JPH11249767A - Power source controller - Google Patents

Power source controller

Info

Publication number
JPH11249767A
JPH11249767A JP10062037A JP6203798A JPH11249767A JP H11249767 A JPH11249767 A JP H11249767A JP 10062037 A JP10062037 A JP 10062037A JP 6203798 A JP6203798 A JP 6203798A JP H11249767 A JPH11249767 A JP H11249767A
Authority
JP
Japan
Prior art keywords
power failure
power
power supply
recovery
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10062037A
Other languages
Japanese (ja)
Inventor
Tadashi Yamaguchi
正 山口
Tetsuo Miyamoto
哲雄 宮本
Takashi Araki
隆 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10062037A priority Critical patent/JPH11249767A/en
Publication of JPH11249767A publication Critical patent/JPH11249767A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Power Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly return a microcomputer to its ordinary operation mode at the time of power recovery. SOLUTION: A power source controller incorporating a microcomputer 1 and having an ordinary mode and a low power consumption mode is provided with a power supply state detecting function 3 for detecting the output state of a power source 2, a power failure discriminating function 5 for discriminating whether it is a power failure or not based on a signal of the power supply state detecting function 3, and a power failure recovery processing function 6 for performing a prescribed processing based on the discrimination result of the power failure discriminating function 5. When a power failure is discriminated by the power failure discriminating function 5 during a prescribed power failure recovery standby time, the mode is switched to the lower power consumption mode by the power failure recovery processing function 6, and after the lapse of the power failure recovery standby time, the mode is switched to the ordinary mode, or only when the power failure recovery is discriminated by discriminating the power failure again after the lapse of the power failure recovery standby time, the mode is switched to the ordinary mode so that the change to the ordinary mode at the time of power failure recovery can be smoothly performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電源の供給状態を制
御する電源制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply control device for controlling a power supply state.

【0002】[0002]

【従来の技術】マイクロコンピュータ(以下、この明細
書では「マイコン」と記載する。)内蔵装置における駆
動機構は、通常は商用電源等の安定電源により駆動さ
れ、停電時にはバッテリ等の予備電源に切り替えて、所
定時間低周波数モード(例えば32.76kHzのモー
ド、低消費電力モード)に切り替えてマイコンによる最
低処理を行って停電復帰時に備え、停電復帰と共に再び
高周波数モード(例えば1MHzのモード、通常モー
ド)に切り替えてマイコンによる通常処理を行う方法が
ある。
2. Description of the Related Art A drive mechanism in a microcomputer (hereinafter, referred to as "microcomputer" in this specification) is usually driven by a stable power supply such as a commercial power supply, and is switched to a standby power supply such as a battery in the event of a power failure. Then, the mode is switched to a low frequency mode (for example, a mode of 32.76 kHz, a low power consumption mode) for a predetermined time, and the minimum processing by the microcomputer is performed to prepare for the recovery from power failure. ) To perform normal processing by the microcomputer.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
停電から停電復帰に至るマイコン処理制御方法は、商用
電源のような安定した電源を有するマイコン内蔵装置の
場合には、格別問題とならないが、太陽電池駆動型の太
陽光採光装置等のように十分に余裕のない電源により駆
動されるマイコン内蔵装置の場合には、次のような問題
が生じる。
By the way, the microcomputer processing control method from the power failure to the recovery from the power failure does not pose a special problem in the case of a microcomputer built-in device having a stable power supply such as a commercial power supply. In the case of a device with a built-in microcomputer that is driven by a power supply that does not have a sufficient margin, such as a solar cell-driven solar lighting device, the following problem occurs.

【0004】例えば、太陽電池駆動型の太陽光採光装置
10は、図6(A)、(B)に示すように、上に凸のド
ーム状のカバー11内に採光プリズム(図示せず)を備
え、この採光プリズムをマイコン12Mを内蔵した制御
装置12の指令を受けて制御される回転駆動装置(図示
せず)により採光プリズムを太陽の位置に応じて適正な
回転角となるように太陽電池13から電力を用いて駆動
するように構成されている。なお、14は太陽電池13
の支持部材、15は給電線である。
[0004] For example, as shown in FIGS. 6 (A) and 6 (B), a solar cell driving type solar lighting device 10 has a lighting prism (not shown) in a dome-shaped cover 11 which is convex upward. A solar driving device (not shown) that controls the light-receiving prism by receiving a command from a control device 12 having a microcomputer 12M so that the light-receiving prism has an appropriate rotation angle in accordance with the position of the sun. 13 to be driven using electric power. 14 is a solar cell 13
Is a power supply line.

【0005】この場合、マイコン内蔵装置の駆動電源は
太陽電池であるから、通常は昼間時に使用されるもので
あるが、その電力は、例えば天候という不安定要素に依
存するものであり、スコールや突然の夕立とか、雪、雲
といった気象条件の変化等(このほか落ち葉等が太陽電
池に載った場合も含む)により、所定の電圧レベル以下
へと供給電圧が急減し、マイコン処理上は停電と見なし
て扱わねばならない状態となるが、このような停電状態
から停電復帰に至る制御の処理が前記のように直ちに通
常モードに切り換える制御方法であると、次のような問
題が生じる。
In this case, since the drive power supply of the microcomputer built-in device is a solar cell, it is normally used in the daytime. However, the power depends on, for example, unstable factors such as the weather, and the squall and Due to sudden changes in weather conditions such as showers, snow and clouds (including the case where fallen leaves etc. are on the solar cell), the supply voltage suddenly drops below a predetermined voltage level. However, if the control process from the power failure state to the recovery from the power failure is the control method of immediately switching to the normal mode as described above, the following problem occurs.

【0006】即ち、停電期間中はマイコン12Mの処理
を予備電源に切り替えてマイコン12Mに内蔵されてい
るデータ等の保存等の基本処理のみ行う低消費電力モー
ド(サブクロックモード)の処理を行って停電復帰に備
えるが、天候の回復等により太陽電池の発電力が回復
し、停電復帰となったときに直ちにマイコン12Mの処
理を通常モード(メインクロックモード)に切り替える
と、回復直後のまだ電力に余裕のない太陽電池から全負
荷に対し給電しなければならないので、再度停電状態に
戻ることになり易い。このような不安定な電源状態が繰
り返されると、マイコン12Mを構成するIC素子の性
能を低下させる要因となり、マイコン12Mの処理が指
令に追いつかない状態、即ちマイコンの暴走状態の事態
となる恐れがあった。このような事態は、商用電源駆動
型の太陽光採光装置において、同装置を建物に架設する
ときの初期設定を商用電源から臨時の裸線端子を用いて
直接給電するときには、接触不良等により給電が停止
し、同装置のマイコンに対しては停電又は停電復帰の状
態が生ずるので、このような場合にも、マイコン処理に
ついて何らかの保護がされていないと、上記と同様にマ
イコンが暴走する恐れがあった。
That is, during the power failure period, the processing of the microcomputer 12M is switched to the standby power supply, and the processing of the low power consumption mode (sub clock mode) in which only the basic processing such as the storage of the data and the like built in the microcomputer 12M is performed. To prepare for power recovery, if the power of the solar cell recovers due to the recovery of the weather, etc., and the processing of the microcomputer 12M is switched to the normal mode (main clock mode) immediately after the power recovery, the power is still restored immediately after recovery. Since it is necessary to supply power to all loads from a solar cell with no margin, it is easy to return to a power outage state again. If such an unstable power supply state is repeated, this may cause a decrease in the performance of the IC elements constituting the microcomputer 12M, and may cause a state in which the processing of the microcomputer 12M cannot keep up with the command, that is, a runaway state of the microcomputer. there were. In such a situation, in a commercial power supply-driven solar lighting device, when the device is initially installed in a building and the power is directly supplied from a commercial power supply using a temporary bare wire terminal, the power is supplied due to poor contact or the like. Stops, and the microcomputer of the same device goes into a power outage or power outage recovery state.In such a case, if there is no protection for the microcomputer processing, the microcomputer may run out of control as described above. there were.

