JPH11224880A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11224880A
JPH11224880A JP10024601A JP2460198A JPH11224880A JP H11224880 A JPH11224880 A JP H11224880A JP 10024601 A JP10024601 A JP 10024601A JP 2460198 A JP2460198 A JP 2460198A JP H11224880 A JPH11224880 A JP H11224880A
Authority
JP
Japan
Prior art keywords
insulating film
wiring
connection hole
groove
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10024601A
Other languages
Japanese (ja)
Inventor
Hideyuki Akanuma
英幸 赤沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10024601A priority Critical patent/JPH11224880A/en
Publication of JPH11224880A publication Critical patent/JPH11224880A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76817Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics using printing or stamping techniques

Abstract

PROBLEM TO BE SOLVED: To prevent a wiring and a connection hole from being misaligned with each other when the groove of a groove wiring and the connection hole are formed through a single embossing operation by a method wherein a projection for forming a groove wiring and another projection for forming a connection hole are provided in an embossing die. SOLUTION: A MOS transistor 202 is formed on a silicon layer 201, and a first and a second insulating film, 203 and 204, are formed in layers thereon through a CVD method. In succession, the second insulating film 204 is flattened, a first projection 206 provided to an embossing die 205 is made to bite into the second insulating film 204 to form a groove 207. At the same time, a second projection 208 is provided in a part of the first projection 206, and the second projection 208 is made to bite into the second insulating film 204 to form a connection hole 209. By this setup, a photolithography process and an etching process both carried out for the formation of wiring can be shortened, and the wiring is prevented from being misaligned with the connection hole 209 when the groove 207 and the connection hole 209 are formed through a single embossing operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関し、特に金属配線および層間絶縁膜の形成工程に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a process for forming a metal wiring and an interlayer insulating film.

【0002】[0002]

【従来の技術】従来の半導体装置の製造方法を、特に配
線および層間絶縁膜形成の工程について図1の工程断面
図を用いて説明する。シリコン層101上にはMOS型
トランジスタ102を形成してある(図1a)。この上
にまず酸化シリコンからなる第1の絶縁膜103を形成
し、続いてホウ素リン珪酸ガラス(BPSG)からなる
第2の絶縁膜104を堆積する(図1b)。続いて高温
下でBPSGを軟化させる、いわゆるリフロー法により
第2の絶縁膜104の平坦化を行い、続けて接続孔10
5の形成、配線106の形成を行う(図1c)。必要に応
じてさらに絶縁膜形成、平坦化、接続孔形成、配線形成
の工程を繰り返し、半導体装置を完成する。
2. Description of the Related Art A conventional method for manufacturing a semiconductor device will be described with reference to the sectional views of FIGS. A MOS transistor 102 is formed on the silicon layer 101 (FIG. 1A). First, a first insulating film 103 made of silicon oxide is formed thereon, and then a second insulating film 104 made of borophosphosilicate glass (BPSG) is deposited (FIG. 1B). Subsequently, the second insulating film 104 is flattened by a so-called reflow method of softening BPSG at a high temperature, and then the connection holes 10 are softened.
5 and the wiring 106 are formed (FIG. 1C). If necessary, the steps of forming an insulating film, flattening, forming a connection hole, and forming a wiring are repeated to complete a semiconductor device.

【0003】絶縁膜(層間絶縁膜)の平坦化方法として
は上記のほかに化学機械研磨(CMP)を用いる方法、
あるいはスピンオングラス(SOG)を用いる方法など
があり、またはこれらを組み合わせて用いる場合もあ
る。または、例えば特開平8−250493にあるよう
にプレスによって絶縁膜を平坦化する方法もある。いず
れにしても絶縁膜の平坦化後は接続孔の形成、配線の形
成と続くか、場合によっては溝配線のための溝の形成と
接続孔の形成、配線の形成と続く。
As a method for planarizing an insulating film (interlayer insulating film), in addition to the above, a method using chemical mechanical polishing (CMP),
Alternatively, there is a method using spin-on-glass (SOG), or a combination thereof. Alternatively, for example, there is a method of flattening an insulating film by pressing as described in Japanese Patent Application Laid-Open No. 8-250493. In any case, after the planarization of the insulating film, the formation of the connection hole and the formation of the wiring are continued, or in some cases, the formation of the groove for the groove wiring, the formation of the connection hole, and the formation of the wiring are continued.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
半導体装置の製造方法は少なくとも絶縁膜の成膜および
平坦化、接続孔の形成、配線の形成という工程からなっ
ており、さらに少なくとも接続孔の形成工程と配線の形
成工程にはそれぞれフォトリソグラフィ工程とエッチン
グ工程が含まれ、多層配線を要する場合には、半導体装
置製造の工程が非常に長くなってしまうという課題があ
った。
However, the conventional method of manufacturing a semiconductor device comprises at least the steps of forming and flattening an insulating film, forming a connection hole, and forming a wiring, and further forming at least a connection hole. The process and the wiring formation process include a photolithography process and an etching process, respectively. When multi-layer wiring is required, there is a problem that the process of manufacturing a semiconductor device becomes extremely long.

