JPH11178241A - Power supply device for power failure - Google Patents

Power supply device for power failure

Info

Publication number
JPH11178241A
JPH11178241A JP9345622A JP34562297A JPH11178241A JP H11178241 A JPH11178241 A JP H11178241A JP 9345622 A JP9345622 A JP 9345622A JP 34562297 A JP34562297 A JP 34562297A JP H11178241 A JPH11178241 A JP H11178241A
Authority
JP
Japan
Prior art keywords
power
battery
power supply
power failure
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9345622A
Other languages
Japanese (ja)
Inventor
Takamichi Kataoka
孝通 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9345622A priority Critical patent/JPH11178241A/en
Publication of JPH11178241A publication Critical patent/JPH11178241A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/006Supplying electric power to auxiliary equipment of vehicles to power outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

PROBLEM TO BE SOLVED: To safely and surely secure emergency power from the battery, etc., of an electric automobile without providing any special equipment to the automobile by supplying supplied power after converting the power into such power that can operate each electric appliance when a power failure occurs. SOLUTION: The battery 22 of an electric automobile is always charged with DC power supplied from commercial power supply 23 through an AC/DC conversion adapter 24 for charging. When a power failure detecting device 25 detects a power failure, the change-over contact of the switch of a cable-side connector component is switched and the contact is closed. Consequently, the DC power stored in the battery 22 is supplied to a DC/AC converter 26 and supplied to each electric appliance of a house after the DC power is converted into 100-V AC power through a DC/AC converter 26. Therefore, emergency power can be secured safely and surely from the battery 22 without providing any special equipment to the electric automobile.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、停電時に、自家
発電装置といった特別な設備を必要とせず、しかも特別
な保守、点検などの作業を行う必要もなく、非常用電力
を供給できる停電時電力供給装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power outage which can supply an emergency power without a special facility such as a private power generator at the time of a power outage and without any special maintenance or inspection work. The present invention relates to a supply device.

【0002】[0002]

【従来の技術】図9は、例えば特開平2−142329
号公報に示された、自動車を利用した従来の停電時電力
供給装置を示すブロック図である。図において、1は自
動車、2は自動車1のエンジン起動装置、3は自動車1
のエンジン、4は発電機、5は発電機4から供給された
電力を自動車外部へ取り出すためのコネクタ、6は前記
コネクタ5が一端に構成されたケーブル、8は電柱7に
取り付けられている柱上トランス、9は停電の発生を監
視する停電監視装置、13は自動車制御装置、14はD
C/ACインバータ、12は例えば家庭内で日常一般に
使用される電気機器である。
2. Description of the Related Art FIG.
FIG. 1 is a block diagram illustrating a conventional power failure power supply device using a car disclosed in Japanese Unexamined Patent Publication (Kokai) No. H10-206. In the figure, 1 is an automobile, 2 is an engine starting device of the automobile 1, and 3 is an automobile 1
, An engine 4, a generator 5, a connector for extracting power supplied from the generator 4 to the outside of the vehicle, 6 a cable having the connector 5 at one end, and 8 a pole attached to a utility pole 7. Upper transformer, 9 is a power failure monitoring device for monitoring the occurrence of a power failure, 13 is a vehicle control device, 14 is D
The C / AC inverter 12 is, for example, an electrical device that is generally used at home.

【0003】次に動作について説明する。この停電時電
力供給装置では、停電監視装置9が柱上トランス8から
家庭内に供給される電力を常時監視し、停電を検知する
と、停電の発生を自動車制御装置13に通報する。自動
車制御装置13はこの停電情報を受信すると、自動車1
に対してエンジン起動命令を送出する。自動車1側では
エンジン起動装置2が前記エンジン起動命令を受信して
エンジン3の起動を行う。エンジン3は自動車に電力を
供給するために搭載されている発電機4を駆動し、発電
機4はエンジン3の回転による機械的エネルギーを電気
エネルギーに変換する。これにより発電された電力は、
自動車1から車両外部のコネクタ5およびケーブル6を
介し、自動車制御装置13を介して家庭内の非常用電力
線に供給される。
Next, the operation will be described. In this power failure power supply device, the power failure monitoring device 9 constantly monitors the power supplied from the pole transformer 8 to the home and, when a power failure is detected, notifies the vehicle control device 13 of the occurrence of the power failure. When receiving the power failure information, the vehicle control device 13
Sends an engine start command to On the automobile 1 side, the engine starting device 2 receives the engine starting command and starts the engine 3. The engine 3 drives a generator 4 mounted to supply electric power to the vehicle, and the generator 4 converts mechanical energy due to rotation of the engine 3 into electric energy. The power generated by this is
The power is supplied from the automobile 1 to the emergency power line in the home via the automobile control device 13 via the connector 5 and the cable 6 outside the vehicle.

【0004】なお、エンジン起動装置2は同時にエンジ
ンの負荷に応じて出力の制御を行うことができる。
[0004] The engine starting device 2 can simultaneously control the output according to the load of the engine.

【0005】[0005]

【発明が解決しようとする課題】従来の停電時電力供給
装置は以上のように構成されているので、自動車制御装
置13やエンジン起動装置2などの特別な装置が必要で
あり、自動車自体、自動車制御装置13やエンジン起動
装置2、さらに発電機4から供給された電力を自動車外
部へ取り出すためのコネクタ5などの特殊な装備が必要
となるなどの課題があった。
Since the conventional power supply device at the time of a power failure is constructed as described above, special devices such as the vehicle control device 13 and the engine starting device 2 are required. There were problems such as the necessity of special equipment such as the control device 13, the engine starting device 2, and the connector 5 for taking out the electric power supplied from the generator 4 to the outside of the vehicle.

【0006】また、自動車の停車中には非常時給電用の
ケーブル6を引き回して自動車1に接続する作業が必要
であり、自動車1を使用して外出する際にはその都度、
ケーブル6を取り外す手間が必要になるなどの課題があ
った。
When the vehicle is stopped, it is necessary to route the emergency power supply cable 6 and connect it to the vehicle 1.
There were problems such as the need to remove the cable 6.

【0007】また、無人で自動車のエンジンを自動的に
起動させ発電させるのは、密閉されたガレージ内に自動
車が置かれている場合、クラッチがニュートラル状態に
なっていない場合などの状況を考慮すると、誤動作によ
りエンジンが起動した場合には危険であり、安全上の配
慮に欠けるなどの課題があった。
In addition, the reason why the engine of the automobile is automatically started and the electric power is generated automatically by an unmanned person is considered when the automobile is placed in a closed garage or when the clutch is not in a neutral state. However, when the engine is started due to malfunction, it is dangerous and there is a problem that safety considerations are lacking.

【0008】この発明は上記のような課題を解決するた
めになされたもので、電気自動車に特別な装備を施すこ
となく、前記電気自動車のバッテリなどから停電時に安
全かつ確実に非常用電力を確保できる停電時電力供給装
置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and secures emergency power safely and reliably at the time of a power outage from a battery of the electric vehicle without providing special equipment to the electric vehicle. It is an object to obtain a power supply device at the time of a power failure.

【0009】[0009]

【課題を解決するための手段】この発明に係る停電時電
力供給装置は、停電を検知する停電検知装置と、該停電
検知装置が停電を検出すると、停電の発生により充電が
停止された電気自動車のバッテリを、停電中に使用する
必要のある屋内または屋外の各電気機器へのエネルギー
供給源に切り換えるエネルギー供給源切換手段と、該エ
ネルギー供給源切換手段により切り換えられた前記エネ
ルギー供給源から供給された電力を、前記停電時に前記
各電気機器が動作可能な電力に変換し供給する電力変換
供給手段を備えるようにしたものである。
A power supply device at the time of a power failure according to the present invention includes a power failure detection device that detects a power failure, and an electric vehicle whose charging is stopped due to the occurrence of the power failure when the power failure detection device detects the power failure. Energy source switching means for switching the battery to an energy supply source for each indoor or outdoor electrical device that needs to be used during a power outage, and the energy supply source switched by the energy supply source switching means. Power supply means for converting the supplied power into power operable by each of the electric devices at the time of the power failure.

【0010】この発明に係る停電時電力供給装置は、電
気自動車のバッテリに接続された充電のための既設コネ
クタにおける前記バッテリの各電極端子と電力変換供給
手段との間を接続した、前記バッテリから給電を行うた
めの給電ケーブルを備え、停電検知装置が停電を検出す
ると、前記バッテリに蓄電されているエネルギーをエネ
ルギー供給源切換手段が有した切換器が、前記給電ケー
ブルを介して前記電力変換供給手段へ供給可能にするよ
うにしたものである。
[0010] The power supply device at the time of a power failure according to the present invention includes a battery connected to a battery of an electric vehicle, which is connected to each electrode terminal of the battery and a power conversion supply means in an existing connector for charging. A power supply cable for performing power supply, and when a power failure detection device detects a power failure, a switch provided in an energy supply source switching unit switches the energy stored in the battery to the power conversion supply via the power supply cable. It can be supplied to the means.

【0011】この発明に係る停電時電力供給装置は、停
電が発生すると、停電中に使用する必要のある屋内また
は屋外の各電気機器における共通接続側の配線を各電気
機器ごとに遮断する遮断器を備えるようにしたものであ
る。
[0011] The power supply device at the time of a power failure according to the present invention, when a power failure occurs, a circuit breaker for interrupting the wiring on the common connection side of each indoor or outdoor electrical device that needs to be used during the power failure for each electrical device. It is provided with.

【0012】この発明に係る停電時電力供給装置は、各
電気機器に対し優先順位をあらかじめ設定する優先順位
設定手段と、該優先順位設定手段により設定された優先
順位に従って停電時に優先して電力供給を行う電気機器
を決定し、該決定した電気機器へ電力供給を行う電力供
給制御装置とを備えるようにしたものである。
A power supply device for power failure during power outage according to the present invention includes: priority setting means for setting priorities for respective electric devices in advance; and power supply during power failure in accordance with the priorities set by the priority setting means. And an electric power supply control device for supplying electric power to the determined electric equipment.

【0013】この発明に係る停電時電力供給装置は、電
気自動車のバッテリに蓄積されているエネルギー残量を
検出するバッテリ残量検出手段により検出したエネルギ
ー残量と、優先順位設定手段により設定された優先順位
とをもとに停電時に優先して電力供給を行う電気機器を
決定し、該決定した電気機器へ電力供給を行うようにし
たものである。
[0013] In the power failure power supply device according to the present invention, the energy remaining amount detected by the battery remaining amount detecting means for detecting the remaining energy amount stored in the battery of the electric vehicle and the priority order setting means are set. Based on the priority order, an electric device to be supplied with power in the event of a power failure is determined, and power is supplied to the determined electric device.

【0014】この発明に係る停電時電力供給装置は、停
電時に各電気機器へ電力を供給する太陽電池パネルと、
夜間電力により充電され停電時に各電気機器へ電力を供
給する蓄電池とを有し、エネルギー供給源切換手段によ
り切り換えられた電気自動車のバッテリであるエネルギ
ー供給源から供給された電力、前記太陽電池パネルによ
り供給された電力、および前記蓄電池により供給された
電力を、電力変換供給手段が停電時に前記各電気機器が
動作可能な電力に変換し当該各電気機器へ供給するよう
にしたものである。
[0014] A power supply device at the time of a power failure according to the present invention comprises:
A storage battery that is charged by night power and supplies power to each electric device at the time of a power outage, and power supplied from an energy supply source, which is a battery of an electric vehicle switched by an energy supply source switching unit, by the solar cell panel The power conversion and supply means converts the supplied power and the power supplied by the storage battery into power that can be operated by each of the electric devices at the time of a power outage, and supplies the electric power to each of the electric devices.