【0007】本発明は、このような十分に余裕のない電
源により駆動されるマイコン内蔵装置に適用される電源
制御装置を提供することを目的とする。
An object of the present invention is to provide a power supply control device applied to such a microcomputer built-in device driven by a power supply having a sufficient margin.

【0008】[0008]

【課題を解決するための手段】本発明の電源制御装置
は、上記課題を解決するために、マイコンを内蔵し、通
常モードと、この通常モードより少ない消費電力で動作
する低消費電力モードとを備えた電源制御装置におい
て、電源の出力状態を電気信号の形で検出する電源状態
検出機能と、この電源状態検出機能の電気信号に基づき
停電か否かを判定する停電判定機能と、停電判定機能の
判定結果に基づき所定の処理を行う停電復帰処理機能と
を備え、前記電源状態検出機能の電気信号に基づいて、
前記停電判定機能により停電を判定したときは、前記停
電復帰処理機能により所定の停電復帰待機時間中はマイ
コンを低消費電力モードに切り換え、前記停電復帰待機
時間が経過したときには、停電復帰がされたと見なして
通常モードに切り換えるように構成した。
In order to solve the above-mentioned problems, a power supply control device according to the present invention has a built-in microcomputer and includes a normal mode and a low power consumption mode that operates with less power than the normal mode. A power supply control device provided with a power supply state detection function for detecting an output state of a power supply in the form of an electric signal; a power failure determination function for determining whether or not a power failure has occurred based on the electric signal of the power supply state detection function; and a power failure determination function. Power failure recovery processing function to perform predetermined processing based on the determination result of, based on the electric signal of the power state detection function,
When the power failure is determined by the power failure determination function, the microcomputer is switched to the low power consumption mode during the predetermined power failure recovery standby time by the power failure recovery processing function, and when the power failure recovery standby time has elapsed, the power failure recovery is performed. The system was configured to switch to the normal mode in consideration of this.

【0009】また、これに代え、前記電源状態検出機能
の電気信号に基づいて、前記停電判定機能により第1次
の停電の判定をしたときは、前記停電復帰処理機能によ
り、所定の停電復帰待機時間中は低消費電力モードに切
り換え、前記停電復帰待機時間が経過したときは、再度
前記電源状態検出機能と停電判定機能とを作動し、第2
次の停電の判定を行い前者の電気信号に基づき停電でな
いとの判定、即ち停電復帰と後者が判定したときは、停
電復帰処理機能により通常モードに切り換えるように構
成してもよい。
Alternatively, when a primary power failure is determined by the power failure determination function based on the electric signal of the power supply state detection function, a predetermined power failure recovery standby is performed by the power failure recovery processing function. During the time period, the mode is switched to the low power consumption mode, and when the standby time for recovery from power failure has elapsed, the power state detection function and the power failure determination function are operated again,
When the next power failure is determined and the power failure is not determined based on the former electric signal, that is, when the power failure recovery is determined by the latter, the power failure recovery processing function may be used to switch to the normal mode.

【0010】この場合、前記停電判定機能による第1次
又は第2次の停電の判定又は停電復帰の判定は、前記電
源状態検出機能からの1回又は複数回の検出信号に基づ
いて行うようにすればよい。また、前記電源状態検出機
能からの複数回の検出信号に基づき、前記停電判定機能
が第1次又は第2次の停電又は停電復帰の判定を行うと
きは、複数回の検出信号中に停電又は停電復帰と判定す
る検出信号が多数あることによって判定するようにして
もよいし、或いは、これに代え、複数回の検出信号中に
停電又は停電復帰と判定する検出信号が検出時間中に連
続して所定回数(所定時間)生じたことによって判定す
るようにしてもよい。さらに、前記の電源状態検出機能
からの電気信号に基づいて、前記停電判定機能が第1次
又は第2次の停電又は停電復帰と判定するときは、前記
検出動作と判定動作とを所定時間継続して行って判定す
るようにしてもよい。なお、これらの各制御方法は、各
種電源により駆動され、採光部に採光レンズのほか反射
ミラー等を用いる各種の太陽光採光装置や、採光部に採
光レンズが配置される太陽電池駆動型の太陽光採光装置
に適用することは、極めて効果的である。
In this case, the primary or secondary power failure determination or the power failure recovery determination by the power failure determination function is performed based on one or more detection signals from the power supply state detection function. do it. Further, based on a plurality of detection signals from the power supply state detection function, when the power outage determination function performs a primary or secondary power outage or power outage recovery determination, during a plurality of detection signals, The detection may be performed based on the presence of a large number of detection signals for determining that the power failure has been recovered, or alternatively, the detection signal for determining that the power failure or the recovery from the power failure has been continuously performed during the detection time during a plurality of detection signals. Alternatively, the determination may be made based on occurrence of a predetermined number of times (predetermined time). Further, when the power outage judging function judges a primary or secondary power outage or power outage recovery based on an electric signal from the power state detecting function, the detecting operation and the judging operation are continued for a predetermined time. Alternatively, the determination may be performed. In addition, each of these control methods is driven by various power supplies, various types of solar lighting devices using a reflecting mirror or the like in addition to a lighting lens in a lighting unit, or a solar cell driven solar device in which a lighting lens is disposed in a lighting unit. It is extremely effective to apply it to a light lighting device.

【0011】上記電源制御装置による制御によると、停
電と判定された後、所定の待機時間はマイコンを強制的
に低消費電力モードに切り換えるようにしたので、短時
間の間に電源が停電と停電復帰を繰り返す事態が生じて
も、その間は待機時間となっているためマイコンが暴走
する等の好ましくない動作は生じず、停電復帰後に通常
モードへ円滑に移行することができる。さらに、待機時
間経過後、再度停電復帰を判定するようにすれば、停電
復帰後の通常モードへの移行を、さらに、円滑に行うこ
とができる。
According to the control by the power supply control device, the microcomputer is forcibly switched to the low power consumption mode for a predetermined standby time after the power failure is determined. Even if the return is repeated, an undesired operation such as runaway of the microcomputer does not occur due to the standby time during that period, and the mode can smoothly shift to the normal mode after the recovery from the power failure. Further, if the recovery from the power failure is determined again after the elapse of the standby time, the transition to the normal mode after the recovery from the power failure can be performed more smoothly.

