JPH1126804A - Photo coupler type semiconductor relay - Google Patents

Photo coupler type semiconductor relay

Info

Publication number
JPH1126804A
JPH1126804A JP17430797A JP17430797A JPH1126804A JP H1126804 A JPH1126804 A JP H1126804A JP 17430797 A JP17430797 A JP 17430797A JP 17430797 A JP17430797 A JP 17430797A JP H1126804 A JPH1126804 A JP H1126804A
Authority
JP
Japan
Prior art keywords
light
relay
ldmosfet
electrically connected
ldmosfets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17430797A
Other languages
Japanese (ja)
Other versions
JP3468033B2 (en
Inventor
Masamichi Takano
仁路 高野
Masahiko Suzumura
正彦 鈴村
Yuji Suzuki
裕二 鈴木
Yoshiki Hayazaki
嘉城 早崎
Yoshifumi Shirai
良史 白井
Takashi Kishida
貴司 岸田
Takeshi Yoshida
岳司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17430797A priority Critical patent/JP3468033B2/en
Publication of JPH1126804A publication Critical patent/JPH1126804A/en
Application granted granted Critical
Publication of JP3468033B2 publication Critical patent/JP3468033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

PROBLEM TO BE SOLVED: To provide a photo coupler type semiconductor relay which never increases the output terminal capacitance at the time of the relay off. SOLUTION: A relay comprises a solar cell 1 to be a photo detector and LDMOSFETs 2, 3 each having an ISO structure on a floating frame electrically independent of the external potential in a resin package 7. The anodes 1a, 1b of the cell 1 are directly electrically connected to the gate electrodes 2a, 3a of the LDMOSFETs 2, 3 through bonding wires 5, without running through the frame 4; the cathodes 1c, 1d of the cell 1 are directly electrically connected to the source electrodes 2b, 3b of the LDMOSFETs 2, 3 through bonding wires 5, without running through the frame 4; and the drain electrodes 2c, 3c of the LDMOSFETs 2, 3 are electrically connected to output terminal frames 6a, 6b through bonding wires 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光素子と受光素
子とを光結合し、受光素子の出力によってMOSFET
にスイッチング動作を行わせる光結合型半導体リレ−に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device and a light receiving device which are optically coupled to each other.
The present invention relates to an optically coupled semiconductor relay that causes a switching operation to be performed.

【0002】[0002]

【従来の技術】図3に示すように、従来の縦型MOSF
ETを出力用MOSFETとして用いたフォトモスリレ
−は、受光素子である太陽電池1がGND端子フレ−ム
8上に配設され、このGND端子フレ−ム8の両側に並
設された出力端子フレ−ム6a,6b上に縦型MOSF
ET9,10が配設されている。
2. Description of the Related Art As shown in FIG.
A photo-MOS relay using an ET as an output MOSFET is such that a solar cell 1 as a light receiving element is disposed on a GND terminal frame 8, and output terminal frames arranged side by side on both sides of the GND terminal frame 8. Vertical MOSF on the memory 6a, 6b
ETs 9 and 10 are provided.

【0003】また、図4に示すように、GND端子フレ
−ム8に対向して配置された入力端子フレ−ム12上に
は発光素子である発光ダイオ−ド11が配設され、太陽
電池1のアノ−ド1a,1bと縦型MOSFET9,1
0のゲ−ト電極9a,10aとは、それぞれボンディン
グワイヤ5により電気的に接続され、太陽電池1のカソ
−ド1c及び縦型MOSFET9,10のソ−ス電極9
b,10bは、ボンディングワイヤ5によりGND端子
フレ−ム8に電気的に接続されている。
Further, as shown in FIG. 4, a light emitting diode 11 as a light emitting element is provided on an input terminal frame 12 arranged opposite to the GND terminal frame 8, and a solar cell is provided. 1 and the vertical MOSFETs 9, 1
The gate electrodes 9a and 10a of the solar cell 1 are electrically connected by bonding wires 5, respectively, and the cathode 1c of the solar cell 1 and the source electrodes 9 of the vertical MOSFETs 9 and 10 are connected.
b and 10b are electrically connected to the GND terminal frame 8 by bonding wires 5.