【0005】[0005]

【課題を解決するための手段】そこで本発明の半導体装
置の製造方法は、絶縁膜を形成する工程と、前記絶縁膜
が軟化する温度の下で前記絶縁膜の表面に型押し(プレ
ス)する工程とを有し、型押しに用いる型に溝配線を形
成するための突起や、接続孔を形成するための突起を設
けてあることを特徴とし、半導体装置の製造工程を短縮
出来る半導体装置の製造方法を提供することを目的とす
る。
Therefore, a method of manufacturing a semiconductor device according to the present invention comprises a step of forming an insulating film and embossing (pressing) the surface of the insulating film at a temperature at which the insulating film softens. And a projection for forming a groove wiring and a projection for forming a connection hole are provided in a mold used for embossing, so that the manufacturing process of the semiconductor device can be shortened. It is intended to provide a manufacturing method.

【0006】[0006]

【発明の実施の形態】本発明の半導体装置の製造方法の
例を図2の工程断面図を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a method for manufacturing a semiconductor device according to the present invention will be described with reference to the cross-sectional views in FIGS.

【0007】シリコン層201上にはMOS型トランジ
スタ202を形成してある(図2a)。この上にCVD法
を用いて酸化シリコンからなる第1の絶縁膜203を形
成した後、さらにCVD法でホウ素リン珪酸ガラス(B
PSG)からなる第2の絶縁膜204を形成する(図2
b)。続いて900℃程度の高温下でBPSGのリフロ
ーによる第2の絶縁膜204の平坦化を行い、次に型2
05を用いて約850℃の高温下で第2の絶縁膜204
の表面を型押しする(図1c)。本例では型205は酸
化シリコンからなるが、型押し時の温度で軟化しなけれ
ば他の材料で型を作ることは可能である。例えばシリコ
ンカーバイドやアルミナなどが考えられる。型205に
は第1の突起206を設けて有りこの第1の突起206
の部分が第2の絶縁膜204に食い込み、溝207が形
成される。溝207は後に金属で埋め込まれ配線となる
(いわゆるダマシン法による配線形成のための溝に相当
する)部分である。また、第1の突起206の一部には
第2の突起208を設けて有り、これにより第2の絶縁
膜204に接続孔209が形成される。ただし、この型
押しの際に形成される接続孔209は底までは開口しな
い。これは第1の絶縁膜203があるためであり、また
下層にダメージを与えないように第2の絶縁膜204に
対しても余裕を持った、つまり第2の絶縁膜204を型
205の第2の突起208が突き抜けない深さにしてお
く必要があるためである。もちろん、このような制約が
無い場合、例えば第1の絶縁膜203を省略し、かつ接
続孔209の下地が展性のある金属などの柔らかい下地
である場合には、あるいは型押し工程を十分正確に制御
可能な場合には接続孔209を底まで開口してよい。
A MOS transistor 202 is formed on the silicon layer 201 (FIG. 2A). After a first insulating film 203 made of silicon oxide is formed thereon using a CVD method, a boron-phosphorus silicate glass (B
2 (PSG) is formed.
b). Subsequently, the second insulating film 204 is planarized by reflow of BPSG at a high temperature of about 900 ° C.
05 at a high temperature of about 850 ° C.
Is embossed (FIG. 1c). In this example, the mold 205 is made of silicon oxide, but it is possible to make the mold with another material if it is not softened at the temperature at the time of stamping. For example, silicon carbide and alumina can be considered. The mold 205 is provided with a first projection 206.
Portion cuts into the second insulating film 204, and a groove 207 is formed. The groove 207 is a portion which is later buried with a metal and becomes a wiring (corresponding to a groove for forming a wiring by a so-called damascene method). In addition, a second projection 208 is provided on a part of the first projection 206, whereby a connection hole 209 is formed in the second insulating film 204. However, the connection hole 209 formed during the embossing does not open to the bottom. This is because the first insulating film 203 is provided, and the second insulating film 204 has a margin so as not to damage the lower layer. This is because it is necessary to make the depth such that the second projection 208 does not penetrate. Of course, when there is no such restriction, for example, when the first insulating film 203 is omitted, and when the base of the connection hole 209 is a soft base such as a malleable metal, or the embossing process is sufficiently accurate. If it is possible to control the distance, the connection hole 209 may be opened to the bottom.