【0012】[0012]

【発明の実施の形態】以下、図1乃至図5に示す一実施
の形態により本発明を具体的に説明する。図1は本発明
の電源制御装置の一例を示すブロック図で、同装置を太
陽光採光装置に適用した場合について説明する。同図に
おいて、1は例えば太陽光採光装置の制御装置を構成す
るマイコン(マイクロコンピュータ)である。2は電源
装置で、太陽電池より成る。3は電源状態検出機能で、
例えば電圧検出回路等の電気信号検出機能より成り、電
源装置2の出力電圧等の電気信号を検出して、この検出
信号Eをマイコン1に伝える。4は負荷で、例えば太陽
光採光装置の場合は、同装置を構成する採光プリズム
(図示せず)を駆動するモータやギヤ機構等より成る回
転駆動装置や給電用の電路がこれに該当する。5は停電
判定機能で、例えば基準電気信号との比較回路より成り
電源状態検出機能3から与えられる電気信号Eを所定の
基準電気信号と比較して停電か否かを判定し、判定信号
Fを出す。なお、電源状態検出機能3が出す電気信号E
としては、電圧信号を用いるのが望ましく、例えばマイ
コンで作動されるモータの基準電圧である5Vを基準電
圧とすると、電源状態検出機能3により電源装置2の出
力電圧が5V以下となったことが検出されたときは、停
電判定機能5で停電と判定するように設定しておけば良
い。なお、マイコン1の負荷によっては上記電気信号E
として電流を用いることもできる。また、図1では、説
明の便宜上、次に述べる停電判定機能5と停電復帰処理
機能6をハードウェアで行うものとして記載したが、こ
れらの機能はマイコン1内にこれらの機能を実行するプ
ログラムを内蔵することによりソフトウェアで処理でき
る機能であることは勿論である。6は停電復帰処理機能
で、例えばカウンタ、タイマ等より成り、停電復帰後の
マイコンによる所定の処理手順を定めるもので、所定の
処理指令Gを出すものである。次に、図2乃至図4の流
れ図及び図5に示すタイムチャートのほか図1をも参照
して本発明の各実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to one embodiment shown in FIGS. FIG. 1 is a block diagram illustrating an example of a power supply control device according to the present invention. A case where the device is applied to a solar lighting device will be described. In the figure, reference numeral 1 denotes a microcomputer (microcomputer) constituting, for example, a control device of a sunlight collecting device. Reference numeral 2 denotes a power supply device, which is composed of a solar cell. 3 is a power state detection function,
For example, it has an electric signal detection function such as a voltage detection circuit, detects an electric signal such as an output voltage of the power supply device 2, and transmits the detection signal E to the microcomputer 1. Reference numeral 4 denotes a load, for example, in the case of a sunlight lighting device, a rotary driving device including a motor and a gear mechanism for driving a lighting prism (not shown) constituting the device, and a power supply electric circuit. Reference numeral 5 denotes a power failure judging function, which comprises, for example, a comparison circuit with a reference electric signal, compares an electric signal E provided from the power supply state detecting function 3 with a predetermined reference electric signal to judge whether or not there is a power failure, and outputs a judgment signal F put out. Note that the electric signal E output from the power state detection function 3
It is preferable to use a voltage signal. For example, when a reference voltage of 5 V, which is a reference voltage of a motor operated by a microcomputer, is set as a reference voltage, the output voltage of the power supply device 2 becomes 5 V or less by the power supply state detection function 3. When a power failure is detected, the power failure determination function 5 may be set to determine a power failure. Note that, depending on the load on the microcomputer 1, the electric signal E
Can be used as the current. Also, in FIG. 1, for the sake of convenience, the power failure determination function 5 and the power failure recovery processing function 6 described below are described as being performed by hardware, but these functions are stored in the microcomputer 1 by a program that executes these functions. Of course, it is a function that can be processed by software by incorporating it. Reference numeral 6 denotes a power failure recovery processing function, which comprises, for example, a counter, a timer, and the like, which determines a predetermined processing procedure by the microcomputer after the recovery from the power failure, and issues a predetermined processing command G. Next, embodiments of the present invention will be described with reference to FIG. 1 in addition to the flowcharts of FIGS. 2 to 4 and the time charts shown in FIG.

【0013】第1の実施の形態:本実施の形態の流れ図
を図2に示す。本実施の形態の制御は図5(A)に示す
ように、時点t1において、停電の判定(図1の停電判
定機能5の判定信号Fによるもので、これを第1次の停
電の判定という。以下同じ)が行われたときは(ST
1、ST2のYES)、その後、所定の停電復帰待機時
間THが経過するまでは、マイコン1をサブクロックモ
ード(低消費電力モード)に切り替えて通常処理は行わ
ない状態で待機させ、上記待機時間THが経過した時点
2においては(ST6のYES)、再度の停電又は停
電復帰の判定(第2次の判定という)を行うことなく
「停電復帰」と見なして、破線で示すように時点t2
停電復帰処理機能6が通常モードへの切り換え指令Gを
出し、マイコン1をメインクロックモードに切り換えて
通常モードへ移行する(ST7)ようにした制御方法で
ある。この場合の停電復帰待機時間THとしては、例え
ば1分乃至3分の時間が適当である。なお、ステップS
T2のNO→ステップST3→ステップST4の各ステ
ップは、停電状態になる前に予め行なわれる停電復帰待
機時間THのセットを行うためのステップである。ま
た、通常モード移行後も停電の判定がされる毎に、図2
の流れ図のステップに基づき同様な制御を行うものであ
る。
First Embodiment: FIG. 2 shows a flow chart of this embodiment. As shown in FIG. 5 (A), the control of the present embodiment is based on the determination of the power failure at the time point t 1 (based on the determination signal F of the power failure determination function 5 in FIG. (The same applies hereinafter) when (ST
1. After that, the microcomputer 1 is switched to the sub-clock mode (low power consumption mode) to wait in a state where normal processing is not performed until the predetermined power failure recovery standby time T H elapses. in time t 2 to time T H has elapsed (YES in ST6) is regarded as a "power failure recovery" without performing the determination again power failure or power failure recovery (referred to as second-order determination), as shown by a broken line power failure recovery processing function at t 2 6 issues an switching instruction G to the normal mode, switches the microcomputer 1 to the main clock mode is a control method which is adapted to shift to the normal mode (ST7). The power recovery wait time T H in this case, for example, 1 minute to 3 minutes of time is suitable. Step S
T2 of NO → each step of the step ST3 → Step ST4 is a step for performing pre-set of the power failure recovery wait time T H which is performed before the power failure condition. In addition, every time the power failure is determined even after the transition to the normal mode, FIG.
The same control is performed based on the steps in the flowchart of FIG.

