of the aluminum oxide film in a bulk state. Has physical properties.

【0023】図5は本発明の薄膜製造方法により形成さ
れた薄膜の蝕刻速度を説明するために示すグラフであ
る。
FIG. 5 is a graph illustrating the etching rate of a thin film formed by the method of manufacturing a thin film according to the present invention.

【0024】具体的に、本発明者らが実験した結果、薄
膜の蒸着速度がサイクル当たり10Åの場合の蝕刻速度
は2500Å/分以上であり、サイクル当たり0.5Å
の場合は蝕刻速度が1200Å/分であった。反面、本
発明により製造された薄膜の蒸着速度(成長速度)がサ
イクル当たり1.91Åである場合は500Å/分だっ
たことを確認した。これは、ただ化学吸着により表面調
節する工程が施される場合のサイクル当たり0.5Åの
蒸着速度を有する膜は均一度と段差被覆性が優れていて
も蝕刻速度が大きくて、バルクに比して不良であること
を表している。つまり、本発明により製造された薄膜は
蝕刻速度が低くて、膜質が優れているだけではなく、9
0%以上の段差被覆性を有し、均一度が向上する。
Specifically, as a result of experiments conducted by the present inventors, when the deposition rate of the thin film is 10 ° per cycle, the etching rate is 2500 ° / min or more and 0.5 ° per cycle.
In the case of the above, the etching rate was 1200 ° / min. On the other hand, it was confirmed that when the deposition rate (growth rate) of the thin film manufactured according to the present invention was 1.91 ° per cycle, it was 500 ° / min. This is because a film having a deposition rate of 0.5 mm per cycle when a surface conditioning process is performed by chemisorption has a high etching rate even if it has excellent uniformity and step coverage, and is compared with a bulk. Is defective. In other words, the thin film manufactured according to the present invention has a low etching rate and excellent film quality,
It has a step coverage of 0% or more, and improves the uniformity.

【0025】[0025]

【発明の効果】前述したのように本発明は順次反応物を
流入して薄膜を製造するとき、化学吸着している反応物
も一定に残すことにより、理論的に可能なサイクル当た
りの膜厚を結晶構造上の最密充填面の周期的な距離と一
致させ、膜質の特性を向上させることができる。
As described above, according to the present invention, when a reactant is successively introduced to form a thin film, the chemically adsorbed reactant is also kept constant, so that the film thickness per cycle is theoretically possible. Is matched with the periodic distance of the closest-packed surface on the crystal structure, and the characteristics of the film quality can be improved.

【0026】以上、実施例を通じて本発明を具体的に説
明したが、本発明はこれに限定されることなく、本発明
の技術的思想内で当分野における通常の知識を有した者
にとって変形や改良が可能である。
Although the present invention has been described in detail with reference to the embodiments, the present invention is not limited to these embodiments, and may be modified or modified by those having ordinary knowledge in the art within the technical idea of the present invention. Improvements are possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜製造方法に利用された薄膜製造装
置の一例を説明するための概略図である。
FIG. 1 is a schematic diagram illustrating an example of a thin film manufacturing apparatus used in a thin film manufacturing method of the present invention.

【図2】本発明の薄膜製造方法の一例を説明するための
流れ図である。
FIG. 2 is a flowchart for explaining an example of the thin film manufacturing method of the present invention.

【図3】本発明及び従来技術の薄膜製造方法により製造
されたアルミニウム酸化膜のサイクル当たりの成長厚さ
を示すグラフである。
FIG. 3 is a graph showing a growth thickness per cycle of an aluminum oxide film manufactured by a thin film manufacturing method according to the present invention and the prior art.

【図4】本発明及び従来方法により製造されたアルミニ
ウム酸化膜のサイクル当たりの成長厚さに従う屈折率を
示すグラフである。
FIG. 4 is a graph showing a refractive index according to a growth thickness per cycle of an aluminum oxide film manufactured according to the present invention and a conventional method.

【図5】本発明の薄膜製造方法により形成された薄膜の
蝕刻速度を説明するためのグラフである。
FIG. 5 is a graph illustrating an etching rate of a thin film formed by the method of manufacturing a thin film according to the present invention.