【0008】次に接続孔209を底まで開口するため第
2の絶縁膜204の全面エッチングを行う。本例では第
2の絶縁膜204がBPSGであり、第1の絶縁膜20
3が酸化シリコンであるので、第2の絶縁膜204の全
面エッチングの際に接続孔209の底に露出した第1の
絶縁膜203も同時にエッチングし、接続孔209を底
まで開口することが可能である。さらに窒化チタン膜2
10をスパッタ法で成膜し、CVD法でタングステン膜
211を全面に成膜し、接続孔209と溝207部分以
外のタングステン膜211および窒化チタン膜210を
CMP法で取り除いて配線を形成して本発明に係る工程
を終了する(図1d)。
Next, the entire surface of the second insulating film 204 is etched to open the connection hole 209 to the bottom. In this example, the second insulating film 204 is BPSG, and the first insulating film 20
Since silicon oxide 3 is used, when the entire surface of the second insulating film 204 is etched, the first insulating film 203 exposed at the bottom of the connection hole 209 is simultaneously etched, and the connection hole 209 can be opened to the bottom. It is. Furthermore, titanium nitride film 2
10 is formed by a sputtering method, a tungsten film 211 is formed on the entire surface by a CVD method, and the tungsten film 211 and the titanium nitride film 210 other than the connection hole 209 and the groove 207 are removed by a CMP method to form a wiring. The process according to the present invention is completed (FIG. 1d).

【0009】本例では第2の絶縁膜204の平坦化を型
押しとは別に行ったが、型205の突起部分以外を平坦
にしておけば第2の絶縁膜204の平坦化と溝207お
よび接続孔209の形成を同時に行うことも可能であ
る。また、本例では絶縁膜に酸化シリコンやBPSGを
用いたが、それら以外にも型押しで溝配線のための溝や
接続孔を形成しうる材料であってかつ層間絶縁膜として
の機能を有する物質であれば用いることができる。例え
ば有機高分子膜(樹脂膜)などがあげられる。型押しの
際の温度は材料によって変える必要があるが、例えば4
00℃以下で軟化する材料を用いれば、アルミニウムあ
るいはその合金を配線材料に用いて2層以上の配線をす
る際の2層目以降にも本例の方法を適用できる。そのほ
か、本例ではMOS型トランジスタ上の配線の形成工程
について述べているがこれに限られるものではなく、例
えばバイポーラトランジスタでもよく、さらには化合物
半導体装置などでも本例の方法は適用可能であり、ま
た、配線材料に窒化チタンとタングステンを用いている
が、配線材料がこれらに限られることもなく、例えば多
結晶シリコンやアルミニウムあるいはアルミニウムの合
金、銅などを用いることが可能である。
In this embodiment, the flattening of the second insulating film 204 is performed separately from the embossing. However, if the protrusions of the die 205 are flattened, the flattening of the second insulating film 204 and the grooves 207 and The connection holes 209 can be formed at the same time. In this example, silicon oxide or BPSG was used for the insulating film. However, other than these materials, any other material capable of forming a groove or a contact hole for the groove wiring by embossing and having a function as an interlayer insulating film. Any substance can be used. For example, an organic polymer film (resin film) can be used. The temperature during embossing needs to be changed depending on the material.
If a material that softens at a temperature of 00 ° C. or lower is used, the method of this example can be applied to the second and subsequent layers when wiring of two or more layers is performed using aluminum or an alloy thereof as a wiring material. In addition, in the present embodiment, the process of forming the wiring on the MOS transistor is described. However, the present invention is not limited to this. For example, a bipolar transistor may be used, and the method of the present embodiment may be applied to a compound semiconductor device. Further, although titanium nitride and tungsten are used as the wiring material, the wiring material is not limited to these, and for example, polycrystalline silicon, aluminum, an aluminum alloy, copper, or the like can be used.

【0010】さらに、本例では型押しによって溝207
と接続孔209を同時に形成しているが、溝207のみ
を型押しで形成し、接続孔209の形成は従来のように
フォトリソグラフィ法とエッチング法を用いて行っても
よい。
Further, in this embodiment, the groove 207 is formed by embossing.
And the connection hole 209 are formed at the same time, but only the groove 207 may be formed by embossing, and the formation of the connection hole 209 may be performed using a photolithography method and an etching method as in the related art.

【0011】半導体装置上で型押しによる成形を受ける
範囲はチップ単位でもよいが、ウェハ全体を一括して処
理すれば、本発明による工程の短縮の効果はいっそう顕
著なものと出来る。
[0011] The range to be molded by embossing on the semiconductor device may be a chip unit, but if the entire wafer is processed collectively, the effect of the shortening of the process according to the present invention can be further remarkable.

【0012】[0012]

【発明の効果】以上述べた本発明の半導体装置の製造方
法では、従来の半導体装置の製造方法に比べ少なくとも
配線形成のためのフォトリソグラフィ工程とエッチング
工程を、多い場合には接続孔形成のためのフォトリソグ
ラフィ工程とエッチング工程も短縮することが可能であ
る。さらに溝配線の溝と接続孔を一回の型押しで形成す
る場合には配線と接続孔のずれがまったく生じないとい
う効果もある。
According to the method of manufacturing a semiconductor device of the present invention described above, at least a photolithography step and an etching step for forming a wiring and, in many cases, for forming a connection hole are required as compared with the conventional method for manufacturing a semiconductor device. The photolithography step and the etching step can be shortened. Further, when the groove and the connection hole of the grooved wiring are formed by a single embossing, there is also an effect that no deviation occurs between the wiring and the connection hole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の半導体装置の製造方法を説明する工程断
面図。
FIG. 1 is a process sectional view illustrating a conventional method for manufacturing a semiconductor device.

【図2】本発明の半導体装置の製造方法を説明する工程
断面図。
FIG. 2 is a process sectional view illustrating the method for manufacturing the semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

101、201・・・シリコン層 102、202・・・MOS型トランジスタ 103、203・・・第1の絶縁膜 104、204・・・第2の絶縁膜 105・・・接続孔 106・・・配線 205・・・型 206・・・第1の突起 207・・・溝 208・・・第2の突起 209・・・接続孔 210・・・窒化チタン膜 211・・・タングステン膜 101, 201 ... silicon layer 102, 202 ... MOS transistor 103, 203 ... first insulating film 104, 204 ... second insulating film 105 ... connection hole 106 ... wiring 205 ... type 206 ... first projection 207 ... groove 208 ... second projection 209 ... connection hole 210 ... titanium nitride film 211 ... tungsten film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体装置の製造方法であって、少なくと
も絶縁膜を形成する工程と、溝配線となる溝を形成する
ための第1の突起と接続孔を形成するための第2の突起
を有する型を用いて、前記絶縁膜が軟化する温度の下で
前記絶縁膜の表面に型押しし、溝配線となる溝および接
続孔を形成する工程とを有することを特徴とする半導体
装置の製造方法。
1. A method for manufacturing a semiconductor device, comprising: at least a step of forming an insulating film, a first protrusion for forming a groove serving as a groove wiring, and a second protrusion for forming a connection hole. Forming a groove and a connection hole as a groove wiring by embossing the surface of the insulating film at a temperature at which the insulating film is softened using a mold having the mold. Method.
【請求項2】半導体装置の製造方法であって、少なくと
も絶縁膜を形成する工程と、溝配線となる溝を形成する
ための突起を有する型を用いて、前記絶縁膜が軟化する
温度の下で前記絶縁膜の表面に型押しし、溝配線となる
溝を形成する工程とを有することを特徴とする半導体装
置の製造方法。
2. A method for manufacturing a semiconductor device, comprising: using a mold having at least a step of forming an insulating film and a projection for forming a groove to be a groove wiring, at a temperature at which the insulating film is softened. Forming a groove serving as a groove wiring by embossing the surface of the insulating film.
JP10024601A 1998-02-05 1998-02-05 Manufacture of semiconductor device Withdrawn JPH11224880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10024601A JPH11224880A (en) 1998-02-05 1998-02-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10024601A JPH11224880A (en) 1998-02-05 1998-02-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH11224880A true JPH11224880A (en) 1999-08-17

Family

ID=12142683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10024601A Withdrawn JPH11224880A (en) 1998-02-05 1998-02-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH11224880A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029912A1 (en) * 2000-10-04 2002-04-11 CAMBRIDGE UNIVERSITY TECHNICAL SERVICES LIMITED University of Cambridge, Department of Physics Solid state embossing of polymer devices
KR100475537B1 (en) * 2002-12-27 2005-03-10 매그나칩 반도체 유한회사 Plate for forming metal wires and method for forming metal wires using the same
JP2006005109A (en) * 2004-06-17 2006-01-05 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US7128946B2 (en) 2002-12-27 2006-10-31 Hynix Semiconductor Inc. Plate for forming metal wires and method of forming metal wires using the same
EP1796159A2 (en) 2005-12-07 2007-06-13 Canon Kabushiki Kaisha Method for manufacturing a semiconductor device by using a dual damascene process
US20180275469A1 (en) * 2017-03-23 2018-09-27 Boe Technology Group Co., Ltd. Color filter substrate and method of manufacturing the same, and display panel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429800C (en) * 2000-10-04 2008-10-29 剑桥企业有限公司 Solid embossing of polymer devices
JP2004517737A (en) * 2000-10-04 2004-06-17 ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド ユニバーシティー オブ ケンブリッジ デパートメント オブ フィジクス Solid embossing of polymer devices
WO2002029912A1 (en) * 2000-10-04 2002-04-11 CAMBRIDGE UNIVERSITY TECHNICAL SERVICES LIMITED University of Cambridge, Department of Physics Solid state embossing of polymer devices
US7571529B2 (en) 2000-10-04 2009-08-11 Cambridge University Technical Services Limited Method for forming an electronic device in multi-layer structure
KR100870250B1 (en) * 2000-10-04 2008-11-25 캠브리지 유니버시티 테크니칼 서비스 리미티드 A method for forming an electronic device, an electronic device formed thereby, a logic circuit, display and memory including the electronic device, and microcutting tool for use in forming the electronic device
KR100475537B1 (en) * 2002-12-27 2005-03-10 매그나칩 반도체 유한회사 Plate for forming metal wires and method for forming metal wires using the same
US7128946B2 (en) 2002-12-27 2006-10-31 Hynix Semiconductor Inc. Plate for forming metal wires and method of forming metal wires using the same
JP2006005109A (en) * 2004-06-17 2006-01-05 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US7422981B2 (en) 2005-12-07 2008-09-09 Canon Kabushiki Kaisha Method for manufacturing semiconductor device by using dual damascene process and method for manufacturing article having communicating hole
EP1796159A3 (en) * 2005-12-07 2007-08-08 Canon Kabushiki Kaisha Method for manufacturing a semiconductor device by using a dual damascene process
EP1796159A2 (en) 2005-12-07 2007-06-13 Canon Kabushiki Kaisha Method for manufacturing a semiconductor device by using a dual damascene process
US7598172B2 (en) 2005-12-07 2009-10-06 Canon Kabushiki Kaisha Method for manufacturing semiconductor device by using dual damascene process and method for manufacturing article having communicating hole
US20180275469A1 (en) * 2017-03-23 2018-09-27 Boe Technology Group Co., Ltd. Color filter substrate and method of manufacturing the same, and display panel
US10921661B2 (en) * 2017-03-23 2021-02-16 Boe Technology Group Co., Ltd. Color filter substrate and method of manufacturing the same, and display panel

Similar Documents

Publication Publication Date Title
US6010963A (en) Global planarization using SOG and CMP
US5783490A (en) Photolithography alignment mark and manufacturing method
US6635576B1 (en) Method of fabricating borderless contact using graded-stair etch stop layers
US6576508B2 (en) Formation of a frontside contact on silicon-on-insulator substrate
JPH08227938A (en) Semiconductor device and fabrication thereof
JP2720796B2 (en) Method for manufacturing semiconductor device
JPH09260655A (en) Manufacture of semiconductor device
KR100382727B1 (en) Method for fabricating pad without void using self-aligned contact etch process in semiconductor device
US6083827A (en) Method for fabricating local interconnect
JPH11224880A (en) Manufacture of semiconductor device
US6066556A (en) Methods of fabricating conductive lines in integrated circuits using insulating sidewall spacers and conductive lines so fabricated
KR100256055B1 (en) Method of manufacturing semiconductor device for improving planarization
US6426263B1 (en) Method for making a merged contact window in a transistor to electrically connect the gate to either the source or the drain
US6146997A (en) Method for forming self-aligned contact hole
JPH09312331A (en) Semiconductor device and manufacture thereof
US6303484B1 (en) Method of manufacturing dummy pattern
JP4232215B2 (en) Manufacturing method of semiconductor device
KR19990010537A (en) Contact plug formation and insulating film planarization method of semiconductor device
US6033999A (en) Method of solving contact oblique problems of an ILD layer using a rapid thermal anneal
JPS63269535A (en) Method for flattening surface of semiconductor device
KR0160545B1 (en) Fabrication method of contact and via plug silicide
JPH10189759A (en) Semiconductor integrated circuit device and fabrication thereof
KR100301810B1 (en) Semiconductor memory device and method for fabricating the same
JPH11145305A (en) Manufacture of semiconductor device
JP3863951B2 (en) Bit line forming method of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405