【0014】第2の実施の形態:本実施の形態の流れ図
を図3に示す。本実施の形態の制御は、図3の流れ図及
び図5(B)に示すように時点t1における第1次の停
電の判定がされた後、停電復帰待機時間THが経過する
までの制御(ST11→ST12のYES→ST16)
は、第1の実施の形態と全く同等である。本実施の形態
の制御が第1の実施の形態の制御と相違する点は、停電
復帰時間THが経過した時点t2において、直ちにマイコ
ンをメインクロックモードには切り換えず、第2次の判
定、即ち、図1の電源状態検出機能3の出力に基づいて
再度の判定を行う点で、この第2次の判定において、停
電判定機能5が「停電でない」との判定、即ち「停電復
帰」の判定をしたときに限り(ST17のYES)、例
えば、時点t3において、停電復帰処理機能6から切り
換え指令Gが出され、マイコン1をメインクロックモー
ドに切り換え、通常モードへと移行させる(ST1
8)。なお、停電復帰の判定がされないときは(ST1
7のNO)、停電復帰待機中の動作を一旦クリアする
(ST19)制御を行う。その他の動作は第1の実施の
形態と同様であるので再述しない。
Second Embodiment: FIG. 3 shows a flowchart of this embodiment. Control of the present embodiment, after the determination of the primary power failure at time t 1 as shown in the flow diagram and illustration of FIG. 3 5 (B), control up power recovery waiting time T H has elapsed (ST11 → ST12 YES → ST16)
Is completely equivalent to the first embodiment. That control of this embodiment is different from the control of the first embodiment, at the time t 2 when the power failure recovery time T H has elapsed, not immediately switched to the main clock mode microcomputer, second-order determination In other words, in the second determination, the power failure determination function 5 determines that “no power failure”, that is, “power failure recovery” in the second determination, in that the determination is made again based on the output of the power supply state detection function 3 in FIG. only when the determination (YES in ST17), for example, at time t 3, the switching command G is issued from the power failure recovery processing function 6, switching the microcomputer 1 to the main clock mode shifts to the normal mode (ST1
8). If the power recovery is not determined (ST1)
7), control is performed to temporarily clear the operation during standby for recovery from power failure (ST19). Other operations are the same as in the first embodiment, and will not be described again.

【0015】第3の実施の形態:本実施の形態の流れ図
を図4に示す。本実施の形態の制御の特徴を、要約して
言えば、停電復帰の判定を行うときに、図1に示す停電
判定処理機能中のカウンタとタイマを用いて、停電復帰
の複数回の検出信号によりサンプリングチェックを行
い、停電復帰の判定を行うようにした手法であるという
点である。この手順を、もう少し具体的に言えば、サン
プリングチェックの回数としては、例えば15回という
奇数回を用い、例えば15回のサンプリングチェックを
行う場合には、それらの中の多数回(8回)以上のサン
プリングチェックの結果が停電復帰を示すものである場
合は、停電復帰との判定を行うというように多数決原理
の手法で判定するものである。なお、サンプリングチェ
ックの速度としては、例えば1回/秒のサンプリングチ
ェックを行うのが適当である。この制御のアルゴリズム
を図4のほか、図1も参照して説明すれば、次の通りで
ある。マイコン1中で、電源状態検出機能3で停電状態
の電気信号の検出がされ、停電復帰判定処理が開始しす
ると(ST21)、停電判定機能5と停電復帰処理機能
6において、停電復帰判定のための処理が行われ(ST
22のYES)、停電判定機能5において、停電復帰の
有無の判定がされる毎に、この判定の回数が判定回数
(例えば15回)から0となるまで減算され(ST2
6)その判定回数中の停電復帰とされる、前記確定回数
が基準回数(8回)をオーバし(ST27のYES)、
さらに、電源有の回数が規定回数(8回)以上となった
ときは(ST28のYES)、マイコンのクロックモー
ドをメインモードに切り換えて、通常モードへ移行する
(ST29)。なお、ST27において、停電復帰の確
定回数が基準回数(8回)未満となるときは(ST27
のNO)、停電判定機能により電源有りが確認されたと
きは(ST30のYES)は電源有り回数を加算した後
(ST31)、また、ST30で電源有りが確認されな
いときは(ST30のNO)、そのまま通常モードへは
移行しない。また、ST28で電源有回数が規定回数
(8回)未満となるときは(ST28のNO)、停電復
帰判定は初期化される(ST32)。また、図4中のス
テップST22のNO、ST23、ST24は停電とな
る前に、停電復帰判定のためのサンプリング回数の確定
回数及び電源有りの回数を予めセットしておくためのス
テップである。本制御方法を第1次の判定に適用した場
合のタイムチャートを示すと、図5(C)に示す通りで
ある。
Third Embodiment: FIG. 4 shows a flowchart of this embodiment. To summarize the characteristics of the control of the present embodiment, when determining the recovery from power failure, the counter and the timer in the power failure determination processing function shown in FIG. This is a method in which a sampling check is performed by using the method described above to determine the restoration from a power failure. To describe this procedure a little more specifically, the number of sampling checks is, for example, an odd number of 15 times. For example, when 15 times of sampling checks are performed, a large number (8 times) or more of them is used. If the result of the sampling check indicates that the power failure has been recovered, the determination based on the majority principle is performed, such as determining that the power failure has been recovered. As a sampling check speed, it is appropriate to perform, for example, one sampling check per second. The algorithm of this control will be described below with reference to FIG. 1 in addition to FIG. In the microcomputer 1, when an electric signal in a power failure state is detected by the power supply state detection function 3 and the power failure recovery determination processing starts (ST21), the power failure determination function 5 and the power failure recovery processing function 6 perform a power failure recovery determination. Is performed (ST
22), every time the power failure determination function 5 determines whether or not there is a power failure recovery, the number of times of the determination is reduced from the number of determinations (for example, 15) to 0 (ST2).
6) The determined number of times, which is determined as the power failure recovery during the number of times of determination, exceeds the reference number of times (eight times) (YES in ST27),
Further, when the number of times of power supply becomes equal to or more than the specified number (eight times) (YES in ST28), the clock mode of the microcomputer is switched to the main mode, and the mode is shifted to the normal mode (ST29). In ST27, if the number of times of restoration from power failure is less than the reference number (8) (ST27)
NO), when the presence of power is confirmed by the power failure determination function (YES in ST30), the number of times of presence of power is added (ST31). When the presence of power is not confirmed in ST30 (NO in ST30), It does not shift to the normal mode as it is. When the number of times of power supply is less than the specified number of times (eight times) in ST28 (NO in ST28), the power failure recovery determination is initialized (ST32). In addition, NO, ST23, and ST24 of step ST22 in FIG. 4 are steps for setting the number of times of determination of the number of samplings and the number of times of power supply before power failure recovery determination before the power failure. FIG. 5C shows a time chart when this control method is applied to the primary determination.

