JPH11232706A - Three-dimensional optical memory medium and production thereof - Google Patents

Three-dimensional optical memory medium and production thereof

Info

Publication number
JPH11232706A
JPH11232706A JP10036955A JP3695598A JPH11232706A JP H11232706 A JPH11232706 A JP H11232706A JP 10036955 A JP10036955 A JP 10036955A JP 3695598 A JP3695598 A JP 3695598A JP H11232706 A JPH11232706 A JP H11232706A
Authority
JP
Japan
Prior art keywords
glass
fine particles
fine particle
particle dispersion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10036955A
Other languages
Japanese (ja)
Other versions
JP3558855B2 (en
Inventor
Hiromi Kondo
裕己 近藤
Seiki Miura
清貴 三浦
Kazuyuki Hirao
一之 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP03695598A priority Critical patent/JP3558855B2/en
Publication of JPH11232706A publication Critical patent/JPH11232706A/en
Application granted granted Critical
Publication of JP3558855B2 publication Critical patent/JP3558855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional(3D) optical memory medium with high read contrast. SOLUTION: Concerning this 3D optical memory medium, a fine grain- dispersed medium 3 such as glass is used as a substrate and single or plural spots, where the dispersing state of fine grains is locally changed by irradiating the inside of the substrate with converged pulse laser beam, are formed inside the substrate. As for fine grain 3, Au, Cu, Ag, Pt, CuCl, CuBr, Cds, CdSe or CdTe is used. At the spot, the absorption coefficient of the fine grain-dispersed medium 3 in an absorption wavelength area is decreased (5). The pulse laser light having the quantity of energy for changing the fine grain dispersing state is converged inside the fine grain-dispersed medium 3 and while relatively moving the convergent point of pulse laser beam inside the fine grain-dispersed medium 3, the single or plural spots obtd. by locally changing the dine grain dispersing state are formed inside the fine grain-dispersed medium 3 so that such a 3D optical memory medium can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微粒子分散状態が局部
的に変化した単数又は複数のスポットを微粒子分散媒質
内部に形成させることにより、読出しのコントラスト
(S/N)を向上させた三次元光メモリー媒体及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional image in which the readout contrast (S / N) is improved by forming one or a plurality of spots in which the state of dispersion of fine particles is locally changed inside the fine particle dispersion medium. The present invention relates to an optical memory medium and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ハードディスクを始めとする種々の記録
媒体は、情報処理の大容量化に伴って記録密度の向上が
望まれている。なかでも、記録再生に用いるレーザー光
を光の回折限界にまで絞ることにより記録可能領域を用
いる波長程度の大きさにできること、具体的には1cm
2 当り108 ビットの高い記録密度が得られることか
ら、光メモリの研究が盛んに進められており、一部が実
用化されている。光ディスクの大容量化の方向として、
書込みに使用するレーザーの波長を短くすると書込み領
域を小さくできることから、レーザーの波長の短波長化
が挙げられる。しかし、レーザーの短波長化自体が容易
でなく、短波長化に伴って材料の吸収係数が大きくなる
ことから、現状の書込み用レーザーの波長は700nm
程度である。レーザの短波長化及び短波長化に伴う吸収
係数の上昇の問題点を克服できたと仮定しても、現状の
四倍程度に記録密度を増大させることが限界であるとい
われている。
2. Description of the Related Art Various recording media, such as hard disks, are required to have an improved recording density with an increase in information processing capacity. Above all, the laser beam used for recording / reproduction can be reduced to the diffraction limit of light so that the recordable area can be made as large as the wavelength used, specifically 1 cm.
Since high recording density 2 per 10 8-bit is obtained, the optical memory studies have made great progress, some have been put into practical use. As the direction of increasing the capacity of optical discs,
Since the writing area can be reduced by shortening the wavelength of the laser used for writing, the wavelength of the laser can be shortened. However, it is not easy to shorten the wavelength of the laser itself, and the absorption coefficient of the material increases with the shortening of the wavelength.
It is about. Even if it is assumed that the problem of shortening the wavelength of the laser and the increase of the absorption coefficient accompanying the shortening of the wavelength can be overcome, it is said that the limit of increasing the recording density to about four times the current level is the limit.

【0003】そこで、記録領域の縮小による相対的な記
録密度の増大に替え、記録の空間的次元を二次元から三
次元に増加させることにより、より大容量化することが
検討されている。この系統に属するものとしては、光照
射により透過率が変化するフォトクロミック材料を用い
て三次元的に情報記録を行う方法,フォトリフラクティ
ブ結晶を用いて三次元的に屈折率変化を起こす方法等が
ある。しかしながら、フォトクロミック材料を持ちいる
方法では、有機材料でフォトクロミック材料が熱や光に
よる劣化変質を起こし易い。また、記録状態が経時変化
を示したり、感度が高過ぎ、読出し光によっても光反応
が進行し、記録状態が変化してしまう欠点がある。他
方、フォトリフラクティブ結晶を用いる方法では、フォ
トリフラクティブ結晶に光学的異方性があるため、記録
する際に結晶の軸方向によって記録状態が異なってしま
う。
Therefore, instead of increasing the relative recording density by reducing the recording area, it is being studied to increase the recording capacity by increasing the spatial dimension of recording from two to three dimensions. As a member of this system, there are a method of three-dimensionally recording information using a photochromic material whose transmittance changes by light irradiation, and a method of causing a three-dimensional change in refractive index using a photorefractive crystal. . However, in the method having a photochromic material, the photochromic material is an organic material and easily deteriorates due to heat or light. Further, there is a disadvantage that the recording state shows a temporal change, the sensitivity is too high, and the photoreaction proceeds even by the reading light, so that the recording state changes. On the other hand, in the method using a photorefractive crystal, since the photorefractive crystal has optical anisotropy, the recording state differs depending on the axial direction of the crystal when recording.

【0004】読出し、書込みに用いる光の波長を多重化
させることによりスポット当りの記録密度を上昇させ、
大容量化を図る研究も進められている。この系統に属す
るものとしては、光化学ホールバーニング(PHB)が
ある。光化学ホールバーニングでは、ガラス,ポリマ
ー,イオン結晶,金属酸化物結晶等の透明な固体媒質に
有機色素,希土類金属イオン等を活性中心として分散さ
せた系において、活性中心による光吸収スペクトルの幅
が媒質の持つ不均一性によって本来持っている幅(均一
幅)より広がっていることを利用している。すなわち、
不均一幅内の特定の波長に線幅の狭いレーザー光を照射
すると、照射された波長の吸収が飽和し、吸収スペクト
ルに穴が開いた状態になる。この方法によるとき、原理
的には1スポットあたり103 以上の多重度が可能で、
記録密度としては1cm2 当り1011ビットまで増大で
きるといわれている。
By multiplexing the wavelengths of light used for reading and writing, the recording density per spot is increased,
Research is also underway to increase capacity. As a member of this system, there is photochemical hole burning (PHB). In photochemical hole burning, the width of the light absorption spectrum by the active center is a medium in which organic dyes, rare earth metal ions, etc. are dispersed as active centers in a transparent solid medium such as glass, polymer, ionic crystal, or metal oxide crystal. Utilizing the fact that it is wider than it originally has (uniform width) due to its non-uniformity. That is,
When a specific wavelength within the non-uniform width is irradiated with a laser beam having a narrow line width, the absorption of the irradiated wavelength is saturated, and a hole is formed in the absorption spectrum. According to this method, in principle, a multiplicity of 10 3 or more per spot is possible,
It is said that the recording density can be increased to 10 11 bits / cm 2 .

【0005】しかし、大半のPHB現象が零下200℃
以下の極低温でしか観測されず、室温では動作しないこ
とが問題である。近年、室温でもPHB現象が観測され
るようになってきている(K.Hirao等,J.Lu
mi.,55,217(1993))が、多重度が低く
生成効率が悪い等の問題が残されている。このような問
題を解決する新規な三次元光メモリーガラスが特開平8
−220688号公報で紹介されている。この三次元光
メモリーガラスは、熱や光に対して安定で光学的異方性
がない。ガラスマトリックスを三次元的に走査しなが
ら、ガラスマトリックス中にパルスレーザーを集光照射
するとき、光誘起屈折率変化が微小スポットで生じ、空
間的な屈折率分布として情報が記録される。この手法に
よって、熱や光に対して安定で、耐候性に優れ、長期間
安定した情報の記録が可能となり、光ディスクの記録容
量の増大化が可能となる。
[0005] However, most PHB phenomena are below 200 ° C.
The problem is that it is observed only at the following extremely low temperatures and does not operate at room temperature. In recent years, the PHB phenomenon has been observed even at room temperature (K. Hirao et al., J. Lu.
mi. , 55, 217 (1993)) have problems such as low multiplicity and poor generation efficiency. A novel three-dimensional optical memory glass which solves such a problem is disclosed in
-220688. This three-dimensional optical memory glass is stable to heat and light and has no optical anisotropy. When a pulse laser is condensed and radiated into the glass matrix while scanning the glass matrix three-dimensionally, a light-induced change in refractive index occurs in a minute spot, and information is recorded as a spatial refractive index distribution. This method enables stable recording of information over a long period of time, which is stable against heat and light, has excellent weather resistance, and can increase the recording capacity of an optical disk.

【0006】[0006]

【発明が解決しようとする課題】しかし、特開平8−2
20688号公報で紹介されている光メモリーガラスの
場合、パルスレーザー光の集光照射によって屈折率変化
を誘起するに止まり、照射される材料自体は同一であ
る。そのため、屈折率変化が起きた部分と屈折率変化が
起きていない部分との間に大きな組成変化があるわけで
はなく、誘起される屈折率変化量をそれほど大きくでき
なかった。そして、透過率又は反射率の変化を屈折率変
化だけによって起こされる透過率又は反射率の変化をメ
モリーに利用していることから、小さな屈折率変化のた
め、読出しにおけるコントラスト(S/N)を大きくで
きない。本発明は、このような問題を解消すべく、微粒
子分散媒質内部へのパルスレーザー光の集光照射により
微粒子分散状態が局部的に変化した単数又は複数のスポ
ットを形成することにより、読出しのコントラスト(S
/N)が高い三次元光メモリー媒体を提供することを目
的をする。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open No. Hei 8-2
In the case of the optical memory glass introduced in Japanese Patent No. 20688, the change in the refractive index is only induced by the focused irradiation of the pulsed laser beam, and the irradiated material itself is the same. Therefore, there is no large change in composition between the portion where the refractive index change has occurred and the portion where the refractive index change has not occurred, and the amount of the induced refractive index change cannot be so large. Since the change in the transmittance or the reflectance caused by only the change in the refractive index is used for the memory, the contrast (S / N) in reading is reduced due to the small change in the refractive index. I can't make it big. In order to solve such a problem, the present invention forms one or more spots in which the dispersion state of the fine particles is locally changed by condensing irradiation of the pulsed laser light into the inside of the fine particle dispersion medium, thereby improving the read contrast. (S
/ N) is provided.