【0015】この発明に係る停電時電力供給装置は、太
陽電池パネルの発電量を検出する太陽電池パネル発電量
検出手段と、該太陽電池パネル発電量検出手段により検
出した前記太陽電池パネルの発電量をもとに、停電時に
各電気機器へ電力供給を行う電力供給源を、前記太陽電
池パネル、前記蓄電池、自動車のバッテリのうちから選
択して決定する電力供給元決定手段と、前記各電気機器
が設けられている室内の温度、明るさなどの各種状態を
検出する室内状態検出手段と、該室内状態検出手段によ
り検出した状態をもとに、前記電力供給元決定手段が決
定した電力供給元から電力供給を行う電力供給先の電気
機器を決定する電力供給先決定手段と、前記電力供給元
決定手段が決定した電力供給元から供給される電力を、
前記電力供給先決定手段が決定した電気機器へ、当該電
気機器が動作可能な電力に変換し供給する電力変換供給
手段とを備えるようにしたものである。
According to the present invention, there is provided a power supply during power outage, comprising: a solar panel power generation detecting means for detecting a power generation of a solar panel; and a power generation of the solar panel detected by the solar panel power generation detecting means. Power supply source determining means for selecting and determining a power supply source for supplying power to each electric device at the time of a power failure from the solar cell panel, the storage battery, and the battery of the vehicle, based on And a power supply source determined by the power supply source determination means based on the state detected by the indoor state detection means. A power supply destination determining unit that determines an electric device of a power supply destination to supply power from, and power supplied from a power supply source determined by the power supply source determining unit,
Power conversion supply means is provided for converting the electric equipment determined by the power supply destination determining means into electric power operable by the electric equipment and supplying the converted electric power.

【0016】この発明に係る停電時電力供給装置は、太
陽電池パネル発電量検出手段が太陽電池パネルの充分な
発電量を検出すると、前記太陽電池パネルが発電してい
る発電量の余剰電力を蓄電池や自動車のバッテリへ供給
し充電を行う余剰電力利用手段を備えるようにしたもの
である。
In the power failure power supply device according to the present invention, when the solar panel power generation amount detection means detects a sufficient power generation amount of the solar cell panel, the surplus power of the power generation amount generated by the solar cell panel is stored in the storage battery. And a surplus power utilization means for supplying and charging the battery of the vehicle.

【0017】[0017]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1は、この発明の実施の形態1の停電
時電力供給装置を示す構成図である。図において、21
は自動車であり、この実施の形態では自動車の走行のた
めのエネルギーを発生させる通常のガソリンエンジン
と、自動車の走行のためのエネルギーを蓄積するバッテ
リの両方を備えたハイブリッド方式の自動車である。2
2は自動車21に搭載されている前記バッテリ、23は
例えばAC100Vの商用電源、24は商用電源23か
ら供給されるAC100Vの交流電力を直流電力へ変換
し前記バッテリ22を充電するための充電用交/直変換
アダプタ、25は停電の発生を常時監視し、停電の発生
を検出すると停電検知信号を出力する停電検知装置、2
5aは停電検知装置25の停電時のバックアップ用バッ
テリ電源、26はバッテリ22に充電されている直流電
力を交流電力へ変換するためのDC/AC変換器(電力
変換供給手段)、27はバッテリ22への充電およびバ
ッテリ22から屋内または屋外の各電気機器への給電に
共通して使用される共通コネクタ(既設コネクタ)、2
7aはバッテリ22に充電されている直流電力をDC/
AC変換器26へ供給するためのケーブル(給電ケーブ
ル)、27bは充電用交/直変換アダプタ24でAC1
00Vの商用電源から変換された直流電力をバッテリ2
2へ供給するためのケーブル、28aは一般に使用され
る屋内または屋外の前記電気機器であり、この場合電燈
である。32は停電時に電燈28aの既設電力線側を開
放する切換接点を有したリレー回路(遮断器)、35は
停電時に商用電源23の既設電力線側を開放する切換接
点を有したリレー回路(遮断器)である。このリレー回
路32,35は、停電が発生していないときに供給され
るAC100Vの商用電源により励磁され通常は切換接
点が閉成されており、また停電が発生すると切換接点が
開状態に切り換わる構成、または停電検知装置25から
出力された前記停電検知信号により切換接点の開閉が制
御される構成のいずれであってもよい。なお、このリレ
ー回路32,35は各電気機器が既設電力線側で共通接
続されていることから、この既設電力線側から切り離す
ために設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1 FIG. FIG. 1 is a configuration diagram illustrating a power failure power supply device according to Embodiment 1 of the present invention. In the figure, 21
Is a vehicle, and in this embodiment, is a hybrid vehicle provided with both a normal gasoline engine that generates energy for driving the vehicle and a battery that stores energy for driving the vehicle. 2
Reference numeral 2 denotes the battery mounted on the automobile 21, reference numeral 23 denotes a commercial power supply of, for example, AC 100 V, reference numeral 24 denotes a charge exchange for converting AC 100 V AC power supplied from the commercial power supply 23 to DC power and charging the battery 22. A power failure detection device that constantly monitors the occurrence of a power failure and outputs a power failure detection signal when the power failure is detected.
5a is a backup battery power supply at the time of a power failure of the power failure detection device 25, 26 is a DC / AC converter (power conversion supply means) for converting DC power charged in the battery 22 to AC power, and 27 is a battery 22 Common connector (existing connector) commonly used for charging the battery and power supply from the battery 22 to each indoor or outdoor electric device, 2
7a is a DC / DC power stored in the battery 22.
A cable (feeding cable) 27b for supplying to the AC converter 26 is a charging / serial conversion adapter 24 for AC1.
The DC power converted from the 00V commercial power
The cable 28a for feeding to 2 is the commonly used electrical equipment indoors or outdoors, in this case a light. Reference numeral 32 denotes a relay circuit (breaker) having a switching contact for opening the existing power line side of the light 28a at the time of power failure, and reference numeral 35 denotes a relay circuit (breaker) having a switching contact for opening the existing power line side of the commercial power supply 23 at the time of power failure. It is. These relay circuits 32 and 35 are excited by a 100 V AC commercial power supply supplied when no power failure occurs, and normally have their switching contacts closed, and when a power failure occurs, the switching contacts switch to the open state. Any of a configuration and a configuration in which opening and closing of the switching contact are controlled by the power failure detection signal output from the power failure detection device 25 may be employed. The relay circuits 32 and 35 are provided to disconnect the electric devices from the existing power line side because the respective electric devices are commonly connected on the existing power line side.

【0018】図2は、図1に示した停電時電力供給装置
における共通コネクタ27を主にした回路構成を示す回
路図であり、図2において図1と同一または相当の部分
については同一符号を付し説明を省略する。図2におい
て、127はバッテリ22側のバッテリ側コネクタ構成
部であり、すでに自動車21に取り付けられている既設
コネクタである。128はケーブル27a,27b側の
ケーブル側コネクタ構成部である。ケーブル側コネクタ
構成部128は、バッテリ22からDC/AC変換器2
6へ供給される直流電力の供給回路を開閉するための切
換接点を有した切換器(エネルギー供給源切換手段)1
28aを備えている。この切換器128aは、停電が発
生したときに停電検知装置25が出力する停電検知信号
により制御され、前記切換接点を開状態から閉状態へ切
り換えて、バッテリ22からDC/AC変換器26へ直
流電力が供給可能な状態にする。
FIG. 2 is a circuit diagram showing a circuit configuration mainly of the common connector 27 in the power failure power supply device shown in FIG. 1. In FIG. 2, the same or corresponding parts as those in FIG. The description is omitted. In FIG. 2, reference numeral 127 denotes a battery-side connector component of the battery 22, which is an existing connector already attached to the automobile 21. Reference numeral 128 denotes a cable-side connector on the cables 27a and 27b. The cable-side connector configuration section 128 is connected to the DC / AC converter 2 from the battery 22.
Switch (energy supply source switching means) 1 having a switching contact for opening and closing a supply circuit of DC power supplied to the power supply 6
28a. The switch 128a is controlled by a power failure detection signal output by the power failure detection device 25 when a power failure occurs, switches the switching contact from an open state to a closed state, and switches the switching contact from the battery 22 to the DC / AC converter 26. Set to a state where power can be supplied.

【0019】なお、この切換器128aにリレーなどを
使用するときの電源はバッテリ22から供給される直流
電力を用いることができる。
Note that a DC power supplied from the battery 22 can be used as a power supply when a relay or the like is used for the switch 128a.

【0020】なお、ケーブル27aはバッテリ22から
DC/AC変換器26へ直流電力を供給するための電力
用芯線と、停電が発生したときに停電検知装置25が出
力する前記停電検知信号をケーブル側コネクタ構成部1
28の切換器128aの制御端子へ供給するための信号
用芯線とを備えている。
The cable 27a is connected to a power core wire for supplying DC power from the battery 22 to the DC / AC converter 26 and the power failure detection signal output by the power failure detection device 25 when a power failure occurs. Connector configuration part 1
And a signal core wire to be supplied to the control terminal of the switcher 128a.

【0021】次に動作について説明する。この停電時電
力供給装置では、自動車1のバッテリ22は停車中、商
用電源23をもとに充電用交/直変換アダプタ24を介
して供給される直流電力により常に充電状態にある。
Next, the operation will be described. In this power failure power supply device, the battery 22 of the vehicle 1 is always charged by the DC power supplied from the commercial power supply 23 through the charging / direct conversion adapter 24 while the vehicle is stopped.

【0022】停電検知装置25が停電を検出すると、停
電検知装置25から出力された前記停電検知信号により
ケーブル側コネクタ構成部128の切換器128aの切
換接点が切り換えられ、切換器128aの切換接点は閉
成される。この結果、バッテリ22に蓄えられている直
流電力がバッテリ22への充電が停止した状態でDC/
AC変換器26へ供給され、DC/AC変換器26を介
してAC100Vの交流電力に変換され家庭内の各電気
機器に供給される。
When the power failure detection device 25 detects a power failure, the switching contact of the switching device 128a of the cable side connector configuration unit 128 is switched by the power failure detection signal output from the power failure detection device 25, and the switching contact of the switching device 128a It is closed. As a result, the DC power stored in battery 22 is
The power is supplied to the AC converter 26, is converted into AC 100 V AC power via the DC / AC converter 26, and is supplied to each electric device in the home.

【0023】また、ケーブル27aとケーブル27bは
共通コネクタ27に接続されているため、停電発生時に
ケーブルの接続作業を行うなどの特別な操作は不要であ
る。
Further, since the cable 27a and the cable 27b are connected to the common connector 27, no special operation such as connecting cables when a power failure occurs is required.

【0024】なお、以上説明した実施の形態では、ケー
ブル側コネクタ構成部128に切換器128a,128
bを設ける構成であったが、切換器128aをDC/A
C変換器26とケーブル27aとの接続部分に配置し、
切換器128aの切換接点を停電検知装置25から出力
された前記停電検知信号により制御する構成であっても
よい。
In the embodiment described above, the changeover devices 128a and 128
b, the switch 128a is connected to the DC / A
Placed at the connection between the C converter 26 and the cable 27a,
The switching contact of the switch 128a may be controlled by the power failure detection signal output from the power failure detection device 25.