【0004】そして、全体を不透明な樹脂パッケ−ジ7
でモ−ルドして1パッケ−ジ化し、太陽電池1と発光ダ
イオ−ド11との間を透明なシリコン樹脂13からなる
導光路により光結合し、発光ダイオ−ド11からの光を
受光素子である太陽電池1で受光できるようになってい
る。
[0004] The entire resin package 7 is opaque.
To form a package, and optically couples the solar cell 1 and the light emitting diode 11 by a light guide path made of a transparent silicon resin 13, and receives light from the light emitting diode 11 as a light receiving element. The solar cell 1 can receive light.

【0005】このように構成されたフォトモスリレ−
は、発光ダイオ−ド11を外部駆動信号で発光させ、そ
の発光ダイオ−ド11からの光を受光した太陽電池1は
電圧を発生し、この電圧が一定レベルに達すると出力用
の縦型MOSFET9,10がスイッチングし、フォト
モスリレ−がオン、またはオフする。
[0005] The photo mosley relay constructed as described above.
The light emitting diode 11 emits light by an external drive signal, and the solar cell 1 receiving the light from the light emitting diode 11 generates a voltage. When the voltage reaches a certain level, the output vertical MOSFET 9 is turned on. , 10 are switched, and the photo MOS relay is turned on or off.

【0006】また、上述のようなフォトモスリレ−にお
いては、出力端子フレ−ム6a,6bの間に負荷をかけ
る場合と、一方の出力端子フレ−ム6a,6bとGND
端子フレ−ム8との間に負荷をかける場合とで、交流電
流用途と直流電流用途とに使い分けることが可能であ
る。
In the above-mentioned photo mosley relay, a load is applied between the output terminal frames 6a and 6b, and one of the output terminal frames 6a and 6b is connected to GND.
When a load is applied between the terminal frame 8 and the terminal frame 8, it can be selectively used for AC current application and DC current application.

【0007】ところで、このようなフォトモスリレ−に
おいて、リレ−の出力端子間容量は、リレ−オフ時の絶
縁特性に関わる重要な特性である。出力端子間容量は、
出力用MOSFETの特性によって決まり、出力端子間
容量が小さいほど、リレ−の高周波絶縁性は大きくな
る。
Incidentally, in such a photomos relay, the capacitance between the output terminals of the relay is an important characteristic related to the insulation characteristics when the relay is off. The capacitance between output terminals is
Determined by the characteristics of the output MOSFET, the smaller the capacitance between the output terminals, the greater the high-frequency insulation of the relay.

【0008】近年、リレ−オフ時の出力容量低減化を目
的として、出力用MOSFETとして縦型MOSFET
9,10の代わりに、SOI(Silicon on Insulato
r)構造を有する横型2重拡散MOS電解効果トランジ
スタ、いわゆるLDMOSFET(Lateral Double D
iffused MOSFET)が用いられている。
In recent years, a vertical MOSFET has been used as an output MOSFET for the purpose of reducing the output capacitance at the time of relay-off.
Instead of 9 and 10, SOI (Silicon on Insulato)
r) Lateral double diffusion MOS field effect transistor having a structure, so-called LDMOSFET (Lateral Double D)
iffused MOSFET).

【0009】これは、MOSFETの出力容量は、ドレ
イン・ソ−ス関容量Cds、ゲ−ト・ドレイン間容量Cgd
の和で表され、SOI構造を有するLDMOSFETは
縦型MOSFETに比べ、ドレイン・ソ−ス間容量Cds
を大幅に小さくできるからである。
This is because the output capacitance of the MOSFET is a drain-source capacitance Cds, a gate-drain capacitance Cgd.
The LDMOSFET having the SOI structure is compared with the vertical MOSFET in that the drain-source capacitance Cds
Is significantly reduced.