【0007】[0007]

【課題を解決するための手段】本発明の三次元光メモリ
ー媒体は、その目的を達成するため、微粒子分散媒質を
基体とし、基体内部へのパルスレーザー光の集光照射に
より微粒子の分散状態が局部的に変化した単数又は複数
のスポットが基体内部に存在していることを特徴とす
る。スポットでは、微粒子分散媒質の吸収波長領域の吸
収係数が減少している。微粒子としては、Au,Cu,
Ag,Pt,CuCl,CuBr,CdS,CdSe,
CdTeから選ばれた1種又は2種以上が使用され、ガ
ラス,ポリマー,イオン結晶,金属酸化物結晶等の微粒
子分散媒質に分散される。この三次元光メモリー媒体
は、微粒子分散状態が変化するエネルギー量を持つパル
スレーザー光を微粒子分散媒質の内部に集光し、微粒子
分散媒質の内部でパルスレーザー光の集光点を相対移動
させながら、微粒子分散状態が局部的に変化した単数又
は複数のスポットを微粒子分散媒質の内部に形成するこ
とにより製造される。使用するパルスレーザ光として
は、微粒子分散媒質の透過率が20%以上である波長領
域のパルスレーザー光が好ましい。
In order to achieve the object, the three-dimensional optical memory medium of the present invention uses a fine particle dispersion medium as a base, and the dispersed state of the fine particles is condensed by irradiating a pulse laser beam inside the base. One or more locally changed spots are present inside the substrate. At the spot, the absorption coefficient in the absorption wavelength region of the fine particle dispersion medium decreases. As fine particles, Au, Cu,
Ag, Pt, CuCl, CuBr, CdS, CdSe,
One or more selected from CdTe are used and dispersed in a fine particle dispersion medium such as glass, polymer, ionic crystal, and metal oxide crystal. This three-dimensional optical memory medium focuses pulsed laser light having an energy amount that changes the state of dispersion of fine particles inside the fine particle dispersion medium, and relatively moves the focal point of the pulse laser light inside the fine particle dispersion medium. It is manufactured by forming one or more spots in which the dispersion state of the fine particles is locally changed, inside the fine particle dispersion medium. As the pulse laser light to be used, a pulse laser light in a wavelength region where the transmittance of the fine particle dispersion medium is 20% or more is preferable.

【0008】[0008]

【作用】微粒子分散媒質内部にパルスレーザー光を集光
照射すると、光メモリーガラスと同様な屈折率変化が集
光点で生じると共に、着色種である微粒子の分散状態、
すなわち微粒子分散媒質内部に分散している微粒子の
数,微粒子のサイズ,微粒子の形態等が変化する。具体
的には、微粒子の数の減少,微粒子の小サイズ化,媒質
中への溶解やイオン化による微粒子の消失等が生じる。
媒質中への溶解やイオン化により微粒子として存在しな
くなる場合、その部分の吸収係数は、微粒子が分散して
いない媒質と同じ値になり、照射前に比べて減少する。
レーザー光の集光照射によって微粒子のサイズが変化す
る場合、微粒子のサイズ変化により吸収する波長が変化
し、集光照射前に比べて集光照射後の照射波長における
吸収係数は減少する。そこで、読出しに用いるレーザー
光の波長を微粒子分散媒質の吸収波長領域に設定する
と、集光点以外の部分の吸収係数が照射前と同じあるの
に対し、集光点では吸収係数が減少していることから、
集光点でのみ透過率又は反射率が高くなり、屈折率変化
だけを利用する場合に比較して読出しのコントラスト
(S/N)が向上する。
When a pulsed laser beam is condensed and radiated into the fine particle dispersion medium, a change in the refractive index similar to that of the optical memory glass occurs at the converging point, and the dispersion state of the fine particles, which are colored species,
That is, the number of fine particles dispersed in the fine particle dispersion medium, the size of the fine particles, the form of the fine particles, and the like change. Specifically, the number of fine particles is reduced, the size of the fine particles is reduced, and the fine particles disappear due to dissolution or ionization in a medium.
When the particles no longer exist as fine particles due to dissolution or ionization in the medium, the absorption coefficient of that portion becomes the same value as that of the medium in which the fine particles are not dispersed, and decreases as compared to before the irradiation.
When the size of the fine particles changes due to the converging irradiation of the laser beam, the absorption wavelength changes due to the change in the size of the fine particles, and the absorption coefficient at the irradiation wavelength after the converging irradiation is smaller than before the converging irradiation. Therefore, when the wavelength of the laser beam used for reading is set in the absorption wavelength region of the fine particle dispersion medium, the absorption coefficient of the portion other than the focal point is the same as before the irradiation, whereas the absorption coefficient decreases at the focal point. From that
The transmittance or the reflectance is increased only at the focal point, and the read contrast (S / N) is improved as compared with the case where only the change in the refractive index is used.

【0009】[0009]

【実施の形態】微粒子分散媒質に分散される微粒子とし
ては、Au,Cu,Ag,Pt等の金属微粒子やCd
S,CdSe,CdTe,CuCl,CuBr等の半導
体微粒子がある。これらの微粒子は、ガラス,ポリマ
ー,イオン結晶,金属酸化物結晶等の媒質に分散され
る。なかでも、ガラスは、光学的に等方性であり、耐熱
性、耐光性に優れていることから媒質として非常に適し
ている。微粒子分散媒質に分散される微粒子の分散量と
しては0.01〜50重量%が好ましい。分散量が0.
01重量%未満であると、吸収係数が小さくなるために
読出しのコントラストを大きくできなくなる傾向がみら
れる。逆に50重量%を超える分散量では、分散してい
る微粒子が均一に分散することなく凝集し、或いは凝集
によって粒子の実質的な大きさが増大して光散乱の原因
となり、読出しコントラストを低下させる傾向を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Fine particles dispersed in a fine particle dispersion medium include metal fine particles such as Au, Cu, Ag, and Pt, and Cd.
There are semiconductor fine particles such as S, CdSe, CdTe, CuCl, and CuBr. These fine particles are dispersed in a medium such as glass, polymer, ionic crystal, and metal oxide crystal. Among them, glass is very suitable as a medium because it is optically isotropic and has excellent heat resistance and light resistance. The dispersion amount of the fine particles dispersed in the fine particle dispersion medium is preferably 0.01 to 50% by weight. The amount of dispersion is 0.
When the content is less than 01% by weight, there is a tendency that the readout contrast cannot be increased because the absorption coefficient is small. Conversely, if the amount of dispersion exceeds 50% by weight, the dispersed fine particles aggregate without being uniformly dispersed, or the aggregates increase the substantial size of the particles, causing light scattering and lowering the read contrast. Show the tendency to do.

【0010】微粒子分散媒質に分散している微粒子の分
散状態は、微粒子分散媒質の内部に集光点を設定したパ
ルスレーザ光で照射されるため、集光点及びその近傍で
変化する。集光点以外の照射部分では、分散状態の変化
に必要な光量が得られず、パルスレーザ光の照射前と同
じ分散状態が維持される。その結果、微粒子分散媒質の
内部だけが選択的に変質する。光源から出射されたレー
ザー光1は、図1に示すようにレンズ等の集光装置2で
集光される。このとき、微粒子分散媒質3の内部に集光
点4が位置するように、集光装置2を焦点調節する。集
光点4をスポット,スポットで照射するステップスキャ
ンを採用すると、微粒子の分散状態が変化した領域がド
ット状に形成される。微粒子分散媒質3に対して集光点
4を三次元的に相対移動させると、三次元的に変化した
領域が微粒子分散媒質材料3の内部に形成される。微粒
子分散媒質3に対する集光点4の相対移動には、集光点
4を固定して微粒子分散媒質3を移動させる方法,微粒
子分散媒質3を固定して集光点4を移動させる方法,両
者の併用等が採用される。
[0010] The dispersion state of the fine particles dispersed in the fine particle dispersion medium changes at the light collection point and in the vicinity thereof because the inside of the fine particle dispersion medium is irradiated with the pulsed laser beam whose light collection point is set. In the irradiated portion other than the focal point, the light amount required for changing the dispersion state is not obtained, and the same dispersion state as before the irradiation with the pulsed laser beam is maintained. As a result, only the inside of the fine particle dispersion medium is selectively transformed. The laser light 1 emitted from the light source is condensed by a condensing device 2 such as a lens as shown in FIG. At this time, the focal point of the light collecting device 2 is adjusted so that the light collecting point 4 is located inside the fine particle dispersion medium 3. If the step scan of irradiating the focal point 4 with spots and spots is adopted, a region where the dispersion state of the fine particles has changed is formed in a dot shape. When the focal point 4 is three-dimensionally moved relative to the fine particle dispersion medium 3, a three-dimensionally changed region is formed inside the fine particle dispersion medium material 3. The relative movement of the focal point 4 with respect to the fine particle dispersion medium 3 includes a method of moving the fine particle dispersion medium 3 while fixing the fine focus 4 and a method of moving the focal point 4 while fixing the fine particle dispersion medium 3. Are used in combination.

【0011】パルスレーザーのピークパワーは、1パル
ス当りの出力エネルギー(J)をパルス幅(秒)で割っ
た値としてワット(W)で表される。ピークパワー密度
は、単位面積(cm2 )当りのピークパワーであり、W
/cm2 で表される。集光点におけるパルスレーザー光
のピークパワー密度は、108 〜1017W/cm2 の範
囲にあることが望ましい。108 W/cm2 未満のピー
クパワー密度では、集光部分で屈折率変化及び微粒子分
散状態が十分に変化しない。逆に10 17W/cm2 を超
えるピークパワー密度では、集光点以外の部分でも屈折
率変化及び微粒子分散状態が変化し、目標とする変化が
得られにくくなる。また、過度に大きなエネルギー量の
レーザー光は、実用的にも困難である。
The peak power of the pulse laser is 1 pulse
Output energy per pulse (J) divided by pulse width (seconds)
Is expressed in watts (W). Peak power density
Is the unit area (cmTwo ) Peak power per W
/ CmTwo It is represented by Pulsed laser light at the focal point
Has a peak power density of 108 -1017W / cmTwo Range of
It is desirable to be in the surroundings. 108 W / cmTwo Less than pea
In the power density, the refractive index change and fine particle
The scattering state does not change sufficiently. Conversely 10 17W / cmTwo Over
Refraction at the peak power density
Rate change and the dispersion state of fine particles change,
It is difficult to obtain. In addition, excessive amounts of energy
Laser light is practically difficult.

【0012】同じピークパワー密度のレーザ光で照射す
るとき、パルス幅の狭いレーザー光ほど屈折率変化及び
微粒子分散状態の変化が生じ易い。この点、10-10
以下のパルス幅をもつレーザ光が好ましい。パルス幅が
広すぎるレーザー光では、屈折率変化及び微粒子分散状
態の変化に非常に大きなエネルギーをもつレーザー光の
照射が必要になり、微粒子分散媒質材料を破壊する虞れ
がある。照射量は、屈折率変化及び微粒子分散状態の変
化に必要な量に設定される。パルスレーザーの繰返し周
期(パルスとパルスの間隔)は、特に限定されるもので
はないが、過度に短い周期(たとえば、100MHz)
では集光部分以外でも屈折率変化及び微粒子分散状態の
変化が起き始めてしまう。
When irradiating with a laser beam having the same peak power density, a laser beam having a smaller pulse width is more likely to cause a change in the refractive index and a change in the state of dispersion of fine particles. In this regard, laser light having a pulse width of 10 -10 seconds or less is preferable. In the case of a laser beam having an excessively wide pulse width, it is necessary to irradiate a laser beam having a very large energy for a change in the refractive index and a change in the state of dispersion of the particles, which may destroy the material of the particle dispersion medium. The irradiation amount is set to an amount necessary for a change in the refractive index and a change in the dispersion state of the fine particles. The repetition period (interval between pulses) of the pulse laser is not particularly limited, but is an extremely short period (for example, 100 MHz).
In such a case, a change in the refractive index and a change in the state of dispersion of the fine particles begin to occur even in portions other than the condensing portion.