【0016】第4の実施の形態:第3の実施の形態では
停電又は停電復帰の判定を第1、第2の実施の形態のよ
うに1回のチェックで判定しないで、複数回のサンプリ
ングチェックを行って判定するものであった。本実施の
形態では、図5(D)のタイムチャートで示すように、
停電状態が検出された時点t1から、所定区間(TK)継
続して停電復帰の判定を継続して行い、停電復帰の確定
判定を行うようにした制御である。なお、本実施の形態
のアルゴリズムは第3の実施の形態のものと類似するの
で、その流れ図を図示するのは省略する。
Fourth Embodiment: In the third embodiment, the judgment of the power failure or the recovery from the power failure is not made by one check as in the first and second embodiments, but is performed by a plurality of sampling checks. Was performed to make the determination. In the present embodiment, as shown in the time chart of FIG.
The control is such that, from the time point t 1 when the power failure state is detected, the determination of the power failure recovery is continuously performed for a predetermined section (T K ), and the determination of the power failure recovery is made. It should be noted that the algorithm of the present embodiment is similar to that of the third embodiment, so that the flow chart is omitted from the drawing.

【0017】その他の実施の形態:上記第1乃至第4の
実施の形態は本発明の基本的な実施の形態を示すもので
あり、本発明はこれらの実施の形態を組合わせて各種の
変形が考えられる。例えば、第2の実施の形態では時点
1で行う停電判定を1回のサンプリングチェックで行
う場合を示したが、この判定を第3の実施の形態で示す
ような複数回のサンプリングチェックに基づいて行い、
さらに待機時間TH終了後の時点t4における停電復帰の
判定も複数回のサンプリングチェックに基づいて行う方
法が考えられる(図5(E))。また、これに代え時点
1で行う停電の判定は1回のサンプリングチェックで
判定し、時点t2における停電復帰の判定は複数回のサ
ンプリングチェックに基づいて行う方法(図5
(F))、さらに、時点t1で行う停電の判定を複数回
のサンプリングチェックで行い、時点t2における停電
復帰の判定を1回のサンプリングチェックで行う方法
(図5(G))としても良い。また、第4の実施の形態
におけるチェックを行う所定区間TKは、第1の実施の
形態における待機期間THと一致させても良いし、相違
させても良い。
Other Embodiments: The above-described first to fourth embodiments show basic embodiments of the present invention, and the present invention combines these embodiments with various modifications. Can be considered. For example, although in the second embodiment shows the case of performing the power failure detection performed at the time t 1 by one sampling check, based on multiple sampling checks shown the determination in the third embodiment Do
Furthermore a method of performing, based on the sampling check of the power failure recovery determination even multiple of the waiting time T H after the end time t 4 of conceivable (Fig. 5 (E)). Alternatively, the power failure determination at time t 1 is determined by one sampling check, and the recovery from power failure at time t 2 is determined based on a plurality of sampling checks (FIG. 5).
(F)) Further, a method of judging a power failure performed at the time t 1 by a plurality of sampling checks and determining recovery from the power failure at the time t 2 by a single sampling check (FIG. 5 (G)) may be used. good. Further, the predetermined section T K in which the check is performed in the fourth embodiment may be equal to or different from the standby period T H in the first embodiment.

【0018】本発明の電源制御装置によれば、上記各実
施の形態とも、停電状態が検出された後、所定の待機時
間を経た後、マイコンを通常処理モードへ移行するよう
にしたので、不安定な電源状態でのマイコンの処理状態
へ移行される確率は大幅に減少し、マイコンの暴走は防
止できる。さらに、待機時間経過後、再度停電復帰を判
定するようにすれば、停電復帰後のメインクロックモー
ドへの移行を、さらに、円滑に行うことができる。
According to the power supply control device of the present invention, in each of the above-described embodiments, the microcomputer shifts to the normal processing mode after a predetermined standby time has elapsed after the detection of the power failure state. The probability of shifting to the processing state of the microcomputer in a stable power supply state is greatly reduced, and runaway of the microcomputer can be prevented. Furthermore, if the recovery from the power failure is determined again after the elapse of the standby time, the transition to the main clock mode after the recovery from the power failure can be performed more smoothly.

【0019】なお、上記の実施の形態では、通常モード
をメインクロックを用いたモードで、低消費電力モード
をサブクロック(メインクロックよりも低周波数)を用
いたモードで説明したが、本発明は、複数のクロックを
備えないものにおいて適用しても構わない。例えば、低
消費電力モードでは、通常モードよりも処理数等を減ら
すことによって低電力で動作するようにして、消費電力
の異なる複数のモードを備えたものであれば、本発明を
適用することが可能である。さらに、上記実施の形態の
太陽光採光装置としては、図6に示すように採光部に採
光プリズムを配置した太陽電池駆動型の太陽光採光装置
の場合で説明したが、本発明が適用される太陽光採光装
置としては、この構造のものには限定されない。即ち、
電源も太陽電池だけでなく、商用電源(交流、直流)も
含む電源で駆動され、採光レンズあるいは反射ミラー等
を有する採光部、前記レンズあるいはミラー等を駆動す
る駆動装置、設置場所の物理的位置と設置状態の方位及
び日時に基づいて前記駆動装置を制御する制御装置を備
えた各種の太陽光採光装置に適用できる。この場合も、
太陽光採光装置の電源の出力が、太陽光採光装置の所要
機構を駆動するのに不十分な電力となったときは、これ
を停電と判定し、前記所要機構を駆動するのに十分とな
ったときは、停電復帰と判定するように制御すればよ
い。
In the above embodiment, the normal mode has been described as the mode using the main clock, and the low power consumption mode has been described as the mode using the sub clock (lower frequency than the main clock). Alternatively, the present invention may be applied to a case where a plurality of clocks are not provided. For example, in the low power consumption mode, the present invention can be applied to a case where a plurality of modes having different power consumptions are provided by operating at low power by reducing the number of processes and the like as compared with the normal mode. It is possible. Further, as the solar lighting device of the above-described embodiment, a solar cell driven solar lighting device in which a lighting prism is disposed in a lighting unit as illustrated in FIG. 6 has been described, but the present invention is applied. The solar lighting device is not limited to the one having this structure. That is,
The power source is driven not only by the solar cell but also by a power source including a commercial power source (AC, DC), a lighting unit having a lighting lens or a reflecting mirror, a driving device for driving the lens or the mirror, and a physical position of an installation location. The present invention can be applied to various types of solar lighting devices including a control device that controls the driving device based on the orientation and date and time of the installation state. Again,
When the output of the power supply of the solar lighting device becomes insufficient power to drive a required mechanism of the solar lighting device, it is determined that this is a power outage, and is sufficient to drive the required mechanism. In such a case, the control may be performed so as to determine the recovery from the power failure.

【0020】[0020]

【発明の効果】本発明の電源制御装置は、上記のように
制御するので、次のような優れた効果を有する。 (1)請求項1に記載のように、停電の判定がされた
後、所定の停電復帰待機時間はマイコンの低周波数モー
ドである低消費電力モードに一旦切り換え、上記時間経
過後に、高周波数モードである通常モードに切り換える
ようにすると、停電直後の一番電源が不安定となり易い
時間帯のマイコンの処理を電力消費の少ない低消費電力
モードで行うことになるので、容量に余裕のない電源に
おいても停電から停電復帰に至るマイコンの処理をマイ
コンを暴走させることなく、円滑に通常モードへと移行
させることができる。 (2)請求項2に記載のように、第1次の停電判定が行
われて停電復帰待機時間が経過した後に、第2次の停電
判定を行い、停電の復帰が確認された場合に限り、マイ
コンを高周波数である通常モードに切り換えるようにす
ると、電源の出力状態が安定したことを確認してからマ
イコンを通常モードへ移行させるので、この移行を請求
項1のものに比べ、より確実に行うことができる。 (3)請求項3に記載のように、第1次の停電判定を1
回又は複数回のサンプリングチェック信号で行う場合
は、1回のサンプリングチェックの場合は判定を迅速に
行うことができ、一方、複数回のサンプリングチェック
の場合には、1回のサンプリングチェック信号で行うよ
りも、停電の判定の精度を向上させることができる。 (4)請求項4に記載のように、第2次の停電判定を1
回又は複数回のサンプリングチェック信号で行う場合
は、1回のサンプリングチェックの場合は判定を迅速に
行うことができ、一方、複数回のサンプリングチェック
の場合には、1回のサンプリングチェック信号で行うよ
りも、停電の判定の精度を向上させることができる。 (5)請求項5に記載のように、第1次又は第2次の停
電又は停電復帰の判定を複数回のサンプリングチェック
で行うときに多数決原理を用いて行うと、簡単な演算処
理で、上記の判定を行うことができる。 (6)請求項6に記載のように、所定チェック時間中停
電又は停電復帰の検出信号が連続して所定回数(所定時
間)に到達したときに、停電又は停電復帰と判定するよ
うにすると、精度の高い判定を短時間に行うことができ
る。 (7)請求項7に記載のように、停電又は停電復帰の判
定を継続して行うようにすると、請求項1又は請求項2
に記載のように停電復帰待機時間を強制的に設け、その
間は判定動作を行わないものに比べ、電源の停電復帰状
態を迅速に知る確率が増大すると共に、停電復帰待機時
間の設定が短時間であったときに、第2次の停電の判定
でも停電復帰が確認できないような電源状態のときも、
第1次の停電後の停電の判定動作を継続して行っている
ので、停電復帰の時機を一番タイミング良く検出し、マ
イコンを通常モードへと円滑に移行させることができ
る。 (8)請求項8に記載のように、本発明の電源制御装置
を反射ミラー使用のものも含む各種の太陽光採光装置の
制御装置に内蔵したマイコンの処理に適用した場合に
は、電源の出力状態が停電相当の状態になったときに、
この停電相当の状態から停電復帰に至るマイコンの処理
の切り換えをマイコンを暴走させることなく、迅速、的
確に、かつ円滑に行うことができる。 (9)請求項9に記載のように、本発明の電源制御装置
を太陽電池駆動型の太陽光採光装置の制御装置に内蔵し
たマイコンの処理に適用した場合には、電源となる太陽
電池が気象条件等によって、その出力状態が大幅に変化
し、停電相当の状態になったときに、この停電相当の状
態から停電復帰に至るマイコンの処理の切り換えをマイ
コンを暴走させることなく、迅速、的確に、かつ円滑に
行うことができる。
Since the power supply control device of the present invention performs control as described above, it has the following excellent effects. (1) As described in claim 1, after a power failure is determined, a predetermined power failure recovery standby time is temporarily switched to a low power consumption mode, which is a low frequency mode of the microcomputer, and after a lapse of the time, the microcomputer is switched to a high frequency mode. If the power supply is switched to the normal mode, the processing of the microcomputer during the time when the power supply is most likely to be unstable immediately after the power failure will be performed in the low power consumption mode with low power consumption. Also, the processing of the microcomputer from the power failure to the recovery from the power failure can be smoothly shifted to the normal mode without causing the microcomputer to run away. (2) As described in claim 2, after the primary power failure determination is performed and the power failure recovery standby time has elapsed, the secondary power failure determination is performed, and only when the recovery from the power failure is confirmed. If the microcomputer is switched to the high-frequency normal mode, the microcomputer is shifted to the normal mode after confirming that the output state of the power supply is stabilized. Can be done. (3) As described in claim 3, the first power outage determination is made by 1
In the case of performing a single or multiple sampling check signal, the determination can be performed quickly in the case of a single sampling check, while in the case of a multiple sampling check, the determination is performed with a single sampling check signal. Rather, the accuracy of the power outage determination can be improved. (4) As described in claim 4, the second power outage judgment is made by 1
In the case of performing a single or multiple sampling check signal, the determination can be made quickly in the case of a single sampling check, while in the case of a multiple sampling check, the determination is performed with a single sampling check signal. Rather, the accuracy of the power outage determination can be improved. (5) As described in claim 5, when the primary or secondary power outage or power outage recovery is determined by a plurality of sampling checks using the majority rule, simple arithmetic processing can be performed. The above determination can be made. (6) As described in claim 6, when the power failure or power failure recovery detection signal continuously reaches a predetermined number of times (predetermined time) during the predetermined check time, the power failure or power failure recovery is determined. A highly accurate determination can be made in a short time. (7) As described in claim 7, when the determination of the power failure or the recovery from the power failure is continuously performed, the claims 1 or 2 are provided.
The power failure recovery standby time is forcibly provided as described in, and the probability of quickly knowing the power failure recovery state of the power supply is increased as compared with the case where the determination operation is not performed, and the setting of the power failure recovery standby time is short. In the case of the power supply state where the recovery from the power failure cannot be confirmed even in the second power failure determination,
Since the determination operation of the power failure after the first power failure is continuously performed, the timing of recovery from the power failure can be detected with the best timing, and the microcomputer can be smoothly shifted to the normal mode. (8) As described in claim 8, when the power supply control device of the present invention is applied to processing of a microcomputer built in a control device of various types of sunlight collecting devices including those using a reflection mirror, a power supply control device is provided. When the output status becomes equivalent to a power failure,
The switching of the processing of the microcomputer from the state corresponding to the power failure to the recovery from the power failure can be performed quickly, accurately, and smoothly without causing the microcomputer to run away. (9) As described in claim 9, when the power supply control device of the present invention is applied to processing of a microcomputer built in a control device of a solar cell driving type solar lighting device, a solar cell serving as a power supply is provided. When the output state changes drastically due to weather conditions and becomes a state equivalent to a power failure, switching of the processing of the microcomputer from the state corresponding to the power failure to the recovery from the power failure can be performed quickly and accurately without causing the microcomputer to run away. And smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電源制御装置の回路構成の一例を示す
ブロック図である。
FIG. 1 is a block diagram illustrating an example of a circuit configuration of a power supply control device according to the present invention.

【図2】本発明の第1の実施の形態の動作を示す流れ図
である。
FIG. 2 is a flowchart showing an operation of the first exemplary embodiment of the present invention.

【図3】本発明の第2の実施の形態の動作を示す流れ図
である。
FIG. 3 is a flowchart showing an operation of the second exemplary embodiment of the present invention.

【図4】本発明の第3の実施の形態の動作を示す流れ図
である。
FIG. 4 is a flowchart showing an operation of the third exemplary embodiment of the present invention.

【図5】本発明の各実施の形態における停電及び停電復
帰のタイミングの一例を示すもので、同図(A)は第1
の実施の形態の場合を、同図(B)は第2の実施の形態
の場合を、同図(C)は第3の実施の形態の場合を、同
図(D)は第4の実施の形態の場合を、同図(E)〜
(G)は夫々その他の実施の形態の場合を示すものであ
る。
FIG. 5 shows an example of power failure and power failure recovery timing in each embodiment of the present invention.
(B) shows the case of the second embodiment, FIG. (C) shows the case of the third embodiment, and FIG. (D) shows the case of the fourth embodiment. In the case of the form of FIG.
(G) shows the cases of the other embodiments.

【図6】本発明を適用するのが最適と思われる太陽電池
駆動型太陽光採光装置の構成例を示すもので、同図
(A)は正面図、同図(B)は側面図である。
FIGS. 6A and 6B show an example of the configuration of a solar cell-driven solar lighting device which is considered to be most suitable for applying the present invention. FIG. 6A is a front view, and FIG. 6B is a side view. .

【符号の説明】[Explanation of symbols]

1:マイコン(マイクロコンピュータ) 2:電源装置 3:電源状態検出機能 4:負荷 5:停電判定機能 6:停電復帰処理機能 10:太陽光採光装置 12:制御装置 12M:マイコン(マイクロコンピュータ) 13:太陽電池 1: microcomputer (microcomputer) 2: power supply device 3: power supply state detection function 4: load 5: power failure judgment function 6: power failure recovery processing function 10: sunlight lighting device 12: control device 12M: microcomputer (microcomputer) 13: Solar cell

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 マイコンを内蔵し、通常モードと、この
通常モードより少ない消費電力で動作する低消費電力モ
ードとを備えた電源制御装置において、 電源の出力状態を電気信号の形で検出する電源状態検出
機能と、この電源状態検出機能の電気信号に基づき停電
か否かを判定する停電判定機能と、停電判定機能の判定
結果に基づき所定の処理を行う停電復帰処理機能とを備
え、 前記電源状態検出機能の電気信号に基づいて、前記停電
判定機能により停電を判定したときは、前記停電復帰処
理機能により所定の停電復帰待機時間中は低消費電力モ
ードに切り換え、前記停電復帰待機時間が経過したとき
には、停電復帰がされたと見なして通常モードに切り換
えるようにしたことを特徴とする電源制御装置。
1. A power supply device incorporating a microcomputer and having a normal mode and a low power consumption mode operating with less power consumption than the normal mode, wherein a power supply for detecting an output state of the power supply in the form of an electric signal. A power failure determination function that determines whether or not a power failure has occurred based on an electric signal of the power supply state detection function; and a power failure recovery processing function that performs predetermined processing based on a determination result of the power failure determination function. When a power failure is determined by the power failure determination function based on the electric signal of the state detection function, the power failure recovery processing function switches to a low power consumption mode during a predetermined power failure recovery standby time, and the power failure recovery standby time elapses. The power control device is characterized in that when the power failure is restored, it is considered that the power failure has been restored, and the mode is switched to the normal mode.
【請求項2】 マイコンを内蔵し、通常モードと、この
通常モードより少ない消費電力で動作する低消費電力モ
ードとを備えた電源制御装置において、 電源の出力状態を電気信号の形で検出する電源状態検出
機能と、この電源状態検出機能の電気信号に基づき、停
電か否かを判定する停電判定機能と、この停電判定機能
による判定結果に基づき所定の処理を行う停電復帰処理
機能とを備え、 前記電源状態検出機能の電気信号に基づいて、前記停電
判定機能により第1次の停電の判定をしたときは、前記
停電復帰処理機能により、所定の停電復帰待機時間中は
低消費電力モードに切り換え、前記停電復帰待機時間が
経過したときは、再度前記電源状態検出機能と停電判定
機能とを作動し、第2次の停電の判定を行い前者の電気
信号に基づき停電でないとの判定、即ち停電復帰と後者
が判定したときは、停電復帰処理機能により通常モード
に切り換えるようにしたことを特徴とする電源制御装
置。
2. A power supply device incorporating a microcomputer and having a normal mode and a low power consumption mode operating with less power consumption than the normal mode, wherein a power supply for detecting an output state of the power supply in the form of an electric signal. A state detection function, based on an electric signal of the power supply state detection function, a power failure determination function of determining whether or not a power failure, and a power failure recovery processing function of performing a predetermined process based on a determination result by the power failure determination function, When a primary power failure is determined by the power failure determination function based on the electric signal of the power supply state detection function, the power failure recovery processing function switches to a low power consumption mode during a predetermined power failure recovery standby time. When the standby time for recovery from power failure has elapsed, the power state detection function and the power failure determination function are activated again to determine a second power failure and to perform a power failure based on the former electric signal. Determining that there is no, namely power failure recovery and when the latter is determined, the power supply control device which is characterized in that the switched to the normal mode by power failure recovery processing function.
【請求項3】 前記停電判定機能による第1次の停電の
判定は、前記電源状態検出機能からの1回又は複数回の
検出信号に基づいて行うようにしたことを特徴とする請
求項1又は2に記載の電源制御装置。
3. The power failure determination function according to claim 1, wherein the primary power failure determination is performed based on one or more detection signals from the power supply state detection function. 3. The power supply control device according to 2.
【請求項4】 前記停電復帰待機時間経過後に行なわれ
る前記停電判定機能による第2次の停電又は停電復帰の
判定は、前記電源状態検出機能からの1回又は複数回の
検出信号に基づいて行うようにしたことを特徴とする請
求項2に記載の電源制御装置。
4. A secondary power outage or power outage recovery determination by the power outage determination function performed after the elapse of the power outage recovery standby time is performed based on one or more detection signals from the power state detection function. The power supply control device according to claim 2, wherein:
【請求項5】 前記電源状態検出機能からの複数回の検
出信号に基づき、前記停電判定機能が第1次又は第2次
の停電又は停電復帰の判定を行うときは、複数回の検出
信号中に停電又は停電復帰と判定する検出信号が多数あ
ることによって判定するようにしたことを特徴とする請
求項3又は4に記載の電源制御装置。
5. When the power failure determination function determines a primary or secondary power failure or recovery from a power failure based on a plurality of detection signals from the power supply state detection function, a plurality of detection signals are provided. 5. The power supply control device according to claim 3, wherein the determination is made based on the fact that there are a large number of detection signals for determining power failure or recovery from power failure. 6.
【請求項6】 前記電源状態検出機能からの複数回の検
出信号に基づき、前記停電判定機能が第1次又は第2次
の停電又は停電復帰の判定を行うときは、複数回の検出
信号中に停電又は停電復帰と判定する検出信号が検出時
間中に連続して所定回数(所定時間)生じたことによっ
て判定するようにしたことを特徴とする請求項3又は4
に記載の電源制御装置。
6. The method according to claim 6, wherein the power failure determination function determines a primary or secondary power failure or recovery from the power failure based on a plurality of detection signals from the power supply state detection function. 5. The method according to claim 3, wherein a detection signal for determining a power failure or recovery from the power failure occurs a predetermined number of times (a predetermined time) continuously during the detection time.
The power supply control device according to claim 1.
【請求項7】 前記の電源状態検出機能からの電気信号
に基づいて、前記停電判定機能が第1次又は第2次の停
電又は停電復帰と判定するときは、 前記検出動作と判定動作とを所定時間継続して行って判
定するようにしたことを特徴とする請求項1乃至5のい
ずれかに記載の電源制御装置。
7. When the power outage determination function determines a primary or secondary power outage or power outage recovery based on an electric signal from the power supply state detection function, the detection operation and the determination operation are performed. The power supply control device according to any one of claims 1 to 5, wherein the determination is performed by continuously performing the determination for a predetermined time.
【請求項8】 採光レンズあるいは反射ミラー等を有す
る採光部、前記レンズあるいはミラー等を駆動する駆動
装置、設置場所の物理的位置と設置状態の方位及び日時
に基づいて前記駆動装置を制御する制御装置を備えた太
陽光採光装置において、 前記太陽光採光装置の電源の出力が、前記太陽光採光装
置の所要機構を駆動するのに不十分な電力となったとき
は、これを停電と判定し、前記所要機構を駆動するのに
十分となったときは、停電復帰と判定するようにしたこ
とを特徴とする請求項1乃至7のいずれかに記載の電源
制御装置。
8. A lighting unit having a lighting lens or a reflection mirror, a driving device for driving the lens or the mirror, and a control for controlling the driving device based on the physical position of the installation location, the orientation of the installation state, and the date and time. In a solar lighting device equipped with a device, when the output of the power supply of the solar lighting device is insufficient power to drive the required mechanism of the solar lighting device, it is determined that this is a power outage The power supply control device according to any one of claims 1 to 7, wherein it is determined that a power failure has been restored when the power is sufficient to drive the required mechanism.
【請求項9】 採光部に配置される少なくとも1枚の採
光プリズム、この採光プリズムを駆動する回転駆動装
置、設置場所の地理的位置と設置状態の方位及び日時に
基づいて、前記採光プリズムを太陽の位置に応じた適正
な回転角となるように前記回転駆動装置を制御するマイ
コンを主体とする制御装置、及び前記回転駆動装置、前
記制御装置等に電力を供給する太陽電池を備えた太陽電
池駆動型の太陽光採光装置より成るマイコン内蔵装置に
おいて、 気象条件の変化等(雲の状態、採光部に落ち葉が載って
いる状態等)により前記太陽電池の出力が太陽光採光装
置の所要機構を駆動するのに不十分な電力となったとき
は、これを停電と判定し、前記所要機構を駆動するのに
十分となったときは、停電復帰と判定するようにしたこ
とを特徴とする請求項1乃至7のいずれかに記載の電源
制御装置。
9. At least one daylighting prism disposed in a daylighting unit, a rotary driving device for driving the daylighting prism, and a sunshade based on the geographical position of the installation location, the orientation of the installation state, and the date and time. A control device mainly including a microcomputer that controls the rotation driving device so as to have an appropriate rotation angle according to the position of the device, and a solar cell including a solar cell that supplies power to the rotation driving device, the control device, and the like In a microcomputer built-in device composed of a driving-type solar lighting device, the output of the solar cell is changed according to a change in weather conditions (such as a cloud state or a state where falling leaves are placed on the lighting unit). When the power becomes insufficient to drive, it is determined to be a power failure, and when it becomes sufficient to drive the required mechanism, it is determined to be a power failure recovery. Power control apparatus according to any one of claims 1 to 7 that.
JP10062037A 1998-02-27 1998-02-27 Power source controller Pending JPH11249767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10062037A JPH11249767A (en) 1998-02-27 1998-02-27 Power source controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10062037A JPH11249767A (en) 1998-02-27 1998-02-27 Power source controller