【0025】以上説明したように、この実施の形態1に
よれば、自動車21側のバッテリ側コネクタ構成部12
7は既製のコネクタを使用することができるため、自動
車21の改造なども含め自動車21には特別な装備が不
要であり、停電時に安全かつ確実に非常用電力を確保で
き、さらにケーブル27aとケーブル27bは共通コネ
クタ27に接続されているため、停電発生時にケーブル
の接続作業を行うなどの特別な操作が不要になる停電時
電力供給装置が得られる効果がある。
As described above, according to the first embodiment, the battery-side connector component 12 of the automobile 21 is provided.
Since a ready-made connector can be used for the vehicle 7, no special equipment is required for the vehicle 21 including modification of the vehicle 21 and the like, and emergency power can be secured safely and reliably at the time of a power failure. Since 27b is connected to the common connector 27, there is an effect that a power supply device at the time of a power failure which does not require a special operation such as connecting a cable when a power failure occurs is obtained.

【0026】実施の形態2.図3は、この実施の形態2
の停電時電力供給装置の主要部分を示す部分構成図であ
る。図3において図1と同一または相当の部分について
は同一符号を付し説明を省略する。図において、29は
電力供給制御装置であり、あらかじめ電力供給先である
各電気機器に対して電力供給の優先順位を設定するため
のマイクロコンピュータ(優先順位設定手段)29cを
有し、このマイクロコンピュータ29cにより設定した
優先順位に応じて停電時の前記各電気機器への電力供給
を制御することができ、このための前記各電気機器への
電力供給を制御するための前記各電気機器毎の図示して
いないリレー回路などを備えている。
Embodiment 2 FIG. FIG. 3 shows the second embodiment.
FIG. 2 is a partial configuration diagram illustrating a main part of a power failure power supply device of FIG. In FIG. 3, the same or corresponding parts as those in FIG. In the figure, reference numeral 29 denotes a power supply control device, which has a microcomputer (priority setting means) 29c for setting priorities of power supply to each electric device to which power is to be supplied in advance. 29c, the power supply to each of the electric devices at the time of a power failure can be controlled in accordance with the priority set in accordance with the priority order set for the respective electric devices for controlling the power supply to each of the electric devices. It has a relay circuit etc. not shown.

【0027】29aは電力供給制御装置29の停電時に
おけるバックアップ用バッテリ電源である。29bはバ
ッテリ22のバッテリ端子電圧を検出し、バッテリ22
のバッテリ残量を知るためのバッテリ端子電圧検出部
(バッテリ残量検出手段)である。このバッテリ端子電
圧検出部29bにおけるバッテリ22のバッテリ端子電
圧の検出は、DC/AC変換器26から出力された交流
電圧を整流して直流電圧へ変換し、このときの直流電圧
値をもとにバッテリ22のバッテリ端子電圧の検出を行
うか、またはDC/AC変換器26から出力された交流
電圧の振幅値からバッテリ22のバッテリ端子電圧の検
出を行うか、あるいはまたDC/AC変換器26におけ
るバッテリ22のバッテリ端子電圧を直接取り込んでバ
ッテリ22のバッテリ端子電圧の検出を行う。
Reference numeral 29a denotes a backup battery power supply when the power supply control device 29 fails. 29b detects the battery terminal voltage of the battery 22,
A battery terminal voltage detecting unit (battery remaining amount detecting means) for knowing the remaining battery amount of the battery. The battery terminal voltage detection unit 29b detects the battery terminal voltage of the battery 22 by rectifying the AC voltage output from the DC / AC converter 26 and converting it into a DC voltage, based on the DC voltage value at this time. The battery terminal voltage of the battery 22 is detected, or the battery terminal voltage of the battery 22 is detected from the amplitude value of the AC voltage output from the DC / AC converter 26. The battery terminal voltage of the battery 22 is directly taken in and the battery terminal voltage of the battery 22 is detected.

【0028】28aは例えば電燈である前記電気機器、
28bは例えば冷蔵庫である前記電気機器、28cは例
えばテレビジョンである前記電気機器である。C1は冷
蔵庫である電気機器28bに用いられているコンセン
ト、C2はテレビジョンである電気機器28cに用いら
れているコンセントである。31は停電時にコンセント
C1の既設電力線側を開放する切換接点を有したリレー
回路、33は停電時にコンセントC2の既設電力線側を
開放する切換接点を有したリレー回路である。これらリ
レー回路31,32,33は、停電が発生していないと
きに供給されるAC100Vの商用電源により励磁され
通常は切換接点が閉成されており、また停電が発生する
と切換接点が開状態に切り換わる構成、または停電検知
装置25から出力された前記停電検知信号により切換接
点の開閉が制御される構成のいずれであってもよい。な
お、このリレー回路31,32,33は各電気機器が既
設電力線側で共通接続されていることから、この既設電
力線側から切り離すために設けられている。
28a is the above-mentioned electric equipment such as a light,
Reference numeral 28b denotes the electric device such as a refrigerator, and 28c denotes the electric device such as a television. C1 is an outlet used for the electric device 28b as a refrigerator, and C2 is an outlet used for the electric device 28c as a television. Reference numeral 31 denotes a relay circuit having a switching contact for opening the existing power line side of the outlet C1 at the time of power failure, and reference numeral 33 denotes a relay circuit having a switching contact for opening the existing power line side of the outlet C2 at the time of power failure. These relay circuits 31, 32, and 33 are energized by a commercial power supply of AC100V supplied when no power failure occurs, and normally have their switching contacts closed. When a power failure occurs, the switching contacts are opened. The switching may be performed, or the switching of the switching contact may be controlled by the power failure detection signal output from the power failure detection device 25. The relay circuits 31, 32, and 33 are provided to disconnect the electric devices from the existing power line because the electric devices are commonly connected to the existing power line.

【0029】図4は、電力供給先である各電気機器に対
して設定された電力供給の優先順位やバッテリ22のエ
ネルギー残量をもとに、電力供給制御装置29が停電時
の前記各電気機器への電力供給を制御するためのテーブ
ルを示す説明図である。
FIG. 4 shows the power supply control unit 29 when the power failure occurs, based on the priority of power supply set for each electric device to which power is supplied and the remaining energy of the battery 22. FIG. 3 is an explanatory diagram illustrating a table for controlling power supply to devices.

【0030】次に動作について説明する。ケーブル27
a,27bが自動車21のバッテリ22に接続されてい
る状態で停電が発生すると、先ずリレー回路31,3
2,33が電機機器28a、コンセントC1,C2の既
設電力線側を開放する。また、停電検知装置25は停電
発生時および停電発生後もバックアップ用バッテリ電源
25aによりバックアップされて動作しており、停電検
知装置25は前記停電検知信号をDC/AC変換器2
6、切換器128aへ出力する。この結果、切換器12
8aはその切換接点を開状態から閉状態に切り換える。
また、DC/AC変換器26は前記停電検知信号によ
り、切換器128aの切換接点を介してバッテリ22か
ら供給された直流電力をAC100Vの交流電力へ変換
し電力供給制御装置29の前記リレー回路やバッテリ端
子電圧検出部29bへ供給する。バッテリ端子電圧検出
部29bは、停電時においてもバックアップ用バッテリ
電源29aにより動作しており、バッテリ22のバッテ
リ端子電圧を検出する。そして、前記検出したバッテリ
22のバッテリ端子電圧により、図4(a)または図4
(b)に示すあらかじめ設定されているテーブルを参照
し、当該テーブルの優先順位に従って電力供給制御装置
29の前記リレー回路を制御する。
Next, the operation will be described. Cable 27
When a power failure occurs in a state where a and 27b are connected to the battery 22 of the automobile 21, first, the relay circuits 31, 3
2, 33 open the existing electric power line side of the electrical equipment 28a and the outlets C1 and C2. The power failure detection device 25 is backed up and operated by the backup battery power supply 25a at the time of the power failure and after the power failure occurs, and the power failure detection device 25 converts the power failure detection signal into the DC / AC converter 2.
6. Output to the switch 128a. As a result, the switch 12
8a switches the switching contact from the open state to the closed state.
Further, the DC / AC converter 26 converts the DC power supplied from the battery 22 to the AC power of 100 V AC through the switching contact of the switch 128 a according to the power failure detection signal, and converts the DC power to the relay circuit of the power supply control device 29. The voltage is supplied to the battery terminal voltage detector 29b. The battery terminal voltage detector 29b is operated by the backup battery power supply 29a even during a power failure, and detects the battery terminal voltage of the battery 22. 4A or 4B according to the detected battery terminal voltage of the battery 22.
The relay circuit of the power supply control device 29 is controlled in accordance with the priority of the table with reference to a preset table shown in FIG.

【0031】ここで、電力供給制御装置29による図4
(a)に示すテーブルを参照して行う前記リレー回路の
制御について説明する。
Here, the power supply control device 29 shown in FIG.
Control of the relay circuit performed with reference to the table shown in FIG.

【0032】図4(a)に示すテーブルは、バッテリ2
2のバッテリ端子電圧BVに対する各電気機器の優先順
位を示しており、例えばバッテリ端子電圧BVが12V
近くある場合には、電力供給制御装置29は前記リレー
回路を制御して電燈などの照明用の電気機器、クーラや
暖房用の温度調節するための電気機器(図示せず)、ラ
ジオ用のコンセント(図示せず)、テレビジョン用のコ
ンセントC2、冷蔵庫用のコンセントC1の全てへの電
力供給を行う。この場合、前記電燈などの照明用の電気
機器が最も優先順位が高く、前記冷蔵庫用のコンセント
C1が最も優先順位が低い状態であり、これら各電気機
器全てを使用することができる。この状態で、バッテリ
端子電圧BVが低下して例えば10.5Vになると先ず
冷蔵庫用のコンセントC1への電力供給が停止される。
The table shown in FIG.
2 shows the priority order of each electric device with respect to the battery terminal voltage BV of 2 V, for example, when the battery terminal voltage BV is 12 V
If it is near, the power supply control device 29 controls the relay circuit to control lighting electric equipment such as an electric light, electric equipment (not shown) for controlling temperature of a cooler or heating, and a radio outlet. (Not shown), power is supplied to all of the television outlet C2 and the refrigerator outlet C1. In this case, the lighting electric device such as the electric lamp has the highest priority, and the refrigerator outlet C1 has the lowest priority, and all of these electric devices can be used. In this state, when the battery terminal voltage BV decreases to, for example, 10.5 V, first, the power supply to the outlet C1 for the refrigerator is stopped.

【0033】バッテリ端子電圧BVがさらに低下して例
えば9.5Vになると、今度は冷蔵庫用のコンセントC
1だけでなくテレビジョン用のコンセントC2への電力
供給も停止される。
When the battery terminal voltage BV further decreases to 9.5 V, for example, the outlet C for the refrigerator
The power supply to not only 1 but also the television outlet C2 is stopped.

【0034】バッテリ端子電圧BVが9.5Vの状態で
は、優先順位1から優先順位3までの電燈などの照明用
の電気機器、クーラや暖房用の温度調節するための電気
機器、ラジオ用のコンセントへの電力供給が行われてい
るため、バッテリ端子電圧BVが9.5Vを維持してい
る限りこれら各電気機器を使用できる。
When the battery terminal voltage BV is 9.5 V, lighting electric equipment such as electric lights of priority 1 to priority 3, electric equipment for controlling the temperature for coolers and heating, and outlets for radios Since the power supply to the power supply is performed, these electric devices can be used as long as the battery terminal voltage BV is maintained at 9.5 V.