【0013】[0013]

【実施例】実施例1:Au微粒子分散ガラス SiO2 ,B23 ,Na2 CO3 ,Sb23 の配合
原料に塩化金酸の水溶液を加え、SiO2 :72重量
%,B23 :18重量%,10Na2 O:10重量
%,Sb23 :4重量%,Au:0.02重量%の組
成となるように調合した。原料粉末400gを300c
c白金製ルツボに投入した後、大気中1450℃で2時
間撹拌しながら加熱溶解した。均一に溶解したガラスを
真鍮の型に流し込んで厚さ5mmの板に成型し、冷却し
た。得られたガラスを450℃でアニールし、歪みを除
去した。ガラス中にAu微粒子を析出させるため、電気
炉を用いて昇温速度5℃/分でガラスを昇温し、650
℃で4時間保持した後、炉内で放冷した。次いで、切
断,研磨して厚み4mmの試料を得た。得られたガラス
試料は、金微粒子の析出によって赤色に着色されてい
た。また、透過型電子顕微鏡(TEM)を用いてガラス
中に分散しているAu微粒子の大きさを観察したとこ
ろ、平均粒径10nmの微粒子が分散していた。
Example 1 Au fine particle dispersed glass An aqueous solution of chloroauric acid was added to a compounding raw material of SiO 2 , B 2 O 3 , Na 2 CO 3 and Sb 2 O 3 , and SiO 2 : 72% by weight, B 2 O 3: 18 wt%, 10Na 2 O: 10 wt%, Sb 2 O 3: 4 wt%, Au: is prepared to have a 0.02 weight% of the composition. 400g of raw material powder to 300c
c After being charged into a platinum crucible, the mixture was heated and dissolved at 1450 ° C. in the atmosphere with stirring for 2 hours. The uniformly melted glass was poured into a brass mold, formed into a plate having a thickness of 5 mm, and cooled. The obtained glass was annealed at 450 ° C. to remove the distortion. In order to precipitate Au fine particles in the glass, the temperature of the glass was raised at a rate of 5 ° C./min using an electric furnace, and the temperature was raised to 650.
After holding at 4 ° C. for 4 hours, it was allowed to cool in the furnace. Then, the sample was cut and polished to obtain a sample having a thickness of 4 mm. The obtained glass sample was colored red due to the precipitation of gold fine particles. When the size of the Au fine particles dispersed in the glass was observed using a transmission electron microscope (TEM), fine particles having an average particle diameter of 10 nm were dispersed.

【0014】ガラス試料の内部に集光点が位置するよう
に集光させたパルスレーザーでガラス試料を照射した。
すなわち、XYZ方向にスキャン可能な電動ステージに
ガラス試料3を設置し、Z軸(光軸)方向を固定した状
態で、図1に示すようにパルスレーザー光1を、ガラス
試料3の内部に集光点4が位置するようにレンズ2で集
光し、ガラス試料3を照射した。パルスレーサー光に
は、アルゴンレーザー励起のTi−サファイアレーザー
から発振されたパルス幅1.5×10-13 秒、繰返し周
期50Hz、波長800nmの光を使用した。集光点4
に形成されたスポットは、直径約1μmであった。スポ
ットの直径は、レンズ2の倍率及びパルスレーザー光1
のビーム径を大きくすることにより更に小さくできる。
本実施例のAu微粒子分散ガラスは、800nmの波長
における透過率が89%であった。ピークエネルギー密
度1013W/cm2 で集光点4に3秒間照射した後、レ
ーザー光1のガラス試料3への入射を止め、ガラス試料
3をXY軸方向にスキャンし、再度同条件で集光照射を
行った。この集光照射,集光照射中止,ガラス試料3の
移動操作を繰り返した後、Z軸方向の電動ステージを5
μm移動させ、XY方向へ同様に集光照射した。
The glass sample was irradiated with a pulse laser focused so that the focal point was located inside the glass sample.
That is, the pulsed laser beam 1 is collected inside the glass sample 3 as shown in FIG. 1 with the glass sample 3 placed on an electric stage capable of scanning in the XYZ directions and the Z-axis (optical axis) direction fixed. The light was focused by the lens 2 so that the light spot 4 was positioned, and the glass sample 3 was irradiated. As the pulse racer light, light having a pulse width of 1.5 × 10 -13 seconds, a repetition period of 50 Hz, and a wavelength of 800 nm emitted from an argon laser-excited Ti-sapphire laser was used. Focus point 4
The spot formed in the sample had a diameter of about 1 μm. The diameter of the spot is determined by the magnification of the lens 2 and the pulse laser beam 1
Can be further reduced by increasing the beam diameter.
The Au particle-dispersed glass of this example had a transmittance of 89% at a wavelength of 800 nm. After irradiating the focal point 4 with a peak energy density of 10 13 W / cm 2 for 3 seconds, the laser beam 1 is stopped from entering the glass sample 3, the glass sample 3 is scanned in the X and Y directions, and collected again under the same conditions. Light irradiation was performed. After repeating the focusing irradiation, stopping the focusing irradiation, and moving the glass sample 3, the motorized stage in the Z-axis direction
The laser beam was moved by μm, and focused and irradiated similarly in the XY directions.

【0015】集光照射処理されたガラス試料3を光学顕
微鏡で観察したところ、集光照射部分では、図2に示す
ように、Au微粒子によって吸収されていた波長帯(約
400〜580nm)の吸収係数が減少し、赤色着色が
なくなった領域5が形成されていた。一方、非集光照射
部分では、色の変化が観察されなかった。波長530n
mの光を用いて記録情報を読み出したところ、集光照射
部と非集光照射部では、屈折率の変化と吸収係数の現象
によるものと考えられる透過率の違いが検出され、屈折
率変化だけを利用した比較例1と比べて著しく大きなコ
ントラストであった。5μm間隔で上層と下層のスポッ
トの読取りエラーがなく、X,Y,Z方向に三次元的に
情報を記録できた。
When the glass sample 3 subjected to the condensing irradiation treatment was observed with an optical microscope, as shown in FIG. 2, in the condensing irradiation part, the absorption in the wavelength band (about 400 to 580 nm) absorbed by the Au fine particles was observed. The region 5 in which the coefficient was reduced and the red coloring disappeared was formed. On the other hand, no color change was observed in the non-condensed irradiation part. Wavelength 530n
When the recorded information was read using light of m, the difference between the refractive index change and the transmittance, which is thought to be due to the phenomenon of the absorption coefficient, was detected between the condensing irradiation part and the non-condensing irradiation part. The contrast was significantly higher than that of Comparative Example 1 using only There was no reading error between the upper and lower spots at intervals of 5 μm, and information could be recorded three-dimensionally in the X, Y, and Z directions.

【0016】実施例2:Cu微粒子分散ガラス SiO2 ,B23 ,Na2 CO3 ,Cu2 O,SnO
の原料粉末を、SiO 2 :72重量%,B23 :20
重量%,Na2 O:8重量%,Cu:0.5重量%,S
nO:0.25重量%の組成に配合した。原料粉末40
0gを300cc白金製ルツボに投入した後、大気中1
450℃で2時間撹拌しながら加熱溶解した。均一溶解
したガラスを真鍮の型に流し込み、厚さ5mmの板に成
型し、冷却した。得られたガラスを450℃でアニール
し、歪みを除去した。ガラス中にCu微粒子を析出させ
るため、電気炉を用い昇温速度5℃/分でガラスを昇温
し、650℃に4時間保持した後、炉内で放冷した。析
出処理後のガラスを切断・研磨し、厚さ4mmの試料を
作製した。このガラス試料は、Cu微粒子の析出により
黄色に着色されており、透過型電子顕微鏡(TEM)で
観察したところ、平均粒径20nmのCu微粒子がガラ
スマトリックス中に分散していた。
Example 2: Cu fine particle dispersed glass SiOTwo , BTwo OThree , NaTwo COThree , CuTwo O, SnO
The raw material powder of SiO Two : 72% by weight, BTwo OThree : 20
Wt%, NaTwo O: 8% by weight, Cu: 0.5% by weight, S
nO: It was blended in a composition of 0.25% by weight. Raw material powder 40
After charging 0g into a 300cc platinum crucible,
The mixture was heated and dissolved at 450 ° C. with stirring for 2 hours. Uniform dissolution
Pour the glass into a brass mold and form a 5mm thick plate.
Molded and cooled. Anneal the obtained glass at 450 ° C
Then, the distortion was removed. Precipitating Cu fine particles in glass
The temperature of the glass at a rate of 5 ° C / min using an electric furnace
Then, after maintaining the temperature at 650 ° C. for 4 hours, it was cooled in a furnace. Analysis
The glass that has been exposed is cut and polished, and a 4 mm thick sample is
Produced. This glass sample is obtained by the precipitation of Cu fine particles.
It is colored yellow and can be observed with a transmission electron microscope (TEM).
It was observed that Cu fine particles with an average particle size of 20 nm
It was dispersed in the matrix.

【0017】次いで、作製されたガラス試料3を実施例
1と同様にパルスレーザ光でを照射した。パルスレーザ
ー光には、アルゴンレーザー励起のTi−サファイアレ
ーザーから発振されたパルス幅1.5×10-13 秒、繰
返し周期100Hz、波長1.0μmの光を使用した。
集光点4に形成されたスポットは、直径が約2μmであ
った。本実施例のCu微粒子分散ガラスは、1.0μm
の波長における透過率が90%であった。ピークエネル
ギー密度1011W/cm2 で集光点4に5秒間照射した
後、レーザー光1のガラス試料3への入射を止め、ガラ
ス試料3をXY軸方向にスキャンさせ、再度同じ条件で
集光照射した。この集光照射,集光照射中止,ガラス試
料の移動操作を繰り返した。次いで、Z軸方向に電動ス
テージを15μmに移動させ、XY方向へ同様に集光照
射した。
Next, the manufactured glass sample 3 was irradiated with pulsed laser light in the same manner as in Example 1. As the pulse laser light, light having a pulse width of 1.5 × 10 -13 seconds, a repetition period of 100 Hz, and a wavelength of 1.0 μm, emitted from a Ti-sapphire laser excited by an argon laser, was used.
The spot formed at the focal point 4 had a diameter of about 2 μm. The Cu fine particle dispersed glass of this example is 1.0 μm
At a wavelength of 90%. After irradiating the focal point 4 with a peak energy density of 10 11 W / cm 2 for 5 seconds, the laser beam 1 is stopped from entering the glass sample 3, the glass sample 3 is scanned in the X and Y directions, and collected again under the same conditions. Light irradiation was performed. The focusing irradiation, stopping the focusing irradiation, and moving the glass sample were repeated. Next, the electric stage was moved to 15 μm in the Z-axis direction, and the light was similarly irradiated in the XY directions.