【0010】図5に示すように、SOI構造を有するL
DMOSFET2,3を出力用MOSFETとして用い
たフォトモスリレ−は、出力用MOSFETとして縦型
MOSFET9,10を用いた場合と同様、受光素子で
ある太陽電池1がGND端子フレ−ム8上に配設され、
このGND端子フレ−ム8の両側に並設された出力端子
フレ−ム6a,6b上にLDMOSFET2,3が配設
されている。そして、太陽電池1のアノ−ド1a,1b
とLDMOSFET2,3のゲ−ト電極2a,3aと
は、それぞれボンディングワイヤ5により電気的に接続
され、太陽電池1のカソ−ド1c及びLDMOSFET
2,3のソ−ス電極2b,3bは、ボンディングワイヤ
5によりGND端子フレ−ム8に電気的に接続され、L
DMOSFET2,3のドレイン電極2c,3cは出力
端子フレ−ム6a,6bにボンディングワイヤ5により
電気的に接続されている。
As shown in FIG. 5, L having an SOI structure
In a photo-MOS relay using DMOSFETs 2 and 3 as output MOSFETs, a solar cell 1 as a light receiving element is disposed on a GND terminal frame 8 in the same manner as when vertical MOSFETs 9 and 10 are used as output MOSFETs.
LDMOSFETs 2 and 3 are arranged on output terminal frames 6a and 6b arranged on both sides of the GND terminal frame 8, respectively. Then, the anodes 1a and 1b of the solar cell 1
And the gate electrodes 2a and 3a of the LDMOSFETs 2 and 3 are electrically connected by bonding wires 5, respectively.
A few source electrodes 2b, 3b are electrically connected to a GND terminal frame 8 by bonding wires 5,
The drain electrodes 2c and 3c of the DMOSFETs 2 and 3 are electrically connected to output terminal frames 6a and 6b by bonding wires 5.

【0011】[0011]

【発明が解決しようとする課題】ところが、SOI構造
を有するLDMOSFET2,3を出力用MOSFET
として用いた場合においては、出力用MOSFETが出
力端子フレ−ム6a,6b上に配設されていると、リレ
−オフ時の出力端子間容量の増加を引き起こしてしまう
という問題が発生する。
However, the LDMOSFETs 2 and 3 having the SOI structure are replaced with output MOSFETs.
When the output MOSFET is provided on the output terminal frames 6a and 6b, there arises a problem that the capacitance between the output terminals at the time of relay-off is increased.

【0012】つまり、LDMOSFET2,3におい
て、リレ−オフ時の出力端子間容量は、通常、ドレイン
・ソ−ス間容量Cdsとゲ−ト・ドレイン間容量Cgdの和
であるが、図5に示すような実装状態において出力端子
フレ−ム6a,6bの電位が上がった場合には、図6に
示すように、LDMOSFET2,3の支持基板14a
がドレインの電位まで上昇するので、埋込酸化膜14b
を介してゲ−ト・支持基板間容量Cgsubとソ−ス・支持
基板間容量Cssubが発生する。
That is, in the LDMOSFETs 2 and 3, the capacitance between the output terminals when the relay is turned off is usually the sum of the capacitance Cds between the drain and the source and the capacitance Cgd between the gate and the drain, as shown in FIG. When the potential of the output terminal frames 6a, 6b rises in such a mounting state, as shown in FIG.
Rises to the potential of the drain, the buried oxide film 14b
A capacitance Cgsub between the gate and the supporting substrate and a capacitance Cssub between the source and the supporting substrate are generated through the gate.

【0013】その結果、図7に示すように、通常のドレ
イン・ソ−ス間容量Cds,ゲ−ト・ドレイン間容量Cgd
に加え、ゲ−ト・支持基板間容量Cgsub,ソ−ス・支持
基板間容量Cssubが並列に重畳されるため、出力端子間
容量の増加を引き起こしてしまうことになる。
As a result, as shown in FIG. 7, a normal drain-source capacitance Cds and a gate-drain capacitance Cgd are obtained.
In addition, since the capacitance Cgsub between the gate and the supporting substrate and the capacitance Cssub between the source and the supporting substrate are superposed in parallel, the capacitance between the output terminals is increased.

【0014】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、リレ−オフ時の出力
端子間容量の増加を引き起こすことのない光結合型半導
体リレ−を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide an optically coupled semiconductor relay which does not cause an increase in capacitance between output terminals when the relay is turned off. To provide.