【符号の説明】[Explanation of symbols]

1…チャンバ 3…基板 5…ヒーター 9…バルブ 11…第1反応物 13…ガスライン 15…シャワーヘッド 17…第2反応物 DESCRIPTION OF SYMBOLS 1 ... Chamber 3 ... Substrate 5 ... Heater 9 ... Valve 11 ... 1st reactant 13 ... Gas line 15 ... Shower head 17 ... 2nd reactant

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板がローディングされたチャンバを所
定の温度と圧力に保つ段階と、 前記チャンバに第1反応物を注入し、前記基板上に化学
吸着させる段階と、 前記化学吸着した第1反応物が形成された基板を含むチ
ャンバに不活性ガスで1次パージして前記化学吸着した
第1反応物上に物理吸着した第1反応物を残す段階と、 前記化学吸着及び物理吸着した第1反応物が形成された
基板を含むチャンバに第2反応物を注入及び反応させ薄
膜を形成する段階と、 前記薄膜が形成されたチャンバに不活性ガスで2次パー
ジする段階を含むことを特徴とする薄膜製造方法。
A step of maintaining a chamber loaded with a substrate at a predetermined temperature and pressure; a step of injecting a first reactant into the chamber and chemisorbing the first reactant on the substrate; and a step of chemisorbing the first reaction. First purging with an inert gas into a chamber containing the substrate on which the substance is formed to leave the first reactant physically adsorbed on the first reactant chemically adsorbed; Injecting and reacting a second reactant into a chamber including a substrate on which the reactant is formed to form a thin film, and secondary purging the chamber with the thin film with an inert gas. Thin film manufacturing method.
【請求項2】 前記基板上に第1反応物を化学吸着させ
る段階、前記化学吸着した第1反応物と前記化学吸着し
た第1反応物上に物理吸着した第1反応物を残す段階、
第1反応物と第2反応物を反応させ、薄膜を形成する段
階及び前記薄膜が形成されたチャンバに不活性ガスを2
次パージする段階を順次反復遂行することを特徴とする
請求項1に記載の薄膜製造方法。
2. a step of chemically adsorbing a first reactant on the substrate; and a step of leaving the first reactant chemically adsorbed and the first reactant physically adsorbed on the first chemically adsorbed reactant.
Reacting the first reactant and the second reactant to form a thin film, and injecting an inert gas into the chamber in which the thin film is formed.
The method of claim 1, wherein the next purging step is sequentially and repeatedly performed.
【請求項3】 前記薄膜は酸化アルミニウム膜であるこ
とを特徴とする請求項1に記載の薄膜製造方法。
3. The method according to claim 1, wherein the thin film is an aluminum oxide film.
【請求項4】 第1反応物及び第2反応物は各々トリメ
チルアルミニウム(Al(CH3 3 )及び水蒸気(H
2 O)であることを特徴とする請求項3に記載の薄膜製
造方法。
4. The first and second reactants are trimethylaluminum (Al (CH 3 ) 3 ) and steam (H
The method according to claim 3, wherein the method is (2O).
【請求項5】 前記第1反応物及び第2反応物は1m秒
〜10秒間供給することを特徴とする請求項1に記載の
薄膜製造方法。
5. The method according to claim 1, wherein the first reactant and the second reactant are supplied for 1 millisecond to 10 seconds.
【請求項6】 前記チャンバの温度は200〜400℃
であることを特徴とする請求項1に記載の薄膜製造方
法。
6. The temperature of the chamber is 200 to 400 ° C.
The method for producing a thin film according to claim 1, wherein
【請求項7】 前記チャンバの圧力は1〜10、000
mTorrであることを特徴とする請求項1に記載の薄
膜製造方法。
7. The pressure in the chamber is 1 to 10,000.
2. The method according to claim 1, wherein the method is mTorr.
【請求項8】 前記1次パージ及び2次パージは0、1
〜100秒間パージすることを特徴とする請求項1に記
載の薄膜製造方法。
8. The method according to claim 1, wherein the primary purge and the secondary purge are 0, 1,
2. The method according to claim 1, wherein the purging is performed for 100 seconds.
JP10176197A 1998-03-14 1998-06-23 Production of thin film Withdrawn JPH11269652A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980008641A KR19990074809A (en) 1998-03-14 1998-03-14 Thin Film Manufacturing Method
KR98P8641 1998-03-14

Publications (1)

Publication Number Publication Date
JPH11269652A true JPH11269652A (en) 1999-10-05

Family

ID=19534807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176197A Withdrawn JPH11269652A (en) 1998-03-14 1998-06-23 Production of thin film

Country Status (3)