【0018】集光照射処理されたガラス試料3を光学顕
微鏡により観察したところ、図2に示すように、集光照
射部分ではCu微粒子によって吸収されていた波長帯
(約400〜580nm)の吸収係数が減少し、黄色着
色がなくなり無色に変化した領域5が形成されていた。
一方、非集光照射部分では、色の変化が観察されなかっ
た。波長530nmの光を用いて記録情報を読み出した
ところ、集光照射部と非集光照射部では、屈折率の変化
と吸収係数の現象によるものと考えられる透過率の違い
が検出され、後に述べる比較例1の屈折率変化だけを利
用した比較例1に比べ著しく大きなコントラストであっ
た。また、15μm間隔で上層と下層のスポットの読み
取りエラーはなく、X、Y、Z方向に三次元的に情報を
記録できた。
Observation of the condensed and irradiated glass sample 3 by an optical microscope revealed that, as shown in FIG. 2, an absorption coefficient of a wavelength band (about 400 to 580 nm) absorbed by the Cu fine particles in the condensed and irradiated portion. Was reduced, and the colorless region 5 was formed without yellowing.
On the other hand, no color change was observed in the non-condensed irradiation part. When the recorded information was read using light having a wavelength of 530 nm, a difference in the transmittance, which is considered to be caused by the change in the refractive index and the phenomenon of the absorption coefficient, was detected between the converging irradiation part and the non-condensing irradiation part, which will be described later. The contrast was significantly higher than that of Comparative Example 1 using only the change in the refractive index of Comparative Example 1. In addition, there was no reading error of the upper and lower spots at an interval of 15 μm, and information could be recorded three-dimensionally in the X, Y, and Z directions.

【0019】実施例3:Ag微粒子分散ガラス SiO2 ,CaCO3 ,Na2 CO3 ,Ag2 O,Sn
Oを原料粉末とし、SiO2 :72重量%,CaO:2
0重量%,Na2 O:8重量%,Ag:0.4重量%,
SnO:0.2重量%の組成となるように配合した。原
料粉末400gを300cc白金製ルツボに投入した
後、大気中1450℃で2時間攪拌しながら加熱溶解し
た。均一に溶解したガラスを真鍮の型に流し込んで厚さ
5mmの板に成型し、冷却した後、450℃のアニール
により歪みを除去した。ガラス中にAg微粒子を析出さ
せるため、電気炉を用いて昇温速度5℃/分でガラスを
昇温し、550℃で4時間保持した後、炉内で放冷し
た。その後、切断、研磨し、厚さ4mmの試料を作製し
た。析出処理されたガラスは、Ag微粒子の析出によっ
て黄色に着色されており、透過型電子顕微鏡(TEM)
で観察したところ、平均粒径8nmのAg微粒子がガラ
スマトリックスに分散していた。
Example 3: Ag fine particle dispersed glass SiO 2 , CaCO 3 , Na 2 CO 3 , Ag 2 O, Sn
O as raw material powder, SiO 2 : 72% by weight, CaO: 2
0 wt%, Na 2 O: 8% by weight, Ag: 0.4% by weight,
SnO: It was blended so as to have a composition of 0.2% by weight. After 400 g of the raw material powder was put into a 300 cc platinum crucible, the mixture was heated and dissolved in the atmosphere at 1450 ° C. for 2 hours while stirring. The uniformly melted glass was poured into a brass mold to form a plate having a thickness of 5 mm. After cooling, the strain was removed by annealing at 450 ° C. In order to precipitate Ag fine particles in the glass, the glass was heated at a rate of 5 ° C./min using an electric furnace, kept at 550 ° C. for 4 hours, and then allowed to cool in the furnace. Thereafter, the sample was cut and polished to produce a sample having a thickness of 4 mm. The glass subjected to the precipitation treatment is colored yellow by precipitation of Ag fine particles, and is observed by a transmission electron microscope (TEM).
As a result, Ag fine particles having an average particle size of 8 nm were dispersed in the glass matrix.

【0020】析出処理されたガラス試料3を実施例1と
同様にパルスレーザ光でを照射した。パルスレーザー光
には、アルゴンレーザー励起のTi−サファイアレーザ
ーから発振されたパルス幅1.5×10-13 秒、繰返し
周期1kHz、波長600nmの光を使用した。集光点
4に形成されたスポットは、直径が約0.8μmであっ
た。本実施例のAg微粒子分散ガラスは、600nmの
波長における透過率が91%であった。ピークエネルギ
ー密度1014W/cm2 で集光点4に3秒間照射した
後、レーザー光1のガラス試料3への入射を止め、ガラ
ス試料3をXY軸方向にスキャンさせ、再度同じ条件で
集光照射した。この集光照射,集光照射中止,ガラス試
料の移動操作を繰り返した後、Z軸方向に電動ステージ
を5μm移動させ、XY方向へ同様に集光照射した。
The glass sample 3 subjected to the deposition treatment was irradiated with pulsed laser light in the same manner as in Example 1. As the pulse laser light, light having a pulse width of 1.5 × 10 -13 seconds, a repetition period of 1 kHz, and a wavelength of 600 nm, emitted from a Ti-sapphire laser excited by an argon laser, was used. The spot formed at the focal point 4 had a diameter of about 0.8 μm. The Ag particle dispersed glass of this example had a transmittance of 91% at a wavelength of 600 nm. After irradiating the focal point 4 with a peak energy density of 10 14 W / cm 2 for 3 seconds, the laser beam 1 is stopped from entering the glass sample 3, the glass sample 3 is scanned in the X and Y directions, and collected again under the same conditions. Light irradiation was performed. After repeating the condensing irradiation, stopping the condensing irradiation, and moving the glass sample, the electric stage was moved by 5 μm in the Z-axis direction, and the condensing irradiation was similarly performed in the XY directions.

【0021】集光照射処理されたガラス試料3を光学顕
微鏡で観察したところ、図2に示すように、集光照射部
分ではAg微粒子によって吸収されていた波長帯(約3
60〜480nm)の吸収係数が減少し、黄色着色がな
くなり無色に変化した領域5が形成されていた。一方、
非集光照射部分では、色の変化が観察されなかった。波
長420nmの光を用いて記録情報を読み出したとこ
ろ、集光照射部と非集光照射部では、屈折率の変化と吸
収係数の減少によるものと考えられる透過率の違いが検
出され、屈折率変化だけを利用した比較例2に比べて著
しく大きなコントラストであった。また、5μm間隔で
上層と下層のスポットの読み取りエラーはなく、X、
Y、Z方向に三次元的に情報を記録できた。
When the glass sample 3 subjected to the condensing irradiation treatment was observed with an optical microscope, as shown in FIG. 2, the wavelength band (about 3
The absorption coefficient (60 to 480 nm) was reduced, and the colorless region 5 was formed without yellowing. on the other hand,
No color change was observed in the non-condensed irradiation part. When the recorded information was read using light having a wavelength of 420 nm, a difference in the transmittance, which is considered to be due to a change in the refractive index and a decrease in the absorption coefficient, was detected between the converging irradiation part and the non-condensing irradiation part. The contrast was significantly higher than that of Comparative Example 2 using only the change. In addition, there was no reading error of the upper and lower spots at 5 μm intervals.
Information could be recorded three-dimensionally in the Y and Z directions.

【0022】実施例4:Pt微粒子分散ガラス SiO2 ,B23 ,Na2 CO3 ,Sb23 の原料
粉末に塩化白金酸の水溶液を加え、SiO2 :72重量
%,B23 :18重量%,Na2 O:10重量%,S
23 :2重量%,Pt:0.05重量%の組成に調
合した。原料粉末400gを300cc白金製ルツボの
投入した後、大気中1450℃で2時間攪拌しながら加
熱溶解した。均一溶解したガラスを真鍮の型に流し込ん
で厚さ5mmの板に成型し、冷却した後、450℃でア
ニールすることにより歪みを除去した。ガラス中にPt
微粒子を析出させるため、電気炉を用いて昇温速度5℃
/分でガラスを昇温し、600℃で4時間保持した後、
炉内で放冷した。次いで、切断・研磨し、厚さ4mmの
ガラス試料を作製した。このガラス試料は、Pt微粒子
の析出によって灰色に着色しており、透過型電子顕微鏡
(TEM)による観察では平均粒径15nmのPt微粒
子がガラスマトリックスに分散していた。
Example 4: Pt fine particle-dispersed glass An aqueous solution of chloroplatinic acid was added to raw material powders of SiO 2 , B 2 O 3 , Na 2 CO 3 and Sb 2 O 3 , and SiO 2 : 72% by weight, B 2 O 3 : 18% by weight, Na 2 O: 10% by weight, S
The composition was prepared to have a composition of b 2 O 3 : 2% by weight and Pt: 0.05% by weight. After 400 g of the raw material powder was charged into a 300 cc platinum crucible, the mixture was heated and dissolved at 1450 ° C. in the atmosphere for 2 hours. The uniformly melted glass was poured into a brass mold to form a plate having a thickness of 5 mm, cooled, and annealed at 450 ° C. to remove distortion. Pt in glass
Use an electric furnace to raise the temperature at 5 ° C to precipitate the fine particles.
/ Min, and hold the glass at 600 ° C for 4 hours.
It was left to cool in the furnace. Next, the glass sample was cut and polished to produce a glass sample having a thickness of 4 mm. This glass sample was colored gray due to precipitation of Pt fine particles, and when observed by a transmission electron microscope (TEM), Pt fine particles having an average particle size of 15 nm were dispersed in the glass matrix.

【0023】析出処理されたガラス試料3を実施例1と
同様にパルスレーザー光で照射した。パルスレーザー光
には、アルゴンレーザー励起のTi−サファイアレーザ
ーから発振されたパルス幅1.5×10-13 秒、繰返し
周期1kHz、波長1.0μmの光を使用した。集光点
4におけるスポットの直径は約2μmであった。本実施
例のPt微粒子分散ガラスは、1.0μmの波長におけ
る透過率が89%であった。ピークエネルギー密度10
13W/cm2 で集光点4に5秒間照射した後、レーザー
光1のガラス試料3への入射を止め、ガラス試料3をX
Y軸方向にスキャンさせ、再度同じ条件で集光照射し
た。この集光照射,集光照射中止,ガラス試料の移動操
作を繰り返した後、Z軸方向に電動ステージを20μm
移動させ、XY方向へ同様に集光照射した。
The glass sample 3 subjected to the precipitation treatment was irradiated with pulsed laser light in the same manner as in Example 1. As the pulse laser light, light having a pulse width of 1.5 × 10 -13 seconds, a repetition period of 1 kHz, and a wavelength of 1.0 μm, emitted from a Ti-sapphire laser excited by an argon laser, was used. The spot diameter at the focal point 4 was about 2 μm. The Pt fine particle dispersed glass of this example had a transmittance of 89% at a wavelength of 1.0 μm. Peak energy density 10
After irradiating the focusing point 4 with 13 W / cm 2 for 5 seconds, the laser beam 1 was stopped from entering the glass sample 3 and the glass sample 3
Scanning was performed in the Y-axis direction, and irradiation was again performed under the same conditions. After repeating the condensing irradiation, stopping the condensing irradiation, and moving the glass sample, the electric stage is set to 20 μm in the Z-axis direction.
It was moved and irradiated similarly in the XY directions.