【0035】バッテリ端子電圧BVが徐々に下がって8
V以下になると電燈などの照明用の電気機器のみに電力
が供給される状態になる。
The battery terminal voltage BV gradually decreases to 8
When the voltage falls below V, power is supplied only to lighting electrical devices such as electric lamps.

【0036】この結果、停電時に動作を確保しなければ
ならない最も重要な電気機器を最も優先順位の高い電気
機器として前記テーブルへ設定しておくことで、重要な
電気機器を長時間、動作させることが可能になる。
As a result, by setting the most important electrical equipment which must be operated during a power failure in the table as the highest priority electrical equipment, the important electrical equipment can be operated for a long time. Becomes possible.

【0037】なお、電力供給制御装置29による前記リ
レー回路の制御は、図4(b)に示すテーブルを参照し
て行う次のようなものであってもよい。
The control of the relay circuit by the power supply control device 29 may be as follows, which is performed with reference to a table shown in FIG.

【0038】図4(b)に示すテーブルは各電気機器の
優先順位を示しており、この場合電燈などの照明用の電
気機器、クーラや暖房用の温度調節するための電気機
器、ラジオ用のコンセント、テレビジョン用のコンセン
トC2、冷蔵庫用のコンセントC1のうちのいずれか1
つの電気機器への電力供給が可能である。
The table shown in FIG. 4 (b) shows the priority of each electric device. In this case, an electric device for lighting such as a light, an electric device for controlling the temperature of a cooler or heating, and a radio device are used. Any one of an outlet, an outlet C2 for a television, and an outlet C1 for a refrigerator
Power supply to two electrical devices.

【0039】また、電力供給制御装置29には、前記各
電気機器による消費電流の有無を検出することで前記各
電気機器が使用されているか否かを識別するための回路
手段を備えている。この回路手段は、例えば電力供給制
御装置29から各電気機器への給電線に設けられた図示
していないシャント抵抗と、該シャント抵抗の両端にお
ける電位差から前記各電気機器が使用されているか否か
を識別する。
Further, the power supply control device 29 is provided with circuit means for detecting whether or not each of the electric devices is used by detecting the presence or absence of current consumption by each of the electric devices. This circuit means determines whether or not each of the electric devices is used based on, for example, a shunt resistor (not shown) provided on a power supply line from the power supply control device 29 to each of the electric devices and a potential difference between both ends of the shunt resistor. Identify.

【0040】このため、例えば電燈などの照明用の電気
機器とクーラ,暖房器具の温度調節をするための電気機
器が同時に使用されている状態になると、この状態を前
記各電気機器の消費電流から識別し、前記リレー回路を
制御して優先順位の高い方の電気機器に電力の供給を行
うリレー回路を除く他のリレー回路を制御して、その切
換接点を開状態に保持し、前記優先順位の高い方の優先
順位1の照明用の電気機器のみに電力が供給されるよう
にする。
For this reason, for example, when an electric device for lighting such as an electric light and an electric device for controlling the temperature of a cooler and a heating device are used at the same time, this state is calculated based on the current consumption of each electric device. Identifying and controlling the other relay circuits except for the relay circuit that controls the relay circuit and supplies power to the higher-priority electrical device, and keeps its switching contact in an open state, The power is supplied only to the lighting electrical equipment of the priority 1 with the higher priority.

【0041】この結果、停電時に動作を確保しなければ
ならない最も重要な電気機器を最も優先順位の高い電気
機器として前記テーブルへ設定しておくことで、重要な
電気機器を長時間、安定して動作させることが可能にな
る。
As a result, by setting the most important electrical equipment which must be kept in operation at the time of a power failure as the highest priority electrical equipment in the table, the important electrical equipment can be stably maintained for a long time. It becomes possible to operate.

【0042】また、各電気機器の優先順位がバッテリ2
2のエネルギー残量に応じて異なる図4(b)に示すよ
うなテーブルを、バッテリ22の前記エネルギー残量に
応じてそれぞれあらかじめ設定する構成であってもよ
い。このように構成すると、電力供給を最優先しなけれ
ばならない電気機器をバッテリ22のエネルギー残量に
応じてそれぞれ設定することができ、バッテリ22のエ
ネルギー残量に応じて最優先しなければならない電気機
器への電力供給を木目細かに制御できる。
The priority order of each electric device is battery 2
The table as shown in FIG. 4B that differs according to the remaining energy of the battery 2 may be set in advance according to the remaining energy of the battery 22. With this configuration, it is possible to set each of the electric devices for which the highest priority is given to the power supply according to the remaining energy of the battery 22, and to set the highest priority for the electric device according to the remaining energy of the battery 22. The power supply to the equipment can be finely controlled.

【0043】以上、説明したように、この実施の形態2
によれば、停電時に電力を供給する各電気機器に付した
優先順位に従って、重要な電気機器を優先して電力を供
給し動作させることができ、バッテリ22のエネルギー
残量を重要な電気機器に対し有効に利用できる停電時電
力供給装置が得られる効果がある。
As described above, according to the second embodiment,
According to, according to the priority given to each electric device that supplies power at the time of a power failure, important electric devices can be preferentially supplied and operated, and the remaining energy of the battery 22 can be reduced to the important electric devices. On the other hand, there is an effect that a power supply device at the time of power failure that can be used effectively can be obtained.

【0044】実施の形態3.前記実施の形態1および実
施の形態2では、停電時の電力供給源が自動車のバッテ
リに限られたが、この実施の形態3では、電力供給源と
して太陽電池や夜間電力を利用して充電される蓄電池を
装備している場合に、屋内または屋外の電気機器への停
電時の電力供給源として前記自動車のバッテリと併用す
る。
Embodiment 3 FIG. In the first and second embodiments, the power supply at the time of the power failure is limited to the battery of the vehicle. In the third embodiment, the power is supplied by using a solar cell or nighttime power as the power supply. When a storage battery is provided, the battery is used together with the vehicle battery as a power supply source at the time of a power failure to indoor or outdoor electric equipment.

【0045】図5は、この実施の形態3の停電時電力供
給装置を示す構成図である。図5において図1と同一ま
たは相当の部分については同一符号を付し説明を省略す
る。
FIG. 5 is a configuration diagram showing a power failure power supply device according to the third embodiment. 5, parts that are the same as or correspond to those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

【0046】図5において、10は太陽電池パネル、1
1は夜間電力により充電される蓄電池、28dは冷暖房
用の電気機器、34は停電時に冷暖房用の電気機器28
dの既設電力線側を開放する切換接点を有したリレー回
路である。このリレー回路34は、停電が発生していな
いときに供給されるAC100Vの商用電源により励磁
され通常は切換接点が閉成されており、また停電が発生
すると切換接点が開状態に切り換わる構成、または停電
検知装置25から出力された前記停電検知信号により切
換接点の開閉が制御される構成のいずれであってもよ
い。なお、このリレー回路31,32,34は各電気機
器28a,28b,28dが既設電力線側で共通接続さ
れていることから、この既設電力線側から切り離すため
に設けられている。41はDC/AC変換器(電力変換
供給手段)であり、停電検知装置25から出力された停
電検知信号によりバッテリ22、太陽電池パネル10お
よび蓄電池11から供給された直流電力をAC100V
の交流電力へ変換し前記各電気機器28a,28b,2
8dへ供給する。
In FIG. 5, reference numeral 10 denotes a solar cell panel;
1 is a storage battery charged by nighttime electric power, 28d is an electric device for cooling and heating, 34 is an electric device for cooling and heating at the time of a power failure.
d is a relay circuit having a switching contact for opening the existing power line side. The relay circuit 34 is energized by a commercial power supply of AC 100 V supplied when no power failure occurs, and normally has a switching contact closed, and when a power failure occurs, the switching contact switches to an open state. Alternatively, any configuration may be employed in which the opening and closing of the switching contact is controlled by the power failure detection signal output from the power failure detection device 25. The relay circuits 31, 32, and 34 are provided to disconnect the electric devices 28a, 28b, and 28d from the existing power line because the electric devices 28a, 28b, and 28d are commonly connected to the existing power line. Reference numeral 41 denotes a DC / AC converter (power conversion supply unit) that converts the DC power supplied from the battery 22, the solar cell panel 10, and the storage battery 11 into 100 V AC according to a power failure detection signal output from the power failure detection device 25.
To each of the electric devices 28a, 28b, 2
8d.

【0047】51は太陽電池パネル10とDC/AC変
換器41とを接続するケーブル、52は蓄電池11とD
C/AC変換器41とを接続するケーブルである。な
お、太陽電池パネル10、蓄電池11およびバッテリ2
2の各ケーブル27a,51,52を介した正極出力
側、負極出力側はDC/AC変換器41内でそれぞれ共
通接続されている。
Reference numeral 51 denotes a cable for connecting the solar cell panel 10 and the DC / AC converter 41;
This is a cable for connecting to the C / AC converter 41. The solar cell panel 10, the storage battery 11, and the battery 2
The positive output side and the negative output side via the respective cables 27a, 51, 52 are commonly connected in the DC / AC converter 41.

【0048】次に動作について説明する。この停電時電
力供給装置でも、自動車1のバッテリ22は停車中、商
用電源23をもとに充電用交/直変換アダプタ24を介
して供給される直流電力により常に充電状態にある。ま
た蓄電池11も夜間電力により充分に充電された状態に
ある。
Next, the operation will be described. Also in this power failure power supply device, the battery 22 of the automobile 1 is always charged by the DC power supplied from the commercial power supply 23 via the charging AC / DC conversion adapter 24 while the vehicle is stopped. The storage battery 11 is also fully charged with nighttime power.

【0049】停電検知装置25が停電を検出すると、停
電検知装置25から出力された前記停電検知信号により
共通コネクタ27における切換器128aの切換接点が
切り換えられ、この結果、バッテリ22、蓄電池11に
蓄えられている直流電力がDC/AC変換器41へ供給
され、DC/AC変換器41を介してAC100Vの交
流電力に変換され家庭内の各電気機器に供給される。
When the power failure detection device 25 detects a power failure, the switching contact of the switching device 128a in the common connector 27 is switched by the power failure detection signal output from the power failure detection device 25, and as a result, the battery 22 and the storage battery 11 are stored. The supplied DC power is supplied to the DC / AC converter 41, is converted into AC 100V AC power via the DC / AC converter 41, and is supplied to each electric device in the home.

【0050】また、昼間、太陽光線が充分に太陽電池パ
ネル10に照射されている場合には、太陽電池パネル1
0は規定の直流電力が供給可能な状態にあるので、この
太陽電池パネル10からも直流電力が供給される。
In the daytime, if the solar cell panel 10 is sufficiently irradiated with sunlight, the solar cell panel 1
Since 0 is in a state where specified DC power can be supplied, DC power is also supplied from this solar cell panel 10.

【0051】また、ケーブル27aとケーブル27bの
一端は共に共通コネクタ27に接続され、太陽電池パネ
ル10とDC/AC変換器41との間はケーブル51に
より接続され、また蓄電池11とDC/AC変換器41
との間はケーブル52により接続されているので、バッ
テリ22の充電中に停電が発生してもケーブルの接続作
業を行うなどの特別な操作は不要である。
One end of each of the cables 27a and 27b is connected to the common connector 27, the solar cell panel 10 and the DC / AC converter 41 are connected by a cable 51, and the storage battery 11 is connected to the DC / AC converter. Table 41
Are connected by the cable 52, so that even if a power failure occurs during charging of the battery 22, no special operation such as connecting the cable is required.