【0015】[0015]

【課題を解決するための手段】請求項1記載の発明は、
入力側の信号に応答して発光する発光素子と、該発光素
子からの光信号を受けて光起電力を発生する受光素子
と、該受光素子の光起電力に呼応してオン/オフする出
力開閉素子とから成る光結合型半導体リレ−において、
前記出力開閉素子としてSOI構造を有するLDMOS
FETを用い、前記受光素子と前記LDMOSFETの
内、少なくとも前記LDMOSFETが電気的に浮遊状
態で外部電位に依存しないフロ−ティングフレ−ム上に
配設され、前記受光素子のアノ−ドと前記LDMOSF
ETのゲ−ト電極とが電気的に接続され、前記受光素子
のカソ−ドと前記LDMOSFETのソ−ス電極とが電
気的に接続され、前記LDMOSFETのドレイン電極
が出力端子フレ−ムに電気的に接続されて成ることを特
徴とするものである。
According to the first aspect of the present invention,
A light-emitting element that emits light in response to a signal on the input side, a light-receiving element that generates a photovoltaic power by receiving an optical signal from the light-emitting element, and an output that is turned on / off in response to the photovoltaic power of the light-receiving element In an optical coupling type semiconductor relay comprising a switching element,
LDMOS having SOI structure as output switching element
At least the LDMOSFET of the light receiving element and the LDMOSFET is disposed in an electrically floating state on a floating frame that does not depend on an external potential, and an anode of the light receiving element and the LDMOSF are used.
The gate electrode of the ET is electrically connected, the cathode of the light receiving element is electrically connected to the source electrode of the LDMOSFET, and the drain electrode of the LDMOSFET is electrically connected to the output terminal frame. It is characterized by being connected to each other.

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面に基づき説明する。図1は、本発明の一実施形態
に係るSOI構造を有するLDMOSFET2,3を出
力用MOSFETとして用いたフォトモスリレ−の実装
状態を示す略平面図である。本実施形態に係るフォトモ
スリレ−は、樹脂パッケ−ジ7内に収納され、電気的に
外部電位に依存しない浮遊状態のフロ−ティングフレ−
ム4上に、受光素子である太陽電池1とSOI構造を有
するLDMOSFET2,3が配設されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic plan view showing a mounted state of a photo MOSFET using LDMOSFETs 2 and 3 having an SOI structure as output MOSFETs according to an embodiment of the present invention. The photomoss relay according to the present embodiment is housed in a resin package 7 and is a floating floating frame that does not depend on an external electric potential electrically.
A solar cell 1 as a light receiving element and LDMOSFETs 2 and 3 having an SOI structure are disposed on a system 4.

【0017】また、太陽電池1のアノ−ド1a,1bと
LDMOSFET2,3のゲ−ト電極2a,3aとがフ
ロ−ティングフレ−ム4を介することなく、それぞれ直
接にボンディングワイヤ5により電気的に接続され、太
陽電池1のカソ−ド1c,1dとLDMOSFET2,
3のソ−ス電極2b,3bとがフロ−ティングフレ−ム
4を介することなく、それぞれ直接にボンディングワイ
ヤ5により電気的に接続され、LDMOSFET2,3
のドレイン電極2c,3cは出力端子フレ−ム6a,6
bにそれぞれボンディングワイヤ5により電気的に接続
されている。
Also, the anodes 1a and 1b of the solar cell 1 and the gate electrodes 2a and 3a of the LDMOSFETs 2 and 3 are electrically connected directly by bonding wires 5 without passing through the floating frame 4, respectively. Are connected to the cathodes 1c, 1d of the solar cell 1 and the LDMOSFETs 2,
3 are directly connected to the source electrodes 2b and 3b by the bonding wires 5 without passing through the floating frame 4, respectively.
Are connected to the output terminal frames 6a, 6c.
b are electrically connected to each other by bonding wires 5.

【0018】従って、本実施形態においては、LDMO
SFET2,3のソ−ス電極2b,3bと太陽電池1の
カソ−ド1c,1dとがフロ−ティングフレ−ム4を介
さずに直接に接続されているので、フロ−ティングフレ
−ム4は、外部電位にもLDMOSFET2,3のソ−
ス電極2b,3bの電位にも依存しない。このため、L
DMOSFET2,3の支持基板に起因する寄生容量成
分が発生せず、出力端子間容量は低減化される。
Therefore, in this embodiment, the LDMO
Since the source electrodes 2b and 3b of the SFETs 2 and 3 and the cathodes 1c and 1d of the solar cell 1 are directly connected without passing through the floating frame 4, the floating frame 4 Is the source of the LDMOSFETs 2 and 3
It does not depend on the potentials of the electrodes 2b and 3b. Therefore, L
No parasitic capacitance component due to the support substrates of the DMOSFETs 2 and 3 is generated, and the capacitance between output terminals is reduced.