【0024】集光照射処理されたガラス試料3を光学顕
微鏡で観察したところ、図2に示すように、Pt微粒子
により吸収されていた波長帯(約400〜750nm)
の吸収係数が減少し、灰色着色がなくなり無色に変化し
た領域5が集光照射部分に形成されていた。非集光照射
部分では、色の変化が観察されなかった。波長600n
mの光を用いて記録情報を読み出したところ、集光照射
部と非集光照射部では、屈折率の変化と吸収係数の減少
によるものと考えられる透過率の違いが検出され、屈折
率変化だけを利用した比較例1に比べて著しく大きなコ
ントラストであった。また、20μm間隔で上層と下層
のスポットの読取りエラーはなく、X、Y、Z方向に三
次元的に情報を記録できた。
When the condensed and irradiated glass sample 3 was observed with an optical microscope, as shown in FIG. 2, the wavelength band (about 400 to 750 nm) absorbed by the Pt fine particles was observed.
The region 5 in which the absorption coefficient was decreased, the gray coloration was lost, and the color changed to colorless was formed in the condensed irradiation part. No color change was observed in the non-condensed irradiation part. 600n wavelength
When the recorded information was read using the light of m, the difference in the refractive index between the condensed irradiation part and the non-condensed irradiation part, which was considered to be due to the change in the refractive index and the decrease in the absorption coefficient, was detected. The contrast was remarkably higher than that of Comparative Example 1 using only In addition, there was no reading error of the upper and lower spots at intervals of 20 μm, and information could be recorded three-dimensionally in the X, Y, and Z directions.

【0025】実施例5:CuCl微粒子分散ガラス SiO2 ,Al23 ,B23 ,Li2 CO3 ,Na
2 CO3 ,K2 CO3,CuCl,SnOを原料粉末と
して用い、SiO2 :65重量%,Al23:6重量
%,B23 :17重量%,Li2 O:4重量%,Na
2 O:4重量%,K2 O:4重量%CuCl:0.5重
量%,SnO:0.2重量%の組成に調合した。原料粉
末400gを300cc白金製ルツボに投入した後、大
気中1450℃で2時間撹拌しながら加熱溶解した。均
一溶解したガラスを真鍮の型に流し込んで厚さ5mmの
板に成型し、冷却した後、450℃のアニールで歪みを
除去した。
Example 5: CuCl fine particle dispersed glass SiO 2 , Al 2 O 3 , B 2 O 3 , Li 2 CO 3 , Na
Using 2 CO 3 , K 2 CO 3 , CuCl and SnO as raw material powder, SiO 2 : 65 wt%, Al 2 O 3 : 6 wt%, B 2 O 3 : 17 wt%, Li 2 O: 4 wt% , Na
2 O: 4% by weight, K 2 O: 4% by weight, CuCl: 0.5% by weight, SnO: 0.2% by weight. After 400 g of the raw material powder was put into a 300 cc platinum crucible, the mixture was heated and dissolved in the atmosphere at 1450 ° C. for 2 hours while stirring. The uniformly melted glass was poured into a brass mold to form a 5 mm-thick plate. After cooling, the strain was removed by annealing at 450 ° C.

【0026】ガラス中にCuCl微粒子を析出させるた
め、電気炉を用いて昇温速度5℃/分でガラスを昇温
し、550℃で4時間保持した後、炉内で放冷した。次
いで、切断・研磨し、厚さ4mmのガラス試料を作製し
た。得られたガラス試料を透過型電子顕微鏡(TEM)
で観察したところ、平均粒径8nmのCuCl微粒子が
ガラスマトリックスに分散していた。析出処理されたガ
ラス試料3を実施例1と同様にパルスレーザーで照射し
た。パルスレーザー光には、アルゴンレーザー励起のT
i−サファイアレーザーから発振されたパルス幅1.5
×10-13 秒、繰返し周期1kHz、波長500nmの
光を使用した。集光点4に形成されたスポットは、直径
が約0.7μmであった。
In order to precipitate CuCl fine particles in the glass, the glass was heated at a rate of 5 ° C./min using an electric furnace, kept at 550 ° C. for 4 hours, and allowed to cool in the furnace. Next, the glass sample was cut and polished to produce a glass sample having a thickness of 4 mm. The obtained glass sample is subjected to a transmission electron microscope (TEM).
As a result, it was found that CuCl fine particles having an average particle diameter of 8 nm were dispersed in the glass matrix. The glass sample 3 subjected to the precipitation treatment was irradiated with a pulse laser in the same manner as in Example 1. The pulsed laser light includes argon laser-excited T
Pulse width 1.5 oscillated from i-sapphire laser
Light having a wavelength of 500 nm and a repetition period of 1 kHz and a wavelength of 10-13 seconds was used. The spot formed at the focal point 4 had a diameter of about 0.7 μm.

【0027】本実施例のCuCl微粒子分散ガラスは、
500nmの波長における透過率が92%であった。ピ
ークエネルギー密度1015W/cm2 で集光点3に3秒
間照射した後、レーザー光1のガラス試料3への入射を
やめ、ガラス試料3をXY軸方向にスキャンさせ、再度
同条件で集光照射した。この集光照射,集光照射中止,
ガラス試料の移動操作を繰り返した後、Z軸方向に電動
ステージを3μm移動させ、XY軸方向へ同様に集光照
射した。集光照射処理されたガラス試料を光学顕微鏡で
観察したところ、図2に示すように、集光照射部分では
CuCl微粒子によって吸収されていた波長帯(約30
0〜385nm)に吸収係数が減少した領域5が形成さ
れていた。一方、非集光照射部分では、色の変化が観察
されなかった。波長375nmの光を用いて記録情報を
読み出したところ、集光照射照射部と非集光照射部で
は、屈折率の変化と吸収係数の減少によるものと考えら
れる透過率の違いが検出され、屈折率変化だけを利用し
た比較例3に比べ著しく大きなコントラストであった。
また、3μm間隔で上層と下層のスポットの読取りエラ
ーはなく、X、Y、Z方向に三次元的に情報を記録でき
た。
The CuCl fine particle dispersed glass of this embodiment is
The transmittance at a wavelength of 500 nm was 92%. After irradiating the focal point 3 with a peak energy density of 10 15 W / cm 2 for 3 seconds, the laser beam 1 is stopped from entering the glass sample 3 and the glass sample 3 is scanned in the X and Y directions, and collected again under the same conditions. Light irradiation was performed. This focusing irradiation, stopping the focusing irradiation,
After repeating the operation of moving the glass sample, the motorized stage was moved by 3 μm in the Z-axis direction, and focused and irradiated similarly in the XY-axis directions. When the glass sample subjected to the condensing irradiation treatment was observed with an optical microscope, as shown in FIG. 2, the wavelength band (about 30 nm) absorbed by the CuCl fine particles in the condensing irradiation part was observed.
(0 to 385 nm), a region 5 having a reduced absorption coefficient was formed. On the other hand, no color change was observed in the non-condensed irradiation part. When the recorded information was read using light having a wavelength of 375 nm, a difference in the transmittance, which is considered to be due to a change in the refractive index and a decrease in the absorption coefficient, was detected between the condensing irradiation part and the non-condensing irradiation part. The contrast was significantly higher than that of Comparative Example 3 using only the rate change.
In addition, there was no reading error of the spots of the upper layer and the lower layer at an interval of 3 μm, and information could be recorded three-dimensionally in the X, Y, and Z directions.

【0028】実施例6:Cd(S,Se)微粒子分散ガ
ラス SiO2 ,Al23 ,B23 ,Na2 CO3 ,Zn
O,CdS,CdSeを原料粉末として用い、SiO
2 :69重量%,Al23 :1重量%,B2 3 :1
2重量%,Na2 O:6重量%,ZnO:11重量%,
CdS:0.3重量%,CdSe:0.2重量%の組成
に調合した。原料粉末400gを300cc白金製ルツ
ボに投入した後、大気中1450℃で2時間撹拌しなが
ら加熱溶解した。均一溶解したガラスを真鍮の型に流し
込んで厚さ5mmの板に成型し、冷却した後、450℃
のアニールにより歪みを除去した。ガラス中にCd
(S、Se)微粒子を析出させるため、電気炉を用いて
昇温速度5℃/分でガラスを昇温し、650℃で4時間
保持した後、炉内で放冷した。次いで、切断・研磨し、
厚さ4mmのガラス試料を作製した。このガラス試料
は、Cd(S、Se)微粒子の析出により赤色に着色し
ており、透過型電子顕微鏡(TEM)で観察したところ
平均粒径10nmのCd(S、Se)微粒子がガラスマ
トリックスに分散していた。
Example 6: Cd (S, Se) fine particle dispersion gas
Las SiOTwo , AlTwo OThree , BTwo OThree , NaTwo COThree , Zn
O, CdS, CdSe as raw material powder, SiO
Two : 69% by weight, AlTwo OThree : 1% by weight, BTwo O Three : 1
2% by weight, NaTwo O: 6% by weight, ZnO: 11% by weight,
Composition of CdS: 0.3% by weight and CdSe: 0.2% by weight
Was prepared. 400g of raw material powder is 300cc platinum ruth
After being charged into the bottle, stir at 1450 ° C for 2 hours in the atmosphere.
And dissolved by heating. Pour the uniformly melted glass into a brass mold
And molded into a 5 mm thick plate. After cooling, 450 ° C
The strain was removed by annealing. Cd in glass
(S, Se) Using an electric furnace to precipitate fine particles
The temperature of the glass is raised at a rate of 5 ° C./min, and the temperature is raised to 650 ° C. for 4 hours.
After holding, it was allowed to cool in the furnace. Then, cutting and polishing,
A glass sample having a thickness of 4 mm was prepared. This glass sample
Is colored red by precipitation of Cd (S, Se) fine particles.
And observed with a transmission electron microscope (TEM)
Cd (S, Se) fine particles having an average particle size of 10 nm
The tricks were dispersed.