【0052】以上説明したように、この実施の形態3に
よれば、前記実施の形態1と同様に自動車21側のバッ
テリ側コネクタ構成部127は既製のコネクタを使用す
ることができるため、自動車21の改造なども含め自動
車21には特別な装備が不要であり、太陽電池パネル1
0、蓄電池11およびバッテリ22から供給される電力
により停電時に安全かつ確実に非常用電力を確保でき、
さらに停電発生時にケーブルの接続作業を行うなどの特
別な操作が不要になる停電時電力供給装置が得られる効
果がある。
As described above, according to the third embodiment, as in the first embodiment, since the battery-side connector constituting portion 127 of the automobile 21 can use an off-the-shelf connector, No special equipment is required for the automobile 21 including the modification of the solar cell panel 1.
0, emergency power can be secured safely and reliably at the time of a power outage by the power supplied from the storage battery 11 and the battery 22;
Furthermore, there is an effect that a power failure power supply device that does not require a special operation such as a cable connection operation when a power failure occurs is obtained.

【0053】実施の形態4.この実施の形態4の停電時
電力供給装置では、太陽電池パネル10の発電量やバッ
テリ22のエネルギー残量、明るさ、温度などの条件に
より、電力供給元と電力供給先の両方を決定し電力供給
制御を行う。
Embodiment 4 In the power supply device at the time of a power failure according to the fourth embodiment, both the power supply source and the power supply destination are determined based on conditions such as the amount of power generated by the solar cell panel 10, the remaining energy of the battery 22, brightness, and temperature. Supply control is performed.

【0054】図6は、この実施の形態4の停電時電力供
給装置を示す構成図である。図6において図5と同一ま
たは相当の部分については同一符号を付し説明を省略す
る。図6において、42はDC/AC変換器、43は太
陽電池パネル10の発電量やバッテリ22のエネルギー
残量、明るさ、温度などの条件により、電力供給元と電
力供給先の両方を決定し電力供給制御を行う電力供給制
御装置である。
FIG. 6 is a block diagram showing a power failure power supply device according to the fourth embodiment. 6, the same or corresponding parts as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 6, reference numeral 42 denotes a DC / AC converter, and 43 denotes both a power supply source and a power supply destination based on conditions such as the amount of power generated by the solar panel 10 and the remaining energy, brightness, and temperature of the battery 22. This is a power supply control device that performs power supply control.

【0055】図7は、電力供給制御装置43を含むこの
停電時電力供給装置の構成を示す回路図である。図7に
おいて図6と同一または相当の部分については同一符号
を付し説明を省略する。図7において、43aは室内の
温度を検出する温度検出センサ(室内状態検出手段)、
43bは室内の明るさを検出する照度センサ(室内状態
検出手段)、43fは太陽電池パネル10の発電量を検
出し、検出した発電量に応じた発電量検出信号をディジ
タルデータとして出力する太陽電池パネル発電量検出回
路(太陽電池パネル発電量検出手段)、43gは蓄電池
11のエネルギー残量を検出し、検出したエネルギー残
量に応じたエネルギー残量検出信号をディジタルデータ
として出力する蓄電池エネルギー残量検出回路、43h
はバッテリ22のエネルギー残量を検出し、検出したエ
ネルギー残量に応じたエネルギー残量検出信号をディジ
タルデータとして出力するバッテリエネルギー残量検出
回路である。
FIG. 7 is a circuit diagram showing a configuration of the power supply device at the time of a power failure including the power supply control device 43. 7, parts that are the same as or correspond to those in FIG. 6 are given the same reference numerals, and descriptions thereof will be omitted. In FIG. 7, reference numeral 43a denotes a temperature detection sensor (indoor state detecting means) for detecting an indoor temperature,
43b is an illuminance sensor (indoor state detecting means) for detecting the brightness of the room, and 43f is a solar cell for detecting the amount of power generation of the solar cell panel 10 and outputting a power generation amount detection signal corresponding to the detected power generation amount as digital data. A panel power generation detection circuit (photovoltaic panel power generation detection means) 43g detects the remaining energy of the storage battery 11 and outputs a remaining energy detection signal as digital data corresponding to the detected remaining energy as digital data. Detection circuit, 43h
Reference numeral denotes a battery remaining energy detection circuit that detects the remaining energy of the battery 22 and outputs an energy remaining detection signal corresponding to the detected remaining energy as digital data.

【0056】43iは太陽電池パネル10の出力する直
流電力をAC100Vの交流電力へ変換するDC/AC
変換回路(電力変換供給手段)、43jは蓄電池11の
出力する直流電力をAC100Vの交流電力へ変換する
DC/AC変換回路(電力変換供給手段)、43kはバ
ッテリ22の出力する直流電力をAC100Vの交流電
力へ変換するDC/AC変換回路(電力変換供給手段)
である。
Reference numeral 43i denotes DC / AC for converting DC power output from the solar cell panel 10 to AC 100V AC power.
A conversion circuit (power conversion supply means) 43j is a DC / AC conversion circuit (power conversion supply means) for converting the DC power output from the storage battery 11 into AC 100V AC power, and 43k is a DC / AC conversion circuit which converts the DC power output from the battery 22 to AC100V. DC / AC conversion circuit for converting to AC power (power conversion supply means)
It is.

【0057】43mはDC/AC変換回路43i,43
j,43kの出力する交流電力の供給先を切り換えるた
めの給電切換器、43oは太陽電池パネル10が出力す
る直流電力を蓄電池11へ直接供給して蓄電池11を充
電するための切換回路、43pは太陽電池パネル10が
出力する直流電力をバッテリ22へ直接供給してバッテ
リ22を充電するための切換回路である。43qはDC
/AC変換回路43i,43j,43kと給電切換回路
43mと切換回路43o,43pなどを制御するマイク
ロコンピュータ(電力供給元決定手段,電力供給先決定
手段,余剰電力利用手段)、43rはマイクロコンピュ
ータ43qを停電時にバックアップするバックアップ用
バッテリ電源である。
43m is a DC / AC conversion circuit 43i, 43
j, 43k: a power supply switch for switching the supply destination of the AC power output by 43k; 43o: a switching circuit for directly supplying the DC power output by the solar cell panel 10 to the storage battery 11 to charge the storage battery 11; This is a switching circuit for directly supplying DC power output from the solar cell panel 10 to the battery 22 to charge the battery 22. 43q is DC
Microcomputers (power supply source determination means, power supply destination determination means, surplus power utilization means) for controlling the / AC conversion circuits 43i, 43j, 43k, the power supply switching circuit 43m, the switching circuits 43o, 43p, etc .; This is a backup battery power supply for backing up power during a power failure.

【0058】図8は、この停電時電力供給装置の動作を
示すフローチャートであり、以下、このフローチャート
に基づいて動作を説明する。
FIG. 8 is a flowchart showing the operation of the power supply unit at the time of a power failure. The operation will be described below with reference to this flowchart.

【0059】先ず停電発生時には切換回路43o,43
pは図7に示すように切り換えられており、また共通コ
ネクタ27の切換器128aは開状態に切り換えられて
いる。また、DC/AC変換回路43i,43j,43
kは動作しておらず、給電切換回路43mはDC/AC
変換回路43i,43j,43kの出力をどの電気機器
の給電線へも接続していない。
First, when a power failure occurs, the switching circuits 43o, 43
p is switched as shown in FIG. 7, and the switch 128a of the common connector 27 is switched to the open state. Also, DC / AC conversion circuits 43i, 43j, 43
k is not operating, and the power supply switching circuit 43m is DC / AC
The outputs of the conversion circuits 43i, 43j, and 43k are not connected to the power supply lines of any electric devices.

【0060】停電検知装置25が停電の発生を検出する
と(ステップST1)、停電検知装置25からは停電検
知信号がマイクロコンピュータ43qおよび共通コネク
タ27の切換器128aへ出力される。この結果、切換
器128aは開状態から閉状態へ切り換えられてバッテ
リ22に蓄電されている直流電力を切換回路43pを介
してDC/AC変換回路43kへ供給する。
When the power failure detection device 25 detects the occurrence of a power failure (step ST1), the power failure detection device 25 outputs a power failure detection signal to the microcomputer 43q and the switch 128a of the common connector 27. As a result, the switch 128a is switched from the open state to the closed state, and supplies the DC power stored in the battery 22 to the DC / AC conversion circuit 43k via the switching circuit 43p.

【0061】ここでマイクロコンピュータ43qは電力
供給元を決定する。この電力供給元の決定は、先ず太陽
電池パネル10の発電量を太陽電池パネル発電量検出回
路43fにより検出する。この結果、発電量が充分であ
れば(ステップST2)、電力供給源をパネル発電量検
出回路43fに決定する(ステップST3,ステップS
T7)。一方、太陽電池パネル10の発電量が不十分で
あれば、次に蓄電池11のエネルギー残量を蓄電池エネ
ルギー残量検出回路43gにより検出する(ステップS
T4)。この結果、蓄電池11のエネルギー残量が充分
であれば、電力供給源を蓄電池11に決定する(ステッ
プST5,ステップST7)。ステップST4において
蓄電池11のエネルギー残量が不十分であれば、今度は
バッテリ22のエネルギー残量をバッテリエネルギー残
量検出回路43hで検出し、この結果、バッテリ22に
充分なエネルギーが充電されていれば電力供給源をバッ
テリ22に決定する(ステップST6,ステップST
7)。
Here, the microcomputer 43q determines the power supply source. In determining the power supply source, first, the power generation amount of the solar cell panel 10 is detected by the solar cell panel power generation amount detection circuit 43f. As a result, if the power generation amount is sufficient (step ST2), the power supply source is determined by the panel power generation amount detection circuit 43f (step ST3, step S3).
T7). On the other hand, if the amount of power generated by the solar cell panel 10 is insufficient, the remaining energy of the storage battery 11 is detected by the storage battery remaining energy detection circuit 43g (step S).
T4). As a result, if the remaining energy of the storage battery 11 is sufficient, the power supply source is determined to be the storage battery 11 (steps ST5 and ST7). If the remaining energy of the storage battery 11 is insufficient in step ST4, the remaining energy of the battery 22 is detected by the remaining battery energy detection circuit 43h, and as a result, the battery 22 is charged with sufficient energy. For example, the power supply source is determined to be the battery 22 (step ST6, step ST6).
7).

【0062】次に、マイクロコンピュータ43qは電力
供給先の電気機器を決定する。この電力供給先の電気機
器の決定は、温度検出センサ43a、照度センサ43b
により室内の温度および明るさを検出し(ステップST
8)、これら温度と明るさの検出結果をもとに、室内の
明るさが不十分であれば照明用の電燈である電気機器2
8aを優先的に電力を供給する電力供給先に決定し(ス
テップST9)、給電切換器43mを切換制御し、照明
用の電燈である電気機器28aへ優先的に電力供給す
る。また、照度が十分であれば、温度検出センサ43a
により室内の温度を検知する。この結果、検出温度が低
ければ冷暖房用の電気機器28dを優先的に電力を供給
する電力供給先に決定し(ステップST9)、給電切換
器43mを切換制御し、冷暖房用の電気機器28dへ優
先的に電力供給する。
Next, the microcomputer 43q determines the electric equipment to which power is to be supplied. The determination of the electric equipment to which the power is to be supplied is performed by the temperature detection sensor 43a and the illuminance sensor 43b.
To detect the room temperature and brightness (step ST
8) Based on the detection results of the temperature and the brightness, if the indoor brightness is insufficient, the electric device 2 is a lighting lamp.
8a is determined as a power supply destination for supplying power with priority (step ST9), the power supply switch 43m is switched and controlled, and power is preferentially supplied to the electric device 28a which is a lighting lamp. If the illuminance is sufficient, the temperature detection sensor 43a
Detects the indoor temperature. As a result, if the detected temperature is low, the cooling and heating electric device 28d is preferentially determined as the power supply destination for supplying power (step ST9), and the power supply switch 43m is switched and controlled, and the cooling and heating electric device 28d is prioritized. Power supply.

【0063】次に、マイクロコンピュータ43qは余剰
電力を有効利用するための制御を行う。この余剰電力を
有効利用するための制御は、太陽電池パネル10が出力
している直流電力が十分であるときに行われる。太陽電
池パネル10が出力している直流電力が十分あると、前
記電力供給元を決定する制御および前記電力供給先を決
定する制御を行いながら、切換回路43pを制御して太
陽電池パネル10が出力している直流電力がバッテリ2
2へも供給されるように切換回路43pを切り換える
(ステップST10,ステップST11)。このとき自
動車21が不在かまたはバッテリ22が満充電されてい
るか否かを切換回路43pを切り換える前にバッテリエ
ネルギー残量検出回路43hの検出結果より判定し、自
動車21が不在またはバッテリ22が満充電されていれ
ば、切換回路43pの切り換えを行わず切換回路43o
の切り換えを行い、太陽電池パネル10が出力している
直流電力が蓄電池11にも供給され、充電されるように
制御する(ステップST10,ステップST11)。そ
して、停電が解消され電力供給が復旧するまで上述した
各制御を一定時間ごとに繰り返し行う(ステップST1
2)。
Next, the microcomputer 43q performs control for effectively using the surplus power. The control for effectively utilizing the surplus power is performed when the DC power output from the solar cell panel 10 is sufficient. When the DC power output from the solar cell panel 10 is sufficient, the switching circuit 43p is controlled to output the solar cell panel 10 while performing the control for determining the power supply source and the control for determining the power supply destination. DC power is
The switching circuit 43p is switched so as to be supplied also to the second (step ST10, step ST11). At this time, whether the vehicle 21 is absent or the battery 22 is fully charged is determined before the switching circuit 43p is switched from the detection result of the battery energy remaining amount detection circuit 43h, and the vehicle 21 is absent or the battery 22 is fully charged. If so, the switching circuit 43p is not switched and the switching circuit 43o is not switched.
Is controlled, so that the DC power output from the solar cell panel 10 is also supplied to the storage battery 11 and charged (step ST10, step ST11). Then, the above-described controls are repeatedly performed at regular intervals until the power outage is resolved and the power supply is restored (step ST1).
2).

【0064】以上説明したように、この実施の形態4に
よれば、上述した各制御を一定時間ごとに繰り返し行う
ことにより、無駄なく、安定した非常電力供給を効率よ
く行える停電時電力供給装置が得られる効果がある。
As described above, according to the fourth embodiment, the above-described control is repeatedly performed at regular time intervals, thereby providing a power supply device at the time of a power failure capable of efficiently supplying a stable emergency power without waste. There is an effect that can be obtained.

【0065】また、自動車21が必要で電力供給元とし
て機能を果たせないときや、バッテリ22から供給不可
能な場合にも、停電時に各電気機器へ状況に応じて適切
に電力を供給することができる停電時電力供給装置が得
られる効果がある。
Also, when the vehicle 21 is required and cannot function as a power supply source, or when it is impossible to supply power from the battery 22, power can be appropriately supplied to each electric device according to the situation at the time of power failure. There is an effect that a possible power failure power supply device can be obtained.

【0066】[0066]

【発明の効果】以上のように、この発明によれば、停電
検知装置が停電を検出すると、停電の発生により充電が
停止された電気自動車のバッテリを、停電中に使用する
必要のある屋内または屋外の各電気機器へのエネルギー
供給源に切り換えるエネルギー供給源切換手段を備える
ように構成したので、前記電気自動車に特別な装備を施
す必要がなく、停電時には安全かつ確実に前記電気自動
車のバッテリから非常用電力を確保できる効果がある。
As described above, according to the present invention, when the power failure detection device detects a power failure, the battery of the electric vehicle, whose charging has been stopped due to the occurrence of the power failure, is required to be used indoors or during the power failure. Since it is configured to include an energy supply source switching unit that switches to an energy supply source for each outdoor electric device, it is not necessary to provide special equipment to the electric vehicle, and at the time of a power failure, the battery of the electric vehicle can be safely and reliably removed from the battery of the electric vehicle. This has the effect of securing emergency power.

【0067】この発明によれば、電気自動車のバッテリ
に接続された充電のための既設コネクタにおける前記バ
ッテリの各電極端子と電力変換供給手段との間を接続し
た、前記バッテリから給電を行うための給電ケーブルを
有し、停電検知装置が停電を検出すると、エネルギー供
給源切換手段の切換器により前記バッテリに蓄電されて
いるエネルギーが前記給電ケーブルを介して前記電力変
換供給手段へ供給されるように構成したので、電気自動
車のバッテリに充電のための既設コネクタが接続されて
いれば、停電が発生しても新たなケーブルの引き回しな
どの作業が不要であり、停電時には安全かつ確実に前記
電気自動車のバッテリから非常用電力を確保できる効果
がある。
According to the present invention, the power supply from the battery is connected between each electrode terminal of the battery and the power conversion supply means in the existing connector for charging connected to the battery of the electric vehicle. A power supply cable, and when the power failure detection device detects a power failure, the energy stored in the battery is supplied to the power conversion supply means via the power supply cable by the switch of the energy supply source switching means. With the configuration, if an existing connector for charging is connected to the battery of the electric vehicle, even if a power failure occurs, work such as routing of a new cable is unnecessary, and the electric vehicle can be safely and reliably provided during a power failure. There is an effect that emergency power can be secured from the battery.

【0068】この発明によれば、停電が発生すると、停
電中に使用する必要のある屋内または屋外の各電気機器
における共通接続側の配線を各電気機器ごとに遮断する
遮断器を備えるように構成したので、停電が解消したと
きの復旧が安全に行われる効果がある。
According to the present invention, when a power failure occurs, there is provided a circuit breaker that disconnects the wiring on the common connection side of each indoor or outdoor electrical device that needs to be used during the power failure for each electrical device. Therefore, there is an effect that recovery when the power outage is resolved is safely performed.

【0069】この発明によれば、優先順位設定手段によ
り設定された優先順位に従って停電時に優先して電力供
給を行う電気機器を決定し、該決定した電気機器へ電力
供給を行う電力供給制御装置を備えているので、停電時
に動作させなければならない電気機器に対し優先して電
力供給を行うことができ、停電時の限られた電力を有効
に利用できる効果がある。
According to the present invention, there is provided a power supply control device for deciding an electric device to be supplied with power in the event of a power failure in accordance with the priority set by the priority setting means and supplying power to the decided electric device. Since the power supply is provided, it is possible to preferentially supply electric power to an electric device that needs to be operated at the time of a power failure, and there is an effect that limited power at the time of the power failure can be effectively used.

【0070】この発明によれば、バッテリ残量検出手段
により検出したエネルギー残量と、優先順位設定手段に
より設定された優先順位とをもとに停電時に優先して電
力供給を行う電気機器を決定し、該決定した電気機器へ
電力供給を行う構成を備えたので、停電時に動作させな
ければならない電気機器に対し、エネルギー残量に応じ
て優先して電力供給を行うことができ、停電時の限られ
た電力を有効に利用できる効果がある。
According to the present invention, an electric device which supplies power preferentially during a power outage is determined based on the remaining energy level detected by the remaining battery level detecting means and the priority set by the priority setting means. And, since the configuration for supplying power to the determined electric device is provided, it is possible to preferentially supply power to the electric device that must be operated at the time of power failure according to the remaining energy, and There is an effect that limited power can be used effectively.

【0071】この発明によれば、エネルギー供給源切換
手段により切り換えられた電気自動車のバッテリである
エネルギー供給源から供給された電力、太陽電池パネル
により供給された電力、および蓄電池により供給された
電力を、停電時に各電気機器が動作可能な電力に変換し
供給する構成を備えたので、停電時に安全かつ確実に前
記電気自動車のバッテリ、前記太陽電池パネルおよび前
記蓄電池から非常用電力を確保できる効果がある。
According to the present invention, the power supplied from the energy supply source which is the battery of the electric vehicle switched by the energy supply source switching means, the power supplied by the solar cell panel, and the power supplied by the storage battery are used. In the event of a power outage, each electric device is provided with a configuration that converts the power into operable power and supplies the power. is there.

【0072】この発明によれば、太陽電池パネル発電量
検出手段により検出した太陽電池パネルの発電量をもと
に、停電時に各電気機器へ電力供給を行う電力供給源を
前記太陽電池パネル、蓄電池、自動車のバッテリのうち
から選択して決定する電力供給元決定手段と、各電気機
器が設けられている室内の温度、明るさなどの各種状態
を検出する室内状態検出手段と、該室内状態検出手段に
より検出した状態をもとに、前記電力供給元決定手段が
決定した電力供給元から電力供給を行う電力供給先の電
気機器を決定する電力供給先決定手段とを備えるように
構成したので、太陽電池パネルの発電状況および室内の
状況に応じて、電力供給元および電力供給先を決定し、
決定した前記電力供給先の電気機器へ電力供給を行うこ
とができ、太陽電池パネルの発電状況および室内の状況
に柔軟に対応して電力供給を行うことができる効果があ
る。
According to the present invention, the power supply source for supplying electric power to each electric device at the time of a power failure based on the power generation amount of the solar cell panel detected by the solar cell panel power generation amount detecting means is provided by the solar cell panel and the storage battery. Power supply source determining means for selecting and determining from among the batteries of an automobile, indoor state detecting means for detecting various states such as temperature and brightness of the room where each electric device is provided, and indoor state detecting Based on the state detected by the means, the power supply source determining means is configured to include a power supply destination determining means for determining an electrical device of a power supply destination to supply power from the power supply source determined, Determine the power supply source and power supply destination according to the power generation status of the solar panel and the indoor status,
Electric power can be supplied to the determined electric power supply destination electric device, and there is an effect that electric power can be supplied flexibly in response to the power generation state of the solar cell panel and the indoor state.

【0073】この発明によれば、太陽電池パネル発電量
検出手段が、太陽電池パネルの充分な発電量を検出する
と、前記太陽電池パネルが発電している発電量の余剰電
力を蓄電池や自動車のバッテリへ供給し充電を行う余剰
電力利用手段を備えるように構成したので、太陽電池パ
ネルによる余剰電力を有効利用できる効果がある。
According to the present invention, when the solar cell panel power generation amount detecting means detects a sufficient power generation amount of the solar cell panel, the surplus power of the power generation amount generated by the solar cell panel is stored in a storage battery or an automobile battery. It is configured to include a surplus power utilization means for supplying and charging the surplus power, so that the surplus power by the solar cell panel can be effectively used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の停電時電力供給装
置を示す構成図である。
FIG. 1 is a configuration diagram showing a power failure power supply device according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1の停電時電力供給装
置における共通コネクタを主にした回路構成を示す回路
図である。
FIG. 2 is a circuit diagram illustrating a circuit configuration mainly of a common connector in the power failure power supply device according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態2の停電時電力供給装
置の主要部分を示す部分構成図である。
FIG. 3 is a partial configuration diagram illustrating a main part of a power failure power supply device according to a second embodiment of the present invention.

【図4】 電力供給先である各電気機器に対して設定さ
れた電力供給の優先順位やバッテリのエネルギー残量を
もとに、電力供給制御装置が停電時の前記各電気機器へ
の電力供給を制御するためのテーブルを示す説明図であ
る。
FIG. 4 is a diagram illustrating a power supply control device that supplies power to each of the electric devices at the time of a power outage based on the power supply priority set for each electric device to which the power is supplied and the remaining energy of the battery. FIG. 6 is an explanatory diagram showing a table for controlling the operation.

【図5】 この発明の実施の形態3の停電時電力供給装
置を示す構成図である。
FIG. 5 is a configuration diagram showing a power failure power supply device according to Embodiment 3 of the present invention.

【図6】 この発明の実施の形態4の停電時電力供給装
置を示す構成図である。
FIG. 6 is a configuration diagram illustrating a power failure power supply device according to a fourth embodiment of the present invention.

【図7】 この発明の実施の形態4の停電時電力供給装
置における電力供給制御装置の構成を示す回路図であ
る。
FIG. 7 is a circuit diagram showing a configuration of a power supply control device in a power failure power supply device according to a fourth embodiment of the present invention.

【図8】 この発明の実施の形態4の停電時電力供給装
置における停電時電力供給装置の動作を示すフローチャ
ートである。
FIG. 8 is a flowchart showing an operation of the power failure power supply device in the power failure power supply device of Embodiment 4 of the present invention.

【図9】 従来の停電時電力供給装置を示す構成図であ
る。
FIG. 9 is a configuration diagram showing a conventional power failure power supply device.

【符号の説明】[Explanation of symbols]

10 太陽電池パネル、11 蓄電池、22 バッテ
リ、25 停電検知装置、26,41 DC/AC変換
器(電力変換供給手段)、27 共通コネクタ(既設コ
ネクタ)、27a ケーブル(給電ケーブル)、28a
電気機器、29,43 電力供給制御装置、29b
バッテリ端子電圧検出部(バッテリ残量検出手段)、2
9c マイクロコンピュータ(優先順位設定手段)、3
2,35リレー回路(遮断器)、43a 温度検出セン
サ(室内状態検出手段)、43b照度センサ(室内状態
検出手段)、43f 太陽電池パネル発電量検出回路
(太陽電池パネル発電量検出手段)、43i,43j,
43k DC/AC変換回路(電力変換供給手段)、4
3q マイクロコンピュータ(電力供給元決定手段,電
力供給先決定手段,余剰電力利用手段)、127 バッ
テリ側コネクタ構成部(既設コネクタ)、128a 切
換器(エネルギー供給源切換手段)。
Reference Signs List 10 solar panel, 11 storage battery, 22 battery, 25 power failure detection device, 26, 41 DC / AC converter (power conversion supply means), 27 common connector (existing connector), 27a cable (power supply cable), 28a
Electric equipment, 29, 43 Power supply control device, 29b
Battery terminal voltage detection section (remaining battery level detection means), 2
9c microcomputer (priority setting means), 3
2, 35 relay circuit (circuit breaker), 43a temperature detection sensor (indoor state detection means), 43b illuminance sensor (indoor state detection means), 43f solar cell panel power generation amount detection circuit (solar cell panel power generation amount detection means), 43i , 43j,
43k DC / AC conversion circuit (power conversion supply means), 4
3q microcomputer (power supply source determination means, power supply destination determination means, surplus power utilization means), 127 battery-side connector component (existing connector), 128a switcher (energy supply source switching means).

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 停電を検知する停電検知装置と、 該停電検知装置が停電を検出すると、停電の発生により
充電が停止された電気自動車のバッテリを、停電中に使
用する必要のある屋内または屋外の各電気機器へのエネ
ルギー供給源に切り換えるエネルギー供給源切換手段
と、 該エネルギー供給源切換手段により切り換えられた前記
エネルギー供給源から供給された電力を、前記停電時に
前記各電気機器が動作可能な電力に変換し供給する電力
変換供給手段を備えた停電時電力供給装置。
1. A power failure detection device for detecting a power failure, and when the power failure detection device detects a power failure, a battery of an electric vehicle that has been stopped charging due to the occurrence of the power failure is required to be used indoor or outdoor during a power failure. Energy supply source switching means for switching to an energy supply source for each of the electric devices, and the electric devices operable at the time of the power outage with the electric power supplied from the energy supply source switched by the energy supply source switching means A power supply device at the time of a power failure including a power conversion supply unit that converts and supplies electric power.
【請求項2】 電気自動車のバッテリに接続された充電
のための既設コネクタにおける前記バッテリの各電極端
子と電力変換供給手段との間を接続した、前記バッテリ
から給電を行うための給電ケーブルを有し、 エネルギー供給源切換手段は、 停電検知装置が停電を検出すると、前記バッテリに蓄電
されているエネルギーを前記給電ケーブルを介して前記
電力変換供給手段へ供給可能にする切換器を備えている
ことを特徴とする請求項1記載の停電時電力供給装置。
2. A power supply cable for supplying power from the battery, which is connected between each electrode terminal of the battery and a power conversion supply means in an existing connector for charging connected to the battery of the electric vehicle. The energy supply source switching means includes a switch that can supply energy stored in the battery to the power conversion supply means via the power supply cable when the power failure detection device detects a power failure. The power supply device at the time of a power outage according to claim 1, characterized in that:
【請求項3】 停電が発生すると、停電中に使用する必
要のある屋内または屋外の各電気機器における共通接続
側の配線を各電気機器ごとに遮断する遮断器を備えてい
ることを特徴とする請求項1または請求項2記載の停電
時電力供給装置。
3. When a power failure occurs, a circuit breaker is provided for interrupting the wiring on the common connection side of each indoor or outdoor electrical device that needs to be used during the power failure for each electrical device. The power supply device at the time of a power failure according to claim 1 or 2.
【請求項4】 各電気機器に対し優先順位をあらかじめ
設定する優先順位設定手段と、 該優先順位設定手段により設定された優先順位に従って
停電時に優先して電力供給を行う電気機器を決定し、該
決定した電気機器へ電力供給を行う電力供給制御装置と
を備えていることを特徴とする請求項1から請求項3の
うちのいずれか1項記載の停電時電力供給装置。
4. A priority setting means for setting priorities for the respective electric devices in advance, and an electric device for supplying power with priority during a power failure according to the priorities set by the priority setting means is determined. 4. The power supply device according to claim 1, further comprising: a power supply control device configured to supply power to the determined electric device. 5.
【請求項5】 電力供給制御装置は、 電気自動車のバッテリに蓄積されているエネルギー残量
を検出するバッテリ残量検出手段を有し、 該バッテリ残量検出手段により検出したエネルギー残量
と、優先順位設定手段により設定された前記優先順位と
をもとに停電時に優先して電力供給を行う電気機器を決
定し、該決定した電気機器へ電力供給を行うことを特徴
とする請求項4記載の停電時電力供給装置。
5. The power supply control device includes a battery remaining amount detecting unit that detects a remaining amount of energy stored in a battery of the electric vehicle. The electric equipment to be preferentially supplied with power at the time of a power failure based on the priority set by the rank setting means, and power is supplied to the decided electric equipment. Power supply during power outage.
【請求項6】 停電時に各電気機器へ電力を供給する太
陽電池パネルと、 夜間電力により充電され停電時に各電気機器へ電力を供
給する蓄電池とを有し、 電力変換供給手段は、 エネルギー供給源切換手段により切り換えられた電気自
動車のバッテリであるエネルギー供給源から供給された
電力、前記太陽電池パネルにより供給された電力、およ
び前記蓄電池により供給された電力を、前記停電時に前
記各電気機器が動作可能な電力に変換し供給することを
特徴とする請求項1から請求項3のうちのいずれか1項
記載の停電時電力供給装置。
6. A power conversion supply unit comprising: a solar cell panel that supplies power to each electric device at the time of a power failure; and a storage battery that is charged with nighttime power and supplies power to each of the electric devices at the time of a power failure. Each of the electric devices operates at the time of the power failure, by using the power supplied from the energy supply source, which is a battery of the electric vehicle switched by the switching unit, the power supplied by the solar cell panel, and the power supplied by the storage battery. The power supply at the time of a power failure according to any one of claims 1 to 3, wherein the power is supplied after being converted into possible power.
【請求項7】 太陽電池パネルの発電量を検出する太陽
電池パネル発電量検出手段と、 該太陽電池パネル発電量検出手段により検出した前記太
陽電池パネルの発電量をもとに、停電時に各電気機器へ
電力供給を行う電力供給源を前記太陽電池パネル、前記
蓄電池、自動車のバッテリのうちから選択して決定する
電力供給元決定手段と、 前記各電気機器が設けられている室内の温度、明るさな
どの各種状態を検出する室内状態検出手段と、 該室内状態検出手段により検出した状態をもとに、前記
電力供給元決定手段が決定した電力供給元から電力供給
を行う電力供給先の電気機器を決定する電力供給先決定
手段とを備え、 電力変換供給手段は、 前記電力供給元決定手段が決定した電力供給元から供給
される電力を、前記電力供給先決定手段が決定した電気
機器へ、当該電気機器が動作可能な電力に変換し供給す
ることを特徴とする請求項6記載の停電時電力供給装
置。
7. A photovoltaic power generation amount detecting means for detecting a power generation amount of a photovoltaic panel, and each electric power at the time of a power failure based on the power generation amount of the photovoltaic panel detected by the photovoltaic power generation amount detecting means. Power supply source determining means for selecting and determining a power supply source for supplying power to the device from the solar cell panel, the storage battery, and a battery of an automobile; and a temperature and brightness of a room in which each of the electric devices is provided. Indoor state detecting means for detecting various states such as power, and electric power of a power supply destination for supplying power from the power supply source determined by the power supply source determining means based on the state detected by the indoor state detecting means. Power supply destination determining means for determining the device, wherein the power conversion supply means, the power supplied from the power supply source determined by the power supply source determination means, the power supply destination determination means Boss was to electrical equipment, power failure power supply device according to claim 6, wherein the electrical equipment and supplying converted to an operable power.
【請求項8】 太陽電池パネル発電量検出手段が、太陽
電池パネルの充分な発電量を検出すると、前記太陽電池
パネルが発電している発電量の余剰電力を蓄電池や自動
車のバッテリへ供給し充電を行う余剰電力利用手段を備
えていることを特徴とする請求項7記載の停電時電力供
給装置。
8. When the solar panel power generation amount detection means detects a sufficient amount of power generation of the solar panel, it supplies surplus power of the amount of power generated by the solar cell panel to a storage battery or a battery of a vehicle to charge the battery. The power supply device at the time of a power outage according to claim 7, further comprising a surplus power utilization unit that performs the following.
JP9345622A 1997-12-15 1997-12-15 Power supply device for power failure Pending JPH11178241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9345622A JPH11178241A (en) 1997-12-15 1997-12-15 Power supply device for power failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9345622A JPH11178241A (en) 1997-12-15 1997-12-15 Power supply device for power failure

Publications (1)

Publication Number Publication Date
JPH11178241A true JPH11178241A (en) 1999-07-02

Family

ID=18377855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9345622A Pending JPH11178241A (en) 1997-12-15 1997-12-15 Power supply device for power failure

Country Status (1)

Country Link
JP (1) JPH11178241A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1201485A1 (en) * 2000-09-08 2002-05-02 Ford Motor Company HEV charger/generator unit
JP2003250230A (en) * 2002-02-22 2003-09-05 Toshiba Eng Co Ltd Coupling device for mobile power supply
JP2004187385A (en) * 2002-12-02 2004-07-02 Sumitomo Electric Ind Ltd Distributed power supply system
WO2006059762A1 (en) * 2004-11-30 2006-06-08 Toyota Jidosha Kabushiki Kaisha Ac power supplying system, power supply apparatus, and vehicle having the same
JP2006273504A (en) * 2005-03-29 2006-10-12 Hitachi Ltd Elevator system
JP2007236023A (en) * 2006-02-27 2007-09-13 Toyota Motor Corp Power supply system for building
EP1908623A1 (en) * 2006-10-03 2008-04-09 Paul J. Plishner Vehicle equipped for providing solar electric power for off-vehicle use and systems in support thereof
JPWO2006059763A1 (en) * 2004-11-30 2008-06-05 トヨタ自動車株式会社 Power supply system and vehicle
WO2010049773A2 (en) * 2008-10-28 2010-05-06 Panasonic Electric Works Co., Ltd. Charging cable unit
JP2010246368A (en) * 2009-04-03 2010-10-28 General Electric Co <Ge> Device, method, and system for transporting electrical energy
US7839020B2 (en) 2005-04-22 2010-11-23 Toyota Jidosha Kabushiki Kaisha Electric power supply system
WO2011045925A1 (en) * 2009-10-13 2011-04-21 パナソニック株式会社 Power source device and vehicle
JP2012005313A (en) * 2010-06-21 2012-01-05 Mitsubishi Motors Corp Power management system and on-vehicle power management device
US20120139335A1 (en) * 2010-12-02 2012-06-07 Hydrive Vehicles, Incorporated System for extracting electrical power from an electric vehicle
JP2012170259A (en) * 2011-02-15 2012-09-06 Denso Corp Power supply system
JP2012228036A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Power control system
JP2012254009A (en) * 2011-05-31 2012-12-20 Ls Industrial Systems Co Ltd Energy management device, energy management method, and energy management system
JP2013142380A (en) * 2012-01-13 2013-07-22 Hitachi Ltd Power supply system and vehicle controller capable of supplying power to outside
EP2692569A2 (en) 2012-07-31 2014-02-05 Mitsubishi Jidosha Kogyo K.K. External power supply apparatus of electric vehicle
JP2014093906A (en) * 2012-11-06 2014-05-19 Full Time System:Kk Power supply device and emergency power source provision system
JP2014150722A (en) * 2008-12-02 2014-08-21 General Electric Co <Ge> System and method for vehicle based uninterruptible power supply apparatus
JP2014171311A (en) * 2013-03-04 2014-09-18 Denso Corp Power supply system, and power supply control device
JP2014200170A (en) * 2012-05-29 2014-10-23 三菱電機株式会社 Charging/discharging device, and power source switching system
JP2014217258A (en) * 2013-04-30 2014-11-17 日産自動車株式会社 Power supply device, power supply system and control method for power supply device
JP2015043691A (en) * 2014-11-04 2015-03-05 三菱自動車工業株式会社 Portable type power supply device
EP2779395A4 (en) * 2011-11-08 2016-01-06 Panasonic Ip Man Co Ltd Power conversion device
US9511676B2 (en) 2014-01-31 2016-12-06 Ford Global Technologies Llc Portable EV energy transfer apparatus and method
JP2016212655A (en) * 2015-05-11 2016-12-15 日本信号株式会社 Battery providing device and parking lot system including the same
JP2016226293A (en) * 2015-07-01 2016-12-28 三菱電機株式会社 Power source switching device and dwelling house
JP6099719B1 (en) * 2015-10-28 2017-03-22 三菱電機株式会社 DC power supply system
JP2017118709A (en) * 2015-12-24 2017-06-29 株式会社椿本チエイン Charge and discharge device
US9834102B2 (en) 2012-05-25 2017-12-05 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply device
JP2018061432A (en) * 2016-09-21 2018-04-12 三菱電機株式会社 Charge and discharge device
JP2020127357A (en) * 2012-05-29 2020-08-20 三菱電機株式会社 Charge/discharge device and power supply switching system
DE102023122488A1 (en) 2022-08-31 2024-02-29 Subaru Corporation MULTI-CYLINDRICAL STRUCTURED SUPPLY PIPE

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1201485A1 (en) * 2000-09-08 2002-05-02 Ford Motor Company HEV charger/generator unit
JP2003250230A (en) * 2002-02-22 2003-09-05 Toshiba Eng Co Ltd Coupling device for mobile power supply
JP2004187385A (en) * 2002-12-02 2004-07-02 Sumitomo Electric Ind Ltd Distributed power supply system
US7550861B2 (en) 2004-11-30 2009-06-23 Toyota Jidosha Kabushiki Kaisha AC power supplying system, power supply apparatus, and vehicle having the same
JPWO2006059763A1 (en) * 2004-11-30 2008-06-05 トヨタ自動車株式会社 Power supply system and vehicle
JPWO2006059762A1 (en) * 2004-11-30 2008-06-05 トヨタ自動車株式会社 AC power supply system, power supply device, and vehicle equipped with the same
WO2006059762A1 (en) * 2004-11-30 2006-06-08 Toyota Jidosha Kabushiki Kaisha Ac power supplying system, power supply apparatus, and vehicle having the same
JP2006273504A (en) * 2005-03-29 2006-10-12 Hitachi Ltd Elevator system
US7839020B2 (en) 2005-04-22 2010-11-23 Toyota Jidosha Kabushiki Kaisha Electric power supply system
JP2007236023A (en) * 2006-02-27 2007-09-13 Toyota Motor Corp Power supply system for building
EP1908623A1 (en) * 2006-10-03 2008-04-09 Paul J. Plishner Vehicle equipped for providing solar electric power for off-vehicle use and systems in support thereof
WO2010049773A2 (en) * 2008-10-28 2010-05-06 Panasonic Electric Works Co., Ltd. Charging cable unit
WO2010049773A3 (en) * 2008-10-28 2010-06-24 Panasonic Electric Works Co., Ltd. Charging cable unit
JP2014150722A (en) * 2008-12-02 2014-08-21 General Electric Co <Ge> System and method for vehicle based uninterruptible power supply apparatus
JP2010246368A (en) * 2009-04-03 2010-10-28 General Electric Co <Ge> Device, method, and system for transporting electrical energy
CN102577022A (en) * 2009-10-13 2012-07-11 松下电器产业株式会社 Power source device and vehicle
JPWO2011045925A1 (en) * 2009-10-13 2013-03-04 パナソニック株式会社 Power supply device and vehicle
WO2011045925A1 (en) * 2009-10-13 2011-04-21 パナソニック株式会社 Power source device and vehicle
JP2012005313A (en) * 2010-06-21 2012-01-05 Mitsubishi Motors Corp Power management system and on-vehicle power management device
US20120139335A1 (en) * 2010-12-02 2012-06-07 Hydrive Vehicles, Incorporated System for extracting electrical power from an electric vehicle
US8922049B2 (en) * 2010-12-02 2014-12-30 Hydrive Vehicles, Incorporated System for extracting electrical power from an electric vehicle
JP2012170259A (en) * 2011-02-15 2012-09-06 Denso Corp Power supply system
JP2012228036A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Power control system
JP2012254009A (en) * 2011-05-31 2012-12-20 Ls Industrial Systems Co Ltd Energy management device, energy management method, and energy management system
EP2779395A4 (en) * 2011-11-08 2016-01-06 Panasonic Ip Man Co Ltd Power conversion device
JP2013142380A (en) * 2012-01-13 2013-07-22 Hitachi Ltd Power supply system and vehicle controller capable of supplying power to outside
US9834102B2 (en) 2012-05-25 2017-12-05 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply device
JP2014200170A (en) * 2012-05-29 2014-10-23 三菱電機株式会社 Charging/discharging device, and power source switching system
JP2022051909A (en) * 2012-05-29 2022-04-01 三菱電機株式会社 Charge/discharge device and power supply switching system
JP2020127357A (en) * 2012-05-29 2020-08-20 三菱電機株式会社 Charge/discharge device and power supply switching system
JP2015092821A (en) * 2012-05-29 2015-05-14 三菱電機株式会社 Charging/discharging device, and power source switching system
JP2015202050A (en) * 2012-05-29 2015-11-12 三菱電機株式会社 Power source switching device and power source switching system
EP2692569A2 (en) 2012-07-31 2014-02-05 Mitsubishi Jidosha Kogyo K.K. External power supply apparatus of electric vehicle
US9166426B2 (en) 2012-07-31 2015-10-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha External power supply apparatus of electric vehicle
JP2016208839A (en) * 2012-11-06 2016-12-08 株式会社フルタイムシステム Emergency power source provision system
JP2014093906A (en) * 2012-11-06 2014-05-19 Full Time System:Kk Power supply device and emergency power source provision system
JP2014171311A (en) * 2013-03-04 2014-09-18 Denso Corp Power supply system, and power supply control device
JP2014217258A (en) * 2013-04-30 2014-11-17 日産自動車株式会社 Power supply device, power supply system and control method for power supply device
US9511676B2 (en) 2014-01-31 2016-12-06 Ford Global Technologies Llc Portable EV energy transfer apparatus and method
JP2015043691A (en) * 2014-11-04 2015-03-05 三菱自動車工業株式会社 Portable type power supply device
JP2016212655A (en) * 2015-05-11 2016-12-15 日本信号株式会社 Battery providing device and parking lot system including the same
JP2016226293A (en) * 2015-07-01 2016-12-28 三菱電機株式会社 Power source switching device and dwelling house
JP6099719B1 (en) * 2015-10-28 2017-03-22 三菱電機株式会社 DC power supply system
JP2017085780A (en) * 2015-10-28 2017-05-18 三菱電機株式会社 Dc power feeding system
JP2017118709A (en) * 2015-12-24 2017-06-29 株式会社椿本チエイン Charge and discharge device
JP2018061432A (en) * 2016-09-21 2018-04-12 三菱電機株式会社 Charge and discharge device
DE102023122488A1 (en) 2022-08-31 2024-02-29 Subaru Corporation MULTI-CYLINDRICAL STRUCTURED SUPPLY PIPE

Similar Documents

Publication Publication Date Title
JPH11178241A (en) Power supply device for power failure
US6104160A (en) Household power supply system using electric vehicle
US8866333B2 (en) Power control system and vehicle power control device
JP5592274B2 (en) DC power supply system
US20060202559A1 (en) Power unit
US6369463B1 (en) Apparatus and method for supplying alternative energy and back-up emergency power to electrical devices
JP4403648B2 (en) Power management system
EP2299556B1 (en) Battery charging and electrical energy delivery system and battery operated system
CN110999013A (en) Energy storage system
JP7126243B2 (en) power supply system
CN116572767A (en) Charging and discharging control method and control system
JP6397673B2 (en) Control method of power supply control device
JPH08331776A (en) Dc power source system
WO2006030603A1 (en) Cogeneration system
CN111446767A (en) 48V power supply system applied to recreational vehicle with photovoltaic power generation
CN201153341Y (en) Control circuit for double-wire emergent lamp
JP6114930B2 (en) Charging system
KR20200069007A (en) Electric vehicle charging system using energy storage system and multi-fast chargers
JP2019134660A (en) Electric vehicle charger
JP7088784B2 (en) Power storage system and power conditioner
CN112208381B (en) New energy automobile charging system control circuit and control method
CN209462675U (en) A kind of lighting device of and constant power output emergency driving
JP2000308282A (en) Power storage means
CN219779847U (en) AC/DC hybrid automatic conversion power supply system
CN220298335U (en) Energy storage charging pile system