Publications (1)

Publication Number Publication Date
JPH11249767A true JPH11249767A (en) 1999-09-17

Family

ID=13188580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10062037A Pending JPH11249767A (en) 1998-02-27 1998-02-27 Power source controller

Country Status (1)

Country Link
JP (1) JPH11249767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043243A (en) * 2007-07-18 2009-02-26 Ricoh Co Ltd Image forming system, image forming apparatus, and method of recovering from energy-saving mode, and program
US8363044B2 (en) 2003-09-30 2013-01-29 Intel Corporation Switching display update properties upon detecting a power management event

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363044B2 (en) 2003-09-30 2013-01-29 Intel Corporation Switching display update properties upon detecting a power management event
US8860707B2 (en) 2003-09-30 2014-10-14 Intel Corporation Switching display update properties upon detecting a power management event
JP2009043243A (en) * 2007-07-18 2009-02-26 Ricoh Co Ltd Image forming system, image forming apparatus, and method of recovering from energy-saving mode, and program

Similar Documents

Publication Publication Date Title
US6847130B1 (en) Uninterruptible power system
JP3772096B2 (en) Power conditioner for photovoltaic system
JPH07210975A (en) Method and equipment for controlling power consumption
WO1991007796A1 (en) Ups-computer system and method of powering and controlling a computer
WO2002063209A1 (en) Sun-tracking daylighting apparatus
WO2012122509A2 (en) Sun tracking control system for solar collection devices
JPH11249767A (en) Power source controller
CN103428389A (en) Image forming apparatus and control method thereof
JP3552586B2 (en) Uninterruptible power system
JP2001041530A (en) Air conditioner
JP3688474B2 (en) Backup power supply circuit and electronic circuit device
JP2003314931A (en) Air conditioner
WO1994016377A1 (en) Automatic backup and restoring device and method of computer system
JP2000020182A (en) Power management method
JPH08272489A (en) Battery backup method
JP2002271989A (en) Photovoltaic power generating system, power source controlling method therefor and computer-readable storage medium
JPH11160464A (en) Solar energy driven radio controlled timepiece
JP2850838B2 (en) System power tap control method
JPH09251063A (en) Electronic device provided with battery power supply
JP3251492B2 (en) AC supply circuit provided with current detection means
JP2529707B2 (en) Blackout detection method
JP3428398B2 (en) Power supply circuit
JP2003194438A (en) Controlling device for air-conditioner, and air- conditioner
JPH06103480B2 (en) Blackout processor
JPH0739079A (en) Battery power supply apparatus