【0029】析出処理されたガラス試料3を実施例1と
同様にパルスレーザーで照射した。パルスレーザー光に
は、アルゴンArレーザー励起のTi−サファイアレー
ザーから発振されたパルス幅1.5×10-13 秒、繰返
し周期1kHz、波長650nmの光を使用した。集光
点4に形成されたスポットは、直径が約0.9μmであ
った。本実施例のCd(S、Se)微粒子分散ガラス
は、650nmの波長における透過率が85%であっ
た。ピークエネルギー密度1015W/cm2 で集光点3
に3秒間照射した後、レーザー光1のガラス試料3への
入射をやめ、ガラス試料3をXY軸方向にスキャンさ
せ、再度同条件で集光照射した。この集光照射,集光照
射中止,ガラス試料の移動操作を繰り返した後、Z軸方
向に電動ステージを10μm移動させ、XY軸方向へ同
様に集光照射した。
The glass sample 3 subjected to the precipitation treatment was irradiated with a pulse laser in the same manner as in Example 1. As the pulse laser light, light having a pulse width of 1.5 × 10 -13 seconds, a repetition period of 1 kHz, and a wavelength of 650 nm, emitted from a Ti-sapphire laser excited by an argon Ar laser, was used. The spot formed at the focal point 4 had a diameter of about 0.9 μm. The Cd (S, Se) fine particle-dispersed glass of this example had a transmittance of 85% at a wavelength of 650 nm. Focus point 3 with peak energy density 10 15 W / cm 2
After 3 seconds, the laser beam 1 was stopped from being incident on the glass sample 3, and the glass sample 3 was scanned in the X and Y directions, and again focused and irradiated under the same conditions. After repeating the condensing irradiation, stopping the condensing irradiation, and moving the glass sample, the electric stage was moved by 10 μm in the Z-axis direction, and the condensing irradiation was similarly performed in the XY-axis directions.

【0030】集光照射処理されたガラス試料3を光学顕
微鏡で観察したところ、図2に示すように、集光照射部
分ではCd(S、Se)微粒子によって吸収されていた
波長帯(約450〜580nm)の吸収係数が減少し、
赤色着色がなくなり無色に変化した領域5が形成されて
いた。一方、非集光照射部分では色の変化が観察されな
かった。波長480nmの光を用いて記録情報を読み出
したところ、集光照射部と非集光照射部では、屈折率の
変化と吸収係数の現象によるものと考えられる透過率の
違いが検出され、屈折率変化だけを利用した比較例4に
比べ著しく大きなコントラストであった。また、10μ
m間隔で上層と下層のスポットの読取りエラーはなく、
X、Y、Z方向の三次元的に情報を記録できた。
When the glass sample 3 subjected to the condensing irradiation treatment was observed with an optical microscope, as shown in FIG. 2, in the condensing irradiation part, the wavelength band (about 450 to 450) absorbed by the Cd (S, Se) fine particles was observed. 580 nm),
The red-colored region 5 was changed to a colorless state. On the other hand, no color change was observed in the non-condensed irradiation part. When the recorded information was read out using light having a wavelength of 480 nm, a difference in transmittance between the condensed irradiating portion and the non-condensing irradiating portion, which is considered to be caused by a change in refractive index and a phenomenon of an absorption coefficient, was detected. The contrast was significantly higher than that of Comparative Example 4 using only the change. Also, 10μ
There is no reading error of the upper and lower spots at m intervals,
Information could be recorded three-dimensionally in the X, Y, and Z directions.

【0031】実施例7:Cd(Se、Te)微粒子分散
ガラス SiO2 ,Al23 ,B23 ,Na2 CO3 ,Zn
O,CdSe,CdTeを原料粉末として用い、SiO
2 :69重量%,Al23 :1重量%,B23 :1
2重量%,Na2 O:3重量%,ZnO:11重量%,
CdSe:0.3重量%,CdTe:0.2重量%の組
成に調合した。原料粉末400gを300cc白金製ル
ツボに投入した後、大気中1450℃で2時間攪拌しな
がら加熱溶解した。均一溶解したガラスを真鍮の型に流
し込んで厚さ5mmの板に成型し、冷却した後、450
℃のアニールにより歪みを除去した。ガラス中にCd
(Se、Te)微粒子を析出させるため、電気炉を用い
て昇温速度5℃/分でガラスを昇温し、650℃で4時
間保持した後、炉内で放冷した。次いで、切断・研磨
し、厚さ4mmのガラス試料を作製した。得られたガラ
ス試料は、Cd(Se、Te)微粒子の析出により赤色
に着色しており、透過型電子顕微鏡(TEM)で観察し
たところ、平均粒径10nmのCd(Se、Te)微粒
子がガラスマトリックスに分散していた。
Example 7: Cd (Se, Te) fine particle dispersed glass SiO 2 , Al 2 O 3 , B 2 O 3 , Na 2 CO 3 , Zn
O, CdSe, CdTe as raw material powder, SiO
2 : 69% by weight, Al 2 O 3 : 1% by weight, B 2 O 3 : 1
2% by weight, Na 2 O: 3% by weight, ZnO: 11% by weight,
The composition was prepared to have a composition of CdSe: 0.3% by weight and CdTe: 0.2% by weight. After 400 g of the raw material powder was put into a 300 cc platinum crucible, the mixture was heated and dissolved in the atmosphere at 1450 ° C. for 2 hours while stirring. The uniformly melted glass was poured into a brass mold to form a 5 mm-thick plate, and after cooling, 450 g
The strain was removed by annealing at ° C. Cd in glass
In order to precipitate (Se, Te) fine particles, the glass was heated at a heating rate of 5 ° C./min using an electric furnace, kept at 650 ° C. for 4 hours, and then allowed to cool in the furnace. Next, the glass sample was cut and polished to produce a glass sample having a thickness of 4 mm. The obtained glass sample was colored red by precipitation of Cd (Se, Te) fine particles, and when observed with a transmission electron microscope (TEM), the Cd (Se, Te) fine particles having an average particle size of 10 nm were glass. The matrix was dispersed.

【0032】析出処理されたガラス試料3を実施例1と
同様にパルスレーザーで照射した。パルスレーザー光に
は、アルゴンレーザー励起のTi−サファイアレーザー
から発振されたパルス幅1.5×10-13 秒、繰り返し
周期1kHz、波長1.2μmの光を使用した。集光点
4に形成されたスポットは、直径が約2μmであった。
本実施例のCd(Se、Te)微粒子分散ガラスは、
1.2μmの波長における透過率が85%であった。ピ
ークエネルギー密度1015W/cm2 で集光点3に10
秒照射した後、レーザー光1のガラス試料3への入射を
やめ、ガラス試料3をXY軸方向にスキャンさせ、再度
同じ条件で集光照射した。この集光照射,集光照射中
止,ガラス試料の移動操作を繰り返した後、Z軸方向に
電動ステージを20μm移動させ、XY方向へ同様に集
光照射した。
The glass sample 3 subjected to the precipitation treatment was irradiated with a pulse laser in the same manner as in Example 1. As the pulsed laser light, light emitted from a Ti-sapphire laser excited by an argon laser, having a pulse width of 1.5 × 10 −13 seconds, a repetition period of 1 kHz, and a wavelength of 1.2 μm was used. The spot formed at the focal point 4 had a diameter of about 2 μm.
The Cd (Se, Te) fine particle dispersed glass of the present embodiment is
The transmittance at a wavelength of 1.2 μm was 85%. 10 at the focal point 3 with a peak energy density of 10 15 W / cm 2
After irradiation for 2 seconds, the laser beam 1 was stopped from being incident on the glass sample 3, the glass sample 3 was scanned in the X and Y directions, and the light was again irradiated under the same conditions. After repeating the condensing irradiation, stopping the condensing irradiation, and moving the glass sample, the electric stage was moved by 20 μm in the Z-axis direction, and the condensing irradiation was similarly performed in the XY directions.

【0033】集光照射処理されたガラス試料を光学顕微
鏡で観察したところ、図2に示すように、集光照射部分
ではCd(Se、Te)微粒子によって吸収されていた
波長帯(約700〜900nm)の吸収係数が減少し、
無色に変化した領域5が形成されていた。一方、非集光
照射部分では、色の変化が観察されなかった。波長75
0nmの光を用いて記録情報を読み出したところ、集光
照射部と非集光照射部では、屈折率の変化と吸収係数の
現象によるものと考えられる透過率の違いが検出され、
屈折率変化だけ利用した比較例4に比べ著しく大きなコ
ントラストであった。また、20μm間隔で上層と下層
のスポットの読取りエラーはなく、X、Y、Z方向に三
次元的に情報を記録できた。
When the glass sample subjected to the condensing irradiation treatment was observed with an optical microscope, as shown in FIG. 2, in the condensing irradiation part, the wavelength band (about 700 to 900 nm) absorbed by the Cd (Se, Te) fine particles was observed. ) Has a reduced absorption coefficient,
The region 5 changed to colorless was formed. On the other hand, no color change was observed in the non-condensed irradiation part. Wavelength 75
When the recorded information was read using light of 0 nm, the difference in the transmittance, which is considered to be due to the change in the refractive index and the phenomenon of the absorption coefficient, was detected between the converging irradiation part and the non-condensing irradiation part,
The contrast was significantly higher than that of Comparative Example 4 using only the change in the refractive index. In addition, there was no reading error of the upper and lower spots at intervals of 20 μm, and information could be recorded three-dimensionally in the X, Y, and Z directions.

【0034】実施例8:Cd(S、Te)微粒子分散ガ
ラス SiO2 ,Al23 ,B23 ,Na2 CO3 ,Zn
O,CdS,CdTeを原料粉末として用い、SiO
2 :69重量%,Al23 :1重量%,B2 3 :1
21重量,Na2 O:61重量,ZnO:111重量,
CdS:0.31重量,CdTe:0.21重量の組成
に調合した。原料粉末400gを300cc白金製ルツ
ボに投入した後、大気中1450℃で2時間攪拌しなが
ら加熱溶解した。均一に溶解したガラスを真鍮の型に流
し込んで厚さ5mmの板に成型し、冷却した後、450
℃のアニールで歪みを除去した。ガラス中にCd(S、
Te)微粒子を析出させるため、電気炉を用いて昇温速
度5℃/分でガラスを昇温し、650℃で4時間保持し
た後、炉内で放冷した。次いで、切断・研磨し、厚さ4
mmのガラス試料を作製した。得られたガラス試料は、
Cd(S、Te)微粒子の析出によって赤色に着色して
おり、透過型電子顕微鏡(TEM)で観察したところ、
平均粒径10nmのCd(S、Te)がガラスマトリッ
クスに分散していた。
Example 8: Cd (S, Te) fine particle dispersion gas
Las SiOTwo , AlTwo OThree , BTwo OThree , NaTwo COThree , Zn
O, CdS, CdTe as raw material powder, SiO
Two : 69% by weight, AlTwo OThree : 1% by weight, BTwo O Three : 1
21 weight, NaTwo O: 61 weight, ZnO: 111 weight,
Composition of CdS: 0.31 weight, CdTe: 0.21 weight
Was prepared. 400g of raw material powder is 300cc platinum ruth
After being put in the bottle, stir in the atmosphere at 1450 ° C for 2 hours.
And dissolved by heating. Pour uniformly melted glass into a brass mold
After shaping into a 5 mm thick plate and cooling, 450
The strain was removed by annealing at ℃. Cd (S,
Te) In order to precipitate fine particles, the heating rate is increased using an electric furnace.
The temperature of the glass is raised at a rate of 5 ° C./min and held at 650 ° C. for 4 hours.
After that, it was allowed to cool in the furnace. Then, cut and polished to a thickness of 4
mm glass samples were prepared. The obtained glass sample is
Colored red by precipitation of Cd (S, Te) fine particles
When observed with a transmission electron microscope (TEM),
Cd (S, Te) with an average particle size of 10 nm
Was dispersed in the box.