Country Link
JP (1) JPH11269652A (en)
KR (1) KR19990074809A (en)
TW (1) TW384315B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167569A1 (en) * 2000-06-24 2002-01-02 IPS Limited Apparatus and method for depositing thin film on wafer using atomic layer deposition
US6576053B1 (en) 1999-10-06 2003-06-10 Samsung Electronics Co., Ltd. Method of forming thin film using atomic layer deposition method
KR100396694B1 (en) * 2000-07-27 2003-09-02 주식회사 하이닉스반도체 Method for forming thin film using atomic layer deposition
WO2003104525A1 (en) * 2002-06-10 2003-12-18 東京エレクトロン株式会社 Processing device and processing method
US6811814B2 (en) 2001-01-16 2004-11-02 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
JP2008174842A (en) * 1999-10-06 2008-07-31 Samsung Electronics Co Ltd Thin film forming method using atomic layer deposition method
JP2008255493A (en) * 2001-10-15 2008-10-23 Micron Technology Inc Atomic layer deposition apparatus and process
US7637001B2 (en) 2000-02-10 2009-12-29 Tdk Corporation Method of manufacturing a thin-film magnetic head
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
DE10049257B4 (en) * 1999-10-06 2015-05-13 Samsung Electronics Co., Ltd. Process for thin film production by means of atomic layer deposition
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
CN112553599A (en) * 2019-09-25 2021-03-26 秀博瑞殷株式公社 Method for producing thin film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828218B2 (en) * 2001-05-31 2004-12-07 Samsung Electronics Co., Ltd. Method of forming a thin film using atomic layer deposition
WO2006098565A1 (en) * 2005-03-16 2006-09-21 Ips Ltd. Method of depositing thin film using ald process
CN110473769A (en) * 2018-05-11 2019-11-19 圆益Ips股份有限公司 Film forming method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174842A (en) * 1999-10-06 2008-07-31 Samsung Electronics Co Ltd Thin film forming method using atomic layer deposition method
US6576053B1 (en) 1999-10-06 2003-06-10 Samsung Electronics Co., Ltd. Method of forming thin film using atomic layer deposition method
DE10049257B4 (en) * 1999-10-06 2015-05-13 Samsung Electronics Co., Ltd. Process for thin film production by means of atomic layer deposition
US7637001B2 (en) 2000-02-10 2009-12-29 Tdk Corporation Method of manufacturing a thin-film magnetic head
US7975367B2 (en) 2000-02-10 2011-07-12 Tdk Corporation Method of manufacturing a thin-film magnetic head
US8448330B2 (en) 2000-02-10 2013-05-28 Tdk Corporation Method of manufacturing a thin-film magnetic head
EP1167569A1 (en) * 2000-06-24 2002-01-02 IPS Limited Apparatus and method for depositing thin film on wafer using atomic layer deposition
US6579372B2 (en) 2000-06-24 2003-06-17 Ips, Ltd. Apparatus and method for depositing thin film on wafer using atomic layer deposition
KR100396694B1 (en) * 2000-07-27 2003-09-02 주식회사 하이닉스반도체 Method for forming thin film using atomic layer deposition
US6811814B2 (en) 2001-01-16 2004-11-02 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
JP2008255493A (en) * 2001-10-15 2008-10-23 Micron Technology Inc Atomic layer deposition apparatus and process
WO2003104525A1 (en) * 2002-06-10 2003-12-18 東京エレクトロン株式会社 Processing device and processing method
CN112553599A (en) * 2019-09-25 2021-03-26 秀博瑞殷株式公社 Method for producing thin film

Also Published As

Publication number Publication date
KR19990074809A (en) 1999-10-05
TW384315B (en) 2000-03-11

Similar Documents

Publication Publication Date Title
JP3476801B2 (en) Method for producing silicon-containing solid thin film by atomic layer deposition using trisdimethylaminosilane
JP3602072B2 (en) Method for producing silicon-containing solid thin films by atomic layer deposition using hexachlorodisilane and ammonia
US7077904B2 (en) Method for atomic layer deposition (ALD) of silicon oxide film
JP4704618B2 (en) Method for producing zirconium oxide film
KR101427142B1 (en) ALD of metal silicate films
US7488386B2 (en) Atomic layer deposition methods and chemical vapor deposition methods
JP3265042B2 (en) Film formation method
US7527693B2 (en) Apparatus for improved delivery of metastable species
KR101995135B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
KR20180116761A (en) Method of Plasma-Assisted Cyclic Deposition Using Ramp-Down Flow of Reactant Gas
JPH11269652A (en) Production of thin film
US20150101755A1 (en) Substrate processing apparatus
US8029858B2 (en) Methods of forming material on a substrate, and a method of forming a field effect transistor gate oxide on a substrate
JP2014236129A (en) Substrate processing apparatus, manufacturing method of semiconductor device, and program
JP5651451B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
KR20020064517A (en) Thin Film Deposition Method
KR20090068179A (en) Process for producing a thin film comprising silicon dioxide
KR101858345B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
US20060078678A1 (en) Method of forming a thin film by atomic layer deposition
US20110027977A1 (en) Deposition of ruthenium or ruthenium dioxide
JP4348445B2 (en) Atomic layer deposition method for forming silicon dioxide containing layers
JP2002164348A (en) ATOMIC LAYER DEPOSITION OF Ta2O5 AND HIGH-k DIELECTRIC
KR100508755B1 (en) Method of forming a thin film having a uniform thickness in a semiconductor device and Apparatus for performing the same
JP2002053959A (en) Thin film deposition method using atomic layer deposition method
JPS62228471A (en) Formation of deposited film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906