【0019】なお、本実施形態においては、LDMOS
FET2,3として図6に示すようなn型MOSFET
を用いたが、これに限定される必要はなく、p型MOS
FETを用いても良い。
In this embodiment, the LDMOS
N-type MOSFET as shown in FIG.
However, the present invention is not limited to this.
An FET may be used.

【0020】また、本実施形態においては、出力開閉素
子としてSOI構造を有するLDMOSFET2,3を
用いたが、これに限定される必要はなく、SOI構造を
有するJFET,IGBT,UMOSFET,バイポ−
ラトランジスタでも良く、また、エピ基板上に形成され
たLDMOSFET,JFET,IGBT,UMOSF
ETでも良く、また、バルク基板上に形成されたLDM
OSFET,JFET,IGBT,UMOSFETでも
良い。
Further, in the present embodiment, the LDMOSFETs 2 and 3 having the SOI structure are used as the output switching elements. However, the present invention is not limited to this.
Transistor, or an LDMOSFET, JFET, IGBT, UMOSF formed on an epi-substrate.
ET may be used, and LDM formed on bulk substrate
OSFET, JFET, IGBT, UMOSFET may be used.

【0021】また、本実施形態においては、太陽電池1
及びLDMOSFET2,3を同一のフロ−ティングフ
レ−ム4上に配設したが、これに限定される必要はな
く、図2に示すように、異なるフロ−ティングフレ−ム
4a〜4c上にそれぞれ配設するようにしてもよい。
In the present embodiment, the solar cell 1
And the LDMOSFETs 2 and 3 are arranged on the same floating frame 4. However, the present invention is not limited to this, and as shown in FIG. It may be arranged.

【0022】更に、図2に示すフォトモスリレ−におい
て、太陽電池1が配設されたフロ−ティングフレ−ム4
bをGND端子に接地するようにしても良い。
Further, in the photo mosley relay shown in FIG. 2, a floating frame 4 provided with the solar cell 1 is provided.
b may be grounded to the GND terminal.

【0023】[0023]

【発明の効果】請求項1記載の発明は、入力側の信号に
応答して発光する発光素子と、発光素子からの光信号を
受けて光起電力を発生する受光素子と、受光素子の光起
電力に呼応してオン/オフする出力開閉素子とから成る
光結合型半導体リレ−において、出力開閉素子としてS
OI構造を有するLDMOSFETを用い、受光素子と
LDMOSFETの内、少なくともLDMOSFETが
電気的に浮遊状態で外部電位に依存しないフロ−ティン
グフレ−ム上に配設され、受光素子のアノ−ドとLDM
OSFETのゲ−ト電極とが電気的に接続され、受光素
子のカソ−ドとLDMOSFETのソ−ス電極とが電気
的に接続され、LDMOSFETのドレイン電極が出力
端子フレ−ムに電気的に接続されて成るので、LDMO
SFETの支持基板に起因する寄生容量成分が発生せ
ず、リレ−オフ時の出力端子間容量の増加を引き起こす
ことのない光結合型半導体リレ−を提供することができ
た。
According to the first aspect of the present invention, there is provided a light emitting element which emits light in response to a signal on the input side, a light receiving element which generates a photoelectromotive force by receiving an optical signal from the light emitting element, and a light receiving element for receiving light. In an optically coupled semiconductor relay comprising an output switching element which is turned on / off in response to an electromotive force, S
Using an LDMOSFET having an OI structure, at least the LDMOSFET among the light-receiving element and the LDMOSFET is disposed in an electrically floating state on a floating frame that does not depend on an external potential.
The gate electrode of the OSFET is electrically connected, the cathode of the light receiving element and the source electrode of the LDMOSFET are electrically connected, and the drain electrode of the LDMOSFET is electrically connected to the output terminal frame. LDMO
It is possible to provide an optically coupled semiconductor relay that does not generate a parasitic capacitance component due to the supporting substrate of the SFET and does not cause an increase in output terminal capacitance at the time of relay-off.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るSOI構造を有する
LDMOSFETを出力用MOSFETとして用いたフ
ォトモスリレ−の実装状態を示す略平面図である。
FIG. 1 is a schematic plan view showing a mounted state of a photo MOSFET using an LDMOSFET having an SOI structure according to an embodiment of the present invention as an output MOSFET.

【図2】本発明の他の実施形態に係るSOI構造を有す
るLDMOSFETを出力用MOSFETとして用いた
フォトモスリレ−の実装状態を示す略平面図である。
FIG. 2 is a schematic plan view showing a mounted state of a photo MOSFET using an LDMOSFET having an SOI structure as an output MOSFET according to another embodiment of the present invention.

【図3】従来例に係る縦型MOSFETを出力用MOS
FETとして用いたフォトモスリレ−の実装状態を示す
略平面図である。
FIG. 3 shows a conventional vertical MOSFET connected to an output MOS.
FIG. 5 is a schematic plan view showing a mounted state of a photomoss relay used as an FET.

【図4】従来例に係るフォトモスリレ−の概略構成図で
ある。
FIG. 4 is a schematic configuration diagram of a photo mosley relay according to a conventional example.

【図5】従来例に係るSOI構造を有するLDMOSF
ETを出力用MOSFETとして用いたフォトモスリレ
−の実装状態を示す略平面図である。
FIG. 5 shows a conventional LDMOSF having an SOI structure.
FIG. 11 is a schematic plan view showing a mounting state of a photo-mosley relay using ET as an output MOSFET.

【図6】従来例に係るフォトモスリレ−のLDMOSF
ETの略断面図である。
FIG. 6 is a photoMOS relay LDMOSF according to a conventional example.
It is a schematic sectional drawing of ET.

【図7】従来例に係るフォトモスリレ−のLDMOSF
ETの出力端子間容量の等価回路図である。
FIG. 7 shows an LDMOSF of a photo mosley relay according to a conventional example.
It is an equivalent circuit diagram of the capacitance between output terminals of ET.

【符号の説明】[Explanation of symbols]

1 太陽電池 1a,1b アノ−ド 1c,1d カソ−ド 2,3 LDMOSFET 2a,3a ゲ−ト電極 2b,3b ソ−ス電極 2c,3c ドレイン電極 4,4a〜4c フロ−ティングフレ−ム 5 ボンディングワイヤ 6a,6b 出力端子フレ−ム 7 樹脂パッケ−ジ 8 GND端子フレ−ム 9,10 縦型MOSFET 9a,10a ゲ−ト電極 9b,10b ソ−ス電極 11 発光ダイオ−ド 12 入力端子フレ−ム 13 シリコン樹脂 14a 支持基板 14b 埋込酸化膜 14c SOI層 15 p型ウェル領域 16 n+型ドレイン領域 17 n+型ソ−ス領域 DESCRIPTION OF SYMBOLS 1 Solar cell 1a, 1b Anode 1c, 1d Cathode 2, 3 LDMOSFET 2a, 3a Gate electrode 2b, 3b Source electrode 2c, 3c Drain electrode 4, 4a-4c Floating frame 5 Bonding wire 6a, 6b Output terminal frame 7 Resin package 8 GND terminal frame 9, 10 Vertical MOSFET 9a, 10a Gate electrode 9b, 10b Source electrode 11 Light emitting diode 12 Input terminal frame − Memory 13 silicon resin 14 a support substrate 14 b buried oxide film 14 c SOI layer 15 p-type well region 16 n + -type drain region 17 n + -type source region

フロントページの続き (72)発明者 早崎 嘉城 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 白井 良史 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 岸田 貴司 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 吉田 岳司 大阪府門真市大字門真1048番地松下電工株 式会社内Continued on the front page (72) Inventor Kashiro Hayasaki 1048 Kazumasa Kadoma, Osaka Prefecture Inside Matsushita Electric Works, Ltd. Inventor Takashi Kishida 1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Works, Ltd. (72) Inventor Takeshi Yoshida 1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Works Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力側の信号に応答して発光する発光素
子と、該発光素子からの光信号を受けて光起電力を発生
する受光素子と、該受光素子の光起電力に呼応してオン
/オフする出力開閉素子とから成る光結合型半導体リレ
−において、前記出力開閉素子としてSOI構造を有す
るLDMOSFETを用い、前記受光素子と前記LDM
OSFETの内、少なくとも前記LDMOSFETが電
気的に浮遊状態で外部電位に依存しないフロ−ティング
フレ−ム上に配設され、前記受光素子のアノ−ドと前記
LDMOSFETのゲ−ト電極とが電気的に接続され、
前記受光素子のカソ−ドと前記LDMOSFETのソ−
ス電極とが電気的に接続され、前記LDMOSFETの
ドレイン電極が出力端子フレ−ムに電気的に接続されて
成ることを特徴とする光結合型半導体リレ−。
1. A light-emitting element that emits light in response to a signal on an input side, a light-receiving element that generates a photoelectromotive force by receiving an optical signal from the light-emitting element, and a light-emitting element that responds to the photoelectromotive force of the light-receiving element. In an optically coupled semiconductor relay comprising an on / off output switching element, an LDMOSFET having an SOI structure is used as the output switching element, and the light receiving element and the LDM are used.
Of the OSFETs, at least the LDMOSFET is electrically floating and is disposed on a floating frame that does not depend on an external potential, and the anode of the light receiving element and the gate electrode of the LDMOSFET are electrically connected. Connected to
Cathode of the light receiving element and source of the LDMOSFET
And a drain electrode of the LDMOSFET is electrically connected to an output terminal frame.
JP17430797A 1997-06-30 1997-06-30 Optically coupled semiconductor relay Expired - Lifetime JP3468033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17430797A JP3468033B2 (en) 1997-06-30 1997-06-30 Optically coupled semiconductor relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17430797A JP3468033B2 (en) 1997-06-30 1997-06-30 Optically coupled semiconductor relay

Publications (2)

Publication Number Publication Date
JPH1126804A true JPH1126804A (en) 1999-01-29
JP3468033B2 JP3468033B2 (en) 2003-11-17

Family

ID=15976376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17430797A Expired - Lifetime JP3468033B2 (en) 1997-06-30 1997-06-30 Optically coupled semiconductor relay

Country Status (1)

Country Link
JP (1) JP3468033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612639B2 (en) * 2005-10-25 2009-11-03 Yazaki Corporation Relay module and electrical component unit
CN106020284A (en) * 2016-07-19 2016-10-12 南京工程学院 Electric cooling system for electric car control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612639B2 (en) * 2005-10-25 2009-11-03 Yazaki Corporation Relay module and electrical component unit
CN106020284A (en) * 2016-07-19 2016-10-12 南京工程学院 Electric cooling system for electric car control system

Also Published As

Publication number Publication date
JP3468033B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
EP0892438B1 (en) Solid-state relay
US8022477B2 (en) Semiconductor apparatus having lateral type MIS transistor
US7968943B2 (en) Semiconductor device reducing output capacitance due to parasitic capacitance
JP3013894B2 (en) FET device
JP3468033B2 (en) Optically coupled semiconductor relay
JP2006093684A (en) Semiconductor device and optical semiconductor relay device using it
JP2000269354A (en) Ac switching element and ac circuit
JPH1126806A (en) Photo coupler type semiconductor relay
JPH1154787A (en) Optically coupled semiconductor relay
JP3303648B2 (en) Semiconductor relay
JP3513851B2 (en) Semiconductor device
JP3319999B2 (en) Semiconductor switch element
JP4256328B2 (en) Field effect transistor, semiconductor device, and photorelay
JP2943922B2 (en) Output contact element for semiconductor relay
JPH1126805A (en) Photo coupler type semiconductor relay
JP3282571B2 (en) Semiconductor device
JPH11186555A (en) Semiconductor device
JPH11135826A (en) Optically coupled semiconductor relay
JPH11220133A (en) Semiconductor device
JP2001168336A (en) Low-capacitance mosfet and semiconductor relay device using it
JPH10154812A (en) High withstand voltage semiconductor device
JP4988707B2 (en) MOSFET device for controlling a MOSFET device
JPH11191627A (en) Semiconductor device
JP2004173257A (en) Optical coupling semiconductor relay device
JP3392496B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

EXPY Cancellation because of completion of term