【0035】析出処理されたガラス試料3を実施例1と
同様にパルスレーザーで照射した。パルスレーザー光に
は、アルゴンレーザー励起のTi−サファイアレーザー
から発振されたパルス幅1.5×10-13 秒、繰返し周
期200kHz、波長800nmの光を使用した。集光
点4に形成されたスポットは、直径が約1.5μmであ
った。本実施例のCd(S、Te)微粒子分散ガラス
は、800nmの波長における透過率が80%であっ
た。ピークエネルギー密度1015W/cm2 で集光点3
に10秒間照射した後、レーザー光1のガラス試料3へ
の入射をやめ、ガラス試料3をXY軸方向にスキャンさ
せ、再度同じ条件で集光照射した。この集光照射,集光
照射中止,ガラス試料の移動操作を繰り返した後、Z軸
方向に電動ステージを15μm移動させ、XY方向へ同
様に集光照射した。
The glass sample 3 subjected to the precipitation treatment was irradiated with a pulse laser in the same manner as in Example 1. As the pulse laser light, light having a pulse width of 1.5 × 10 -13 seconds, a repetition period of 200 kHz, and a wavelength of 800 nm emitted from an argon laser-excited Ti-sapphire laser was used. The spot formed at the focal point 4 had a diameter of about 1.5 μm. The Cd (S, Te) fine particle-dispersed glass of this example had a transmittance of 80% at a wavelength of 800 nm. Focus point 3 with peak energy density 10 15 W / cm 2
After irradiating the glass sample 3 for 10 seconds, the laser beam 1 was stopped from being incident on the glass sample 3, the glass sample 3 was scanned in the XY-axis directions, and the light was again irradiated under the same conditions. After repeating the condensing irradiation, stopping the condensing irradiation, and moving the glass sample, the electric stage was moved by 15 μm in the Z-axis direction, and the condensing irradiation was similarly performed in the XY directions.

【0036】集光照射処理されたガラス試料3を光学顕
微鏡で観察したところ、図2に示すように、集光照射部
分ではCd(S、Te)微粒子によって吸収されていた
波長帯(約500〜750nm)の吸収係数が減少し、
赤色着色がなくなり無色に変化した領域5が形成されて
いた。一方、非集光照射部分では、色の変化が観察され
なかった。波長580nmの光を用いて記録情報を読み
出したところ、集光照射部と非集光照射部では、屈折率
の変化と吸収係数の減少によるものと考えられる透過率
の違いが検出され、屈折率変化だけを利用した比較例4
に比べ著しく大きなコントラストが得られた。また、1
5μm間隔で上層と下層のスポットの読取りエラーはな
く、X、Y、Z方向に三次元的に情報を記録できた。
When the glass sample 3 subjected to the condensing irradiation treatment was observed with an optical microscope, as shown in FIG. 2, in the condensing irradiation part, the wavelength band (about 500 to 500) absorbed by the Cd (S, Te) fine particles was observed. 750 nm),
The red-colored region 5 was changed to a colorless state. On the other hand, no color change was observed in the non-condensed irradiation part. When the recorded information was read using light having a wavelength of 580 nm, a difference in transmittance between the condensed irradiating portion and the non-condensing irradiating portion, which is considered to be due to a change in the refractive index and a decrease in the absorption coefficient, was detected. Comparative Example 4 using only change
A remarkably large contrast was obtained as compared with. Also, 1
There was no reading error of the upper and lower layer spots at 5 μm intervals, and information could be recorded three-dimensionally in the X, Y, and Z directions.

【0037】比較例1 塩化金酸の水溶液を加えないことを除き実施例1と同じ
原料を用いて、SiO 2 :72重量%,B23 :18
重量%,Na2 O:10重量%,Sb23 :4重量%
の組成をもつガラスを作製した。得られた厚み4mmの
ガラスを被記録材料として用い、実施例1と同様にパル
スレーザ光で集光照射した。集光照射処理されたガラス
を光学顕微鏡で観察したところ、図3に示すように屈折
率の変化した領域6が集光照射部分に形成されており、
非集光照射部分では屈折率の変化が観察されなかった。
波長530nmの光を用いて記録情報を読み出したとこ
ろ、集光照射部と非集光照射部では屈折率の変化による
ものと思われる透過率の違い(コントラスト)がついて
いることが判った。しかし、コントラスト(S/N)
は、実施例1,2、4に比べて非常に小さいものであっ
た。
Comparative Example 1 Same as Example 1 except that no aqueous solution of chloroauric acid was added.
Using raw materials, SiO Two : 72% by weight, BTwo OThree : 18
Wt%, NaTwo O: 10% by weight, SbTwo OThree : 4% by weight
A glass having the following composition was produced. The resulting thickness of 4mm
Glass was used as the recording material, and the
It was focused and irradiated with laser light. Concentrated irradiation treated glass
Was observed with an optical microscope. As shown in FIG.
The area 6 where the rate has changed is formed in the condensed irradiation part,
No change in the refractive index was observed in the non-light-collected irradiation part.
The recorded information was read using light with a wavelength of 530 nm.
Of course, depending on the change in the refractive index between
The difference in transmittance (contrast)
I found out. However, contrast (S / N)
Is very small compared to Examples 1, 2, and 4.
Was.

【0038】比較例2 Ag2 Oを配合しないことを除き実施例3と同じ原料を
用いて、SiO2 :72重量%,CaO:20重量%,
Na2 O:8重量%,SnO:0.2重量%の組成をも
つガラスを作製した。得られた厚み4mmのガラスを被
記録材料として用い、実施例3と同様にパルスレーザ光
で集光照射した。集光照射処理されたガラスを光学顕微
鏡で観察したところ、図3に示すように集光照射部分に
屈折率変化領域6が形成されていた。非集光照射部分で
は、屈折率の変化が観察されなかった。波長420nm
の光を用いて記録情報を読み出したところ、集光照射部
と非集光照射部では屈折率の変化によるものと思われる
透過率の違い(コントラスト)がついていることが判っ
た。しかし、コントラスト(S/N)は、実施例3に比
べて非常に小さいものであった。
Comparative Example 2 Using the same raw materials as in Example 3 except that Ag 2 O was not blended, SiO 2 : 72% by weight, CaO: 20% by weight,
A glass having a composition of Na 2 O: 8% by weight and SnO: 0.2% by weight was prepared. The obtained glass having a thickness of 4 mm was used as a recording material, and focused and irradiated with pulsed laser light in the same manner as in Example 3. Observation of the condensed and irradiated glass by an optical microscope revealed that a refractive index change region 6 was formed in the condensed and irradiated portion as shown in FIG. No change in the refractive index was observed in the non-condensed irradiation part. Wavelength 420nm
When the recorded information was read using this light, it was found that there was a difference (contrast) in the transmittance between the condensed light irradiating part and the non-condensing light irradiating part, presumably due to the change in the refractive index. However, the contrast (S / N) was much smaller than that of Example 3.

【0039】比較例3 CuClを配合しないことを除き実施例5と同じ原料を
用い、SiO2 :65重量%,Al23 :6重量%,
23 :14重量%,Li2 O:4重量%,Na2
O:4重量%,K2 O:4重量%,SnO:0.2重量
%の組成をもつガラスを作製した。得られた厚み4mm
のガラスを被記録材料として用い、実施例5と同様にパ
ルスレーザ光で集光照射した。集光照射処理されたガラ
ス試料を光学顕微鏡で観察したところ、図3に示すよう
に、集光照射部分に屈折率変化領域6が形成されてい
た。非集光照射部分では、屈折率の変化が観察されなか
った。波長375nmの光を用いて記録情報を読み出し
たところ、集光照射部と非集光照射部では、屈折率の変
化によるものと思われる透過率の違い(コントラスト)
がついていることが判った。しかし、コントラスト(S
/N)は、実施例5に比べて非常に小さいものであっ
た。
Comparative Example 3 The same raw materials as in Example 5 were used except that CuCl was not blended. SiO 2 : 65% by weight, Al 2 O 3 : 6% by weight,
B 2 O 3 : 14% by weight, Li 2 O: 4% by weight, Na 2
O: 4 wt%, K 2 O: 4 wt%, SnO: to produce a glass having a composition of 0.2 wt%. Obtained thickness 4mm
Was used as a recording material, and focused and irradiated with pulsed laser light in the same manner as in Example 5. Observation of the condensed and irradiated glass sample with an optical microscope revealed that the refractive index change region 6 was formed in the condensed and irradiated portion as shown in FIG. No change in the refractive index was observed in the non-condensed irradiation part. When the recorded information was read using light having a wavelength of 375 nm, the difference (contrast) in the transmittance between the converging and irradiating portions and the non-condensing irradiating portion, which is considered to be due to a change in the refractive index.
It turned out that it was attached. However, the contrast (S
/ N) was much smaller than that of Example 5.

【0040】比較例4 Cd化合物を配合しないことを除き実施例6〜8と同じ
原料を用い、SiO2:69重量%,Al23 :1重
量%,B23 :12重量%,Na2 O:6重量%,Z
nO:11重量%の組成をもつガラスを作製した。得ら
れた厚み4mmのガラスを被記録材料として用い、実施
例6と同様にパルスレーザ光で集光照射した。集光照射
処理されたガラス試料を光学顕微鏡で観察したところ、
図3に示すように、集光照射部分に屈折率変化領域6が
形成されていた。一方、非集光照射部分では、屈折率の
変化が観察されなかった。波長480nmの光を用いて
記録情報を読み出したところ、集光照射部と非集光照射
部では屈折率の変化によるものと思われる透過率の違い
(コントラスト)がついていることが判った。しかし、
コントラスト(S/N)は、実施例6〜8に比べて非常
に小さいものであった。
Comparative Example 4 The same raw materials as in Examples 6 to 8 were used except that the Cd compound was not blended. SiO 2 : 69% by weight, Al 2 O 3 : 1% by weight, B 2 O 3 : 12% by weight, Na 2 O: 6% by weight, Z
A glass having a composition of nO: 11% by weight was produced. The obtained glass having a thickness of 4 mm was used as a recording material, and was irradiated with condensed laser light in the same manner as in Example 6. Observation of the glass sample subjected to the condensing irradiation treatment with an optical microscope,
As shown in FIG. 3, the refractive index changing region 6 was formed in the condensed irradiation part. On the other hand, no change in the refractive index was observed in the non-condensed irradiation part. When the recorded information was read out using light having a wavelength of 480 nm, it was found that a difference (contrast) in transmittance between the converging and irradiating portions and the non-concentrating irradiating portions was considered to be due to a change in refractive index. But,
The contrast (S / N) was very small as compared with Examples 6 to 8.

【0041】以上の実施例1〜8及び比較例1〜4にお
ける透過率変化を表1に示す。実施例と比較例との対比
から明らかなように、本発明に従ったガラスでは、析出
した微粒子がレーザ光の集光照射によって変化し、屈折
率が変化し又は吸収係数が減少した領域5が形成され
る。この領域5のため、従来の屈折率変化領域6をもつ
ガラスに比較して非常に大きなコントラスト(S/N)
が得られ、三次元光メモリ媒体として優れたものである
ことが判る。
Table 1 shows changes in transmittance in Examples 1 to 8 and Comparative Examples 1 to 4. As is clear from the comparison between the example and the comparative example, in the glass according to the present invention, the region 5 in which the precipitated fine particles are changed by the irradiation of the laser beam condensed, the refractive index is changed, or the absorption coefficient is reduced. It is formed. Due to this region 5, an extremely large contrast (S / N) is obtained as compared with a glass having a conventional refractive index changing region 6.
Is obtained, and it can be seen that this is an excellent three-dimensional optical memory medium.

【0042】 [0042]

【0043】[0043]

【発明の効果】以上に説明したように、本発明の三次元
光メモリ媒体においては、微粒子分散媒質の内部をパル
スレーザ光で集光照射することにより、微粒子分散媒質
に析出している微粒子を変質させ、屈折率が変化し又は
吸収係数が減少した領域を形成させている。この領域
は、パルスレーザ光の集光点に応じて微粒子分散媒質の
内部で三次元的に多数形成されるため、高密度記録に利
用できる。しかも、屈折率変化だけを利用した光メモリ
媒体に比較してコントラストが非常に高く、読取りエラ
ーも少なくなる。
As described above, in the three-dimensional optical memory medium of the present invention, the inside of the fine particle dispersion medium is condensed and irradiated with the pulsed laser light, so that the fine particles precipitated in the fine particle dispersion medium are altered. Thus, a region where the refractive index changes or the absorption coefficient decreases is formed. Since a large number of such regions are formed three-dimensionally in the fine particle dispersion medium in accordance with the focal point of the pulsed laser beam, they can be used for high-density recording. In addition, the contrast is very high and the reading error is small as compared with the optical memory medium using only the change in the refractive index.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 微粒子分散ガラス材料の内部に集光点を調節
したレーザー光で微粒子分散媒質を照射している状態
FIG. 1 A state in which a fine particle-dispersed medium is irradiated inside a fine-particle-dispersed glass material with a laser beam whose focal point is adjusted.

【図2】 微粒子分散媒質の内部にスポット状の屈折率
変化・吸収係数減少域が形成された三次元光メモリ媒体
FIG. 2 shows a three-dimensional optical memory medium in which a spot-like refractive index change / absorption coefficient reduction region is formed inside a fine particle dispersion medium.

【図3】 微粒子分散媒質の内部にスポット状の屈折率
変化域が形成された三次元光メモリ媒体
FIG. 3 shows a three-dimensional optical memory medium in which a spot-like refractive index change region is formed inside a fine particle dispersion medium.

【符号の説明】[Explanation of symbols]

1:パルスレーザー光 2:集光装置(レンズ)
3:微粒子分散媒質(ガラス試料) 4:集光点
5:屈折率が変化し又は吸収係数が減少した領域 6:屈折率変化領域
1: pulsed laser light 2: focusing device (lens)
3: Fine particle dispersion medium (glass sample) 4: Focus point
5: a region where the refractive index has changed or the absorption coefficient has decreased 6: a refractive index change region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 清貴 奈良県奈良市朱雀一丁目13番22号 (72)発明者 平尾 一之 京都府相楽郡木津町木津川台三丁目5番8 号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyotaka Miura 1-13-22 Suzaku, Nara City, Nara Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微粒子分散媒質を基体とし、基体内部へ
のパルスレーザー光の集光照射により微粒子の分散状態
が局部的に変化した単数又は複数のスポットが基体内部
に存在している三次元光メモリー媒体。
1. A three-dimensional light in which one or a plurality of spots in which a dispersion state of fine particles is locally changed by condensing irradiation of a pulsed laser beam on the inside of a base and a fine particle dispersion medium is present in the base. Memory medium.
【請求項2】 微粒子分散媒質の吸収波長領域の吸収係
数が減少している単数又は複数のスポットが形成されて
いる請求項1記載の三次元光メモリー媒体。
2. The three-dimensional optical memory medium according to claim 1, wherein one or more spots having a reduced absorption coefficient in an absorption wavelength region of the fine particle dispersion medium are formed.
【請求項3】 微粒子分散媒質が微粒子分散ガラスであ
る請求項1又は2記載の三次元光メモリー媒体。
3. The three-dimensional optical memory medium according to claim 1, wherein the fine particle dispersion medium is a fine particle dispersion glass.
【請求項4】 微粒子分散媒質の微粒子が、Au,C
u,Ag,Pt,CuCl,CuBr,CdS,CdS
e,CdTeから選ばれた1種又は2種以上の微粒子が
分散している請求項1〜3の何れかに記載の三次元光メ
モリー媒体。
4. The method according to claim 1, wherein the fine particles of the fine particle dispersion medium are Au, C
u, Ag, Pt, CuCl, CuBr, CdS, CdS
The three-dimensional optical memory medium according to any one of claims 1 to 3, wherein one or two or more kinds of fine particles selected from e and CdTe are dispersed.
【請求項5】 微粒子分散状態が変化するエネルギー量
を持つパルスレーザー光を微粒子分散媒質の内部に集光
し、微粒子分散媒質の内部でパルスレーザー光の集光点
を相対移動させながら、微粒子分散状態が局部的に変化
した単数又は複数のスポットを微粒子分散媒質の内部に
形成することを特徴とする三次元光メモリー媒体の製造
方法。
5. A method in which a pulsed laser beam having an amount of energy that changes the state of dispersion of fine particles is focused inside the fine particle dispersion medium, and while the focal point of the pulse laser light is relatively moved inside the fine particle dispersion medium, the fine particles are dispersed. A method for manufacturing a three-dimensional optical memory medium, wherein one or more spots whose states have locally changed are formed inside a fine particle dispersion medium.
JP03695598A 1998-02-19 1998-02-19 Three-dimensional optical memory medium and method of manufacturing the same Expired - Fee Related JP3558855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03695598A JP3558855B2 (en) 1998-02-19 1998-02-19 Three-dimensional optical memory medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03695598A JP3558855B2 (en) 1998-02-19 1998-02-19 Three-dimensional optical memory medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11232706A true JPH11232706A (en) 1999-08-27
JP3558855B2 JP3558855B2 (en) 2004-08-25

Family

ID=12484179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03695598A Expired - Fee Related JP3558855B2 (en) 1998-02-19 1998-02-19 Three-dimensional optical memory medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3558855B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216649A (en) * 2000-01-31 2001-08-10 Central Glass Co Ltd Three-dimensional optical memory medium and method for recording
WO2001088925A1 (en) * 2000-05-18 2001-11-22 Japan Science And Technology Corporation Method for rewriting data in three-dimensional optical memory device fabricated in glass by ultra-short light pulse
JP2002068783A (en) * 2000-08-31 2002-03-08 Yuichi Watanabe Method for forming light emitting center in glass
WO2003085657A1 (en) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Information recording medium and its production method, and optical information recording/reproducing apparatus
WO2004036569A1 (en) * 2002-10-16 2004-04-29 Matsushita Electric Industrial Co., Ltd. Information recording medium, process for producing the same and optical information recording and reproducing device
JP2005321421A (en) * 2004-05-06 2005-11-17 Okamoto Glass Co Ltd Diffraction optical element and glass material
JP2007086556A (en) * 2005-09-26 2007-04-05 Okamoto Glass Co Ltd Method for manufacturing anisotropic glass, anisotropic glass, and polarizing element using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728154B2 (en) 2000-01-31 2004-04-27 Central Glass Company, Limited Three-dimensional optical memory medium and process for producing same
JP2001216649A (en) * 2000-01-31 2001-08-10 Central Glass Co Ltd Three-dimensional optical memory medium and method for recording
WO2001088925A1 (en) * 2000-05-18 2001-11-22 Japan Science And Technology Corporation Method for rewriting data in three-dimensional optical memory device fabricated in glass by ultra-short light pulse
EP1306853A1 (en) * 2000-05-18 2003-05-02 Japan Science and Technology Corporation Method for rewriting data in three-dimensional optical memory device fabricated in glass by ultra-short light pulse
US6897433B2 (en) 2000-05-18 2005-05-24 Japan Science And Technology Corporation Method for rewriting data in three-dimensional optical memory device fabricated in glass by ultra-short light pulse
EP1306853A4 (en) * 2000-05-18 2005-07-20 Japan Science & Tech Agency Method for rewriting data in three-dimensional optical memory device fabricated in glass by ultra-short light pulse
JP2002068783A (en) * 2000-08-31 2002-03-08 Yuichi Watanabe Method for forming light emitting center in glass
US7313080B2 (en) 2002-04-08 2007-12-25 Matsushita Electric Industrial Co., Ltd. Information recording medium and its production method, and optical information recording reproducing apparatus
WO2003085657A1 (en) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Information recording medium and its production method, and optical information recording/reproducing apparatus
CN100392738C (en) * 2002-04-08 2008-06-04 松下电器产业株式会社 Information recording medium and its production method, and optical information recording/reproducing apparatus
WO2004036569A1 (en) * 2002-10-16 2004-04-29 Matsushita Electric Industrial Co., Ltd. Information recording medium, process for producing the same and optical information recording and reproducing device
JP2005321421A (en) * 2004-05-06 2005-11-17 Okamoto Glass Co Ltd Diffraction optical element and glass material
JP2007086556A (en) * 2005-09-26 2007-04-05 Okamoto Glass Co Ltd Method for manufacturing anisotropic glass, anisotropic glass, and polarizing element using the same

Also Published As

Publication number Publication date
JP3558855B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP3219705B2 (en) Glass ceramic substrate for magnetic information storage media
US6177169B1 (en) Optical information recording medium
WO2010071202A1 (en) Glass, and glass processing method
KR860002121B1 (en) Optical information recording material
US5694249A (en) Three-dimensional optical memory element and method of writing information therein
JPH11232706A (en) Three-dimensional optical memory medium and production thereof
JP2506375B2 (en) Method of manufacturing optical recording medium
JP2000343820A (en) Information recording medium and information recorder
CN1601694A (en) Mfg.method of element and observing method thereof
US6350506B2 (en) Textured surface and method
JPH1171139A (en) Microcrystal-dispersing glass and its production
JP4071309B2 (en) Glass substrate for magnetic disk, method for manufacturing the same, and method for manufacturing magnetic disk media
JPH1160271A (en) Metallic microparticle-dispersed glass and its production
CN1591630A (en) Method for producing a master disk,stamper and recording medium,and master disk, stamper and recording medium
EP0051283A1 (en) Optical recording medium and method for its formation
EP1122724B1 (en) Three-dimensional optical memory medium and process for producing the same
JPH1045426A (en) Glass ceramic substrate for magnetic information memory medium and its production
JPH029954B2 (en)
RU2713044C1 (en) Optical information carrier based on oxide glasses
JP3485456B2 (en) Optical recording device
JPS61134944A (en) Optical information storage medium
CN112159099A (en) Method for inducing precipitation of quantum dots in glass by picosecond laser
JP2974556B2 (en) Information recording method
JP2000128575A (en) Glass composition for photobleaching, glass for photobleaching, and its production
JP2003162843A (en) Optical data recording medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees