JPH11174327A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH11174327A
JPH11174327A JP36318897A JP36318897A JPH11174327A JP H11174327 A JPH11174327 A JP H11174327A JP 36318897 A JP36318897 A JP 36318897A JP 36318897 A JP36318897 A JP 36318897A JP H11174327 A JPH11174327 A JP H11174327A
Authority
JP
Japan
Prior art keywords
lens
group
positive
wide
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36318897A
Other languages
Japanese (ja)
Inventor
Hiroshi Endo
宏志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP36318897A priority Critical patent/JPH11174327A/en
Publication of JPH11174327A publication Critical patent/JPH11174327A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a telephoto type zoom lens with a power variation ratio of about 10 while decreasing the number of lens elements and shortening the overall length by composing the zoom lens of lens groups having specified refractive index on the whole and specifying the refractive indicter of the respective lens groups and movement conditions for power variation. SOLUTION: The zoom lens consists of 1st positive and 2nd negative lens groups and a rear group which has more than one lens group and is positive on the whole. For power variation, lens groups are moved so that conditions represented as expressions are met, where D1W and D1T, and D2W and D2T are the intervals between the 1st and 2nd groups, and 2nd group and rear group at the wide-angle end and telephoto end. Further, conditions represented as expressions are met, where f2 is the focal length of the 2nd group, SKW, OTLW, and Ω are the back focus, overall optical length, and half field angle at the wide-angle end, o3W and o3T the distances from the most object side lens surface to the front side principal point position of the rear group at the wide-angle end and telephoto end, fW and fT the focal lengths of the whole system, and β2W and β2T the image forming powers of the 2nd group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフィルム用カメラ
(写真用カメラ)、ビデオカメラそして電子スチルカメ
ラ等に好適な望遠型のズームレンズに関し、特に複数の
レンズ群を有し、このうち所定のレンズ群を移動させて
変倍を行ない変倍比10程度と高変倍率で全変倍範囲に
わたり高い光学性能を有しつつレンズ系全体の小型化を
図ったズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a telephoto zoom lens suitable for a film camera (photographic camera), a video camera, an electronic still camera, and the like, and more particularly to a telephoto zoom lens having a plurality of lens groups. The present invention relates to a zoom lens in which a lens unit is moved to perform zooming, and has a high zooming ratio of about 10 and high optical performance over the entire zooming range, while miniaturizing the entire lens system.

【0002】[0002]

【従来の技術】従来より写真用カメラやビデオカメラ等
には高変倍で高い光学性能を有したズームレンズが要求
されている。このうち3つ以上の複数のレンズ群を移動
させて変倍を行った望遠型の多群ズームレンズが種々と
提案されている。
2. Description of the Related Art Conventionally, a zoom lens having a high zoom ratio and high optical performance has been required for a photographic camera, a video camera and the like. Among these, various telephoto-type multi-unit zoom lenses in which three or more lens units are moved to perform zooming have been proposed.

【0003】例えば、物体側より順に正,負そして正の
屈折力の3つのレンズ群より成る3群ズームレンズ、
正,負,正そして正の屈折力の4つのレンズ群、又は
正,負,負そして正の屈折力の4つのレンズ群より成る
4群ズームレンズ、正,負,正,負そして正の屈折力の
5つのレンズ群、又は正,負,正,正そして負の屈折力
の5つのレンズ群より成る5群ズームレンズにおいて複
数のレンズ群を移動させて変倍を行った多群ズームレン
ズが種々と提案されている。
For example, a three-unit zoom lens composed of three lens units having positive, negative, and positive refractive power in order from the object side;
Four lens groups of positive, negative, positive and positive refractive power, or four lens groups consisting of four lens groups of positive, negative, negative and positive refractive power, positive, negative, positive, negative and positive refraction In a five-unit zoom lens composed of five lens units of power or five lens units of positive, negative, positive, positive, and negative refractive power, a multi-unit zoom lens in which a plurality of lens units are moved to perform zooming is provided. Various proposals have been made.

【0004】これらの3群ズームレンズや4群ズームレ
ンズそして5群ズームレンズでは複数のレンズ群を移動
させて変倍を行い、これによりレンズ系全体の小型化を
図りつつ、所定の変倍比を得ている。
In these three-group zoom lens, four-group zoom lens, and five-group zoom lens, a plurality of lens units are moved to perform zooming, thereby reducing the size of the entire lens system while maintaining a predetermined zooming ratio. Have gained.

【0005】又本出願人は特開平4−186212号公
報で物体側より順に正,負,正,負,正そして負の屈折
力の6つのレンズ群より成る変倍比10程度の高変倍比
の6群ズームレンズを提案している。
The present applicant discloses in Japanese Patent Application Laid-Open No. 4-186212 a high zoom ratio of about 10 which is composed of six lens units having positive, negative, positive, negative, positive and negative refractive power in order from the object side. A six-unit zoom lens with a ratio is proposed.

【0006】又、本出願人は特開平8−29686号公
報で物体側より順に正の屈折力の第1群、負の屈折力の
第2群、正の屈折力の第3群、負の屈折力の第4群、正
の屈折力の第5群、そして負の屈折力の第6群の6つの
レンズ群より成る変倍比4程度の望遠型のズームレンズ
を得ている。
Further, the present applicant discloses in Japanese Patent Application Laid-Open No. Hei 8-29686 a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a negative lens unit in that order from the object side. A telephoto zoom lens having a zoom ratio of about 4, which includes six lens units including a fourth unit having a refractive power, a fifth unit having a positive refractive power, and a sixth unit having a negative refractive power, is obtained.

【0007】[0007]

【発明が解決しようとする課題】一般にズームレンズに
おいてはレンズ系全体のコンパクト化と同時に高倍率化
(高変倍化)が望まれている。ズームレンズを高倍率化
するためには、変倍に寄与するレンズ群の数を増やし、
又各レンズ群の屈折力を強くして変倍作用を強くする方
法や、変倍に寄与するレンズ群の移動量を多くする方法
等がある。
Generally, in a zoom lens, it is desired to increase the magnification (higher magnification) at the same time as making the entire lens system compact. To increase the magnification of a zoom lens, increase the number of lens groups that contribute to zooming,
In addition, there are a method of strengthening the zooming action by increasing the refractive power of each lens group, and a method of increasing the amount of movement of the lens group that contributes to zooming.

【0008】しかしながら前者の場合には、変倍に伴う
諸収差の変動を良好に補正するためにレンズ構成枚数を
多くすることが必要となってきて、レンズ系全体のコン
パクト化が困難になるという問題点が生じてくる。
However, in the former case, it is necessary to increase the number of lens components in order to satisfactorily correct fluctuations of various aberrations caused by zooming, and it is difficult to make the entire lens system compact. Problems arise.

【0009】また、後者の場合には変倍に伴うレンズ群
の移動のためのスペースを多く確保しなければならなく
レンズ全長が長くなり、特にレンズ群の移動形態が複雑
な場合には移動レンズ群の鏡筒内の支持が難しくなって
きて、レンズ系全体のコンパクト化が困難になってくる
という問題点が生じてくる。
In the latter case, a large space must be secured for the movement of the lens unit due to zooming, and the overall length of the lens becomes long. There is a problem that it becomes difficult to support the group inside the lens barrel, and it becomes difficult to make the entire lens system compact.

【0010】本発明は、ズームレンズを全体として所定
の屈折力を有する複数のレンズ群より構成し、各レンズ
群の屈折力や変倍を行なうための各レンズ群の移動条件
等を適切に設定することにより、レンズ枚数を少なく
し、レンズ全長の短縮化を図りつつ、全変倍範囲にわた
り高い光学性能を有した広角端の撮影画角75度程度、
変倍比10程度の望遠型のズームレンズの提供を目的と
する。
According to the present invention, the zoom lens is composed of a plurality of lens units having a predetermined refractive power as a whole, and the refractive power of each lens unit and the moving conditions of each lens unit for performing zooming are appropriately set. By reducing the number of lenses and shortening the overall length of the lens, the wide-angle shooting angle of view of about 75 degrees with high optical performance over the entire zoom range,
It is an object of the present invention to provide a telephoto zoom lens having a zoom ratio of about 10.

【0011】[0011]

【課題を解決するための手段】本発明のズームレンズ
は、(1-1) 物体側より順に正の屈折力の第1レンズ群、
負の屈折力の第2レンズ群、そして複数のレンズ群を有
し、全体として正の屈折力の後群より成り、変倍に際し
ては複数のレンズ群を移動して行っており、該第1群と
第2群の広角端と望遠端での間隔を各々D1W,D1
T、該第2群と後群の広角端と望遠端での間隔を各々D
2W,D2T、広角端と望遠端における該後群の最も物
体側のレンズ面から前側主点位置までの距離を各々o3
W,o3T、広角端でのバックフォーカスと光学全長、
そして半画角を各々SKW,OTLW,ωW、該第2群
の焦点距離をf2、広角端と望遠端における全系の焦点
距離を各々fW,fT、該第2群の広角端と望遠端にお
ける結像倍率を各々β2W,β2Tとしたとき D1W<D1T ‥‥‥(1) D2W>D2T ‥‥‥(2) 0.2<(o3W−o3T)/fW<1 ‥‥‥(3) 4<β2T/β2W ‥‥‥(4) 0.2<SKW/OTLW<0.4 ‥‥‥(5) 0.03<|f2|/fT<0.07 ‥‥‥(6) 0.3<|f2|/SKW<0.5 ‥‥‥(7) 0.4<OTLW/(fT・tan(ωW))<0.85‥‥‥(8) なる条件を満足することである。
According to the present invention, there is provided a zoom lens system comprising: (1-1) a first lens unit having a positive refractive power in order from the object side;
The zoom lens has a second lens unit having a negative refractive power and a plurality of lens units. The lens unit includes a rear lens unit having a positive refractive power as a whole. The distances between the group and the second group at the wide-angle end and the telephoto end are D1W and D1 respectively.
T, the distance between the second group and the rear group at the wide-angle end and the telephoto end is D
2W, D2T, the distance from the lens surface closest to the object side of the rear group at the wide-angle end and the telephoto end to the front principal point position are respectively o3
W, o3T, back focus at wide angle end and total optical length,
The half angle of view is SKW, OTLW, ωW, the focal length of the second group is f2, the focal length of the entire system at the wide-angle end and the telephoto end is fW, fT, respectively, and the wide-angle end and the telephoto end of the second group are at the telephoto end. When the imaging magnifications are β2W and β2T, respectively, D1W <D1To (1) D2W> D2T ‥‥‥ (2) 0.2 <(o3W−o3T) / fW <1 ‥‥‥ (3) 4 < β2T / β2W ‥‥‥ (4) 0.2 <SKW / OTLW <0.4 ‥‥‥ (5) 0.03 <| f2 | / fT <0.07 ‥‥‥ (6) 0.3 <| f2 | / SKW <0.5 ‥‥‥ (7) 0.4 <OTLW / (fT · tan (ωW)) <0.85 ‥‥‥ (8)

【0012】[0012]

【発明の実施の形態】図1〜図6は本発明の数値実施例
1〜6のレンズ断面図である。図7〜図18は本発明の
数値実施例1〜6の収差図である。
1 to 6 are lens sectional views of Numerical Examples 1 to 6 of the present invention. 7 to 18 are aberration diagrams of Numerical Examples 1 to 6 of the present invention.

【0013】図中、L1は正の屈折力の第1群、L2は
負の屈折力の第2群、L3は正の屈折力の第3群、L4
は負の屈折力の第4群、L5は正の屈折力の第5群、L
6は負の屈折力の第6群、Sはフレアーカット絞り、S
Pは絞りである。矢印は広角端から望遠端への変倍に際
して各レンズ群の移動軌跡を示している。
In the drawing, L1 is a first lens unit having a positive refractive power, L2 is a second lens unit having a negative refractive power, L3 is a third lens unit having a positive refractive power, and L4 is a positive lens.
Is a fourth group having a negative refractive power, L5 is a fifth group having a positive refractive power, L
6 is a sixth group having a negative refractive power, S is a flare-cut aperture, S
P is an aperture. Arrows indicate the movement trajectories of the respective lens units when zooming from the wide-angle end to the telephoto end.

【0014】本実施形態では第3群から第6群までで、
全体として正の屈折力の後群を構成している。図1〜図
6の数値実施例1〜6では広角端から望遠端への変倍に
際しては前述の条件式(1),(2)を満足するよう
に、複数のレンズ群を移動させている。
In this embodiment, the third to sixth groups are
The rear group as a whole has a positive refractive power. In the numerical examples 1 to 6 shown in FIGS. 1 to 6, a plurality of lens units are moved so as to satisfy the conditional expressions (1) and (2) at the time of zooming from the wide-angle end to the telephoto end. .

【0015】即ち、第1群と第2群の間隔が増大し、第
2群と第3群の間隔が減少するように複数のレンズ群を
移動させている。又、図1〜図4の数値実施例1〜4で
は第3群と第4群の間隔が増大し、第4群と第5群の間
隔が減少し、第5群と第6群の間隔が減少するように第
1群から第6群の全てのレンズ群を物体側へ移動させて
いる。
That is, the plurality of lens units are moved so that the distance between the first and second units increases and the distance between the second and third units decreases. In the numerical examples 1 to 4 shown in FIGS. 1 to 4, the distance between the third and fourth groups increases, the distance between the fourth and fifth groups decreases, and the distance between the fifth and sixth groups increases. All the lens units of the first to sixth groups are moved to the object side so that is reduced.

【0016】又、図5,図6の数値実施例5,6では第
3群と第4群の間隔が増大し、第4群と第5群の間隔が
減少し、第5群と第6群の間隔が増大するように、数値
実施例5では第2群を固定とし、第1,第3〜第6群を
物体側へ、数値実施例6では第2群を像面側へ、第1,
第3〜第6群を物体側へ各々移動させている。
In the numerical examples 5 and 6 shown in FIGS. 5 and 6, the distance between the third lens unit and the fourth lens unit increases, the distance between the fourth lens unit and the fifth lens unit decreases, and the distance between the fifth lens unit and the sixth lens unit increases. In Numerical Embodiment 5, the second lens unit is fixed, and the first, third to sixth lens units are set to the object side, and in Numerical Embodiment 6, the second lens unit is shifted to the image plane side so that the distance between the groups increases. 1,
The third to sixth lens units are moved to the object side.

【0017】数値実施例1〜6ではフレアー絞りSを、
広角端から望遠端への変倍に際して、物体側へ移動させ
ている。これによって変倍に伴う軸外のフレアーを良好
にカットしている。
In Numerical Examples 1 to 6, the flare aperture S is
During zooming from the wide-angle end to the telephoto end, the lens is moved to the object side. As a result, off-axis flare caused by zooming is favorably cut.

【0018】本発明のズームレンズにおいては無限遠物
体から近距離物体への焦点調節の際には、第6群を像面
側へ移動させている。これによって、至近物体における
画面周辺部の光量を効果的に確保している。
In the zoom lens of the present invention, the sixth lens unit is moved to the image plane side when adjusting the focus from an object at infinity to an object at a short distance. This effectively secures the amount of light at the peripheral portion of the screen in the close object.

【0019】本発明のズームレンズは広角端において第
1群と第2群を近接配置して合成屈折力が負となるよう
にしている。又第3群,第4群,第5群、そして第6群
(後群)を近接配置している。そして第3群以降の後群
の合成のレンズ群の屈折力が正となるようにしており、
これによりレンズ系全体がレトロフォーカス型となるよ
うにしている。
In the zoom lens of the present invention, the first lens unit and the second lens unit are arranged close to each other at the wide-angle end so that the combined refractive power becomes negative. The third, fourth, fifth and sixth groups (rear group) are arranged close to each other. Then, the refractive power of the combined lens group of the rear group from the third group is made positive.
As a result, the entire lens system becomes a retrofocus type.

【0020】そして望遠端において第1群と第2群の間
隔が大きくなるようにしている。また第2群以降の各レ
ンズ群を近接配置して合成屈折力が負となるようにして
いる。又第3群の近傍に絞りを配置している。これによ
りレンズ系全体が望遠型(テレフォト型)となるように
している。
At the telephoto end, the distance between the first lens unit and the second lens unit is increased. Further, the second and subsequent lens units are arranged close to each other so that the combined refractive power becomes negative. A stop is arranged near the third lens unit. Thus, the entire lens system is of a telephoto type (telephoto type).

【0021】本発明ではこのようなレンズ構成とするこ
とにより広角端において略レトロフォーカス型の屈折力
配置としつつも、最も像面側に配置する第6群を負レン
ズ群とすることによりコマ収差等の非対称性収差の補正
を良好に行っている。又それと同時に望遠端においてテ
レフォト型の屈折力配置としてコンパクトなレンズ構成
としつつ、球面収差等の諸収差を良好に補正している。
In the present invention, by adopting such a lens configuration, while the refractive power arrangement is of a substantially retrofocus type at the wide-angle end, the sixth lens unit disposed closest to the image plane is formed as a negative lens unit, thereby achieving coma aberration. , Etc., is well corrected. At the same time, at the telephoto end, various aberrations such as spherical aberration are satisfactorily corrected while using a telephoto-type refractive power arrangement as a compact lens configuration.

【0022】次に前述の条件式(3)〜(8)の技術的
意味について説明する。条件式(3)は、後群、即ち第
3群から第6群までの合成のレンズ系の前側主点位置の
ズーミング時の変化を規定したものであり、広角端に対
し望遠端では前側主点位置が物体側に移動している。こ
れにより後群の実際の移動より主点位置の移動を大きく
することでレンズ系のコンパクト化を図っている。下限
値を越えて主点位置の変化が小さくなると後群の移動量
を大きくする必要が生じレンズ系が大きくなり、上限値
を越えて主点位置の変化が大きくなることは後群中の各
レンズ群の屈折力が強くなることを意味し収差補正上好
ましくない。
Next, the technical meaning of the conditional expressions (3) to (8) will be described. Conditional expression (3) defines the change during zooming of the front principal point position of the rear lens unit, ie, the combined lens system of the third to sixth lens units, at the telephoto end with respect to the wide-angle end. The point position has moved to the object side. As a result, the movement of the principal point position is made larger than the actual movement of the rear unit, thereby achieving a compact lens system. If the change in the principal point position is smaller than the lower limit, the amount of movement of the rear group needs to be increased, and the lens system becomes larger.If the change in the principal point position exceeds the upper limit, the change in the principal point position becomes larger. This means that the refractive power of the lens group becomes strong, which is not preferable in terms of aberration correction.

【0023】条件式(4)は広角端から望遠端への変倍
の際の第2群による部分系の変倍比を規定するものであ
り、下限値を越えて第2群の変倍比が小さくなると後群
の変倍分担を大きくする必要が生じこのため後群の移動
量を増大させるか後群中の各レンズ群の屈折力を強くす
る必要が有り、コンパクト化あるいは収差補正上好まし
くない。上限値を越えて第2群の変倍比が大きくなるこ
とは第2群の屈折力を強くするまたは第1群と第2群の
間隔が望遠端で長くなることを意味し、前者の場合、第
2群で発生する諸収差を他のレンズ群でバランス良く補
正することが困難となり後者の場合コンパクト化に反す
る。
Conditional expression (4) defines the zoom ratio of the sub-system by the second lens unit at the time of zooming from the wide angle end to the telephoto end. When is smaller, it is necessary to increase the magnification change allotment of the rear unit. Therefore, it is necessary to increase the moving amount of the rear unit or to increase the refractive power of each lens unit in the rear unit, which is preferable in terms of compactness or aberration correction. Absent. An increase in the zoom ratio of the second lens group beyond the upper limit means that the refractive power of the second lens group is increased or that the distance between the first lens group and the second lens group becomes longer at the telephoto end. In addition, it is difficult to correct various aberrations generated in the second lens group in a well-balanced manner by other lens groups.

【0024】条件式(5)は広角端の光学全長に対する
広角端のバックフォーカスの比を規定するものであり、
レンズ系の像面側にミラーボックス等を配置するスペー
スを確保しつつレンズ系のコンパクト化を達成するため
のものであり、条件式を満足するように設定することで
所望のスペックを満足しつつコンパクト化と高性能を同
時に達成している。
Conditional expression (5) defines the ratio of the back focus at the wide-angle end to the total optical length at the wide-angle end.
This is for achieving the compactness of the lens system while securing the space for disposing the mirror box and the like on the image plane side of the lens system, while satisfying the desired specifications by setting so as to satisfy the conditional expressions. It achieves both compactness and high performance at the same time.

【0025】条件式(6),(7),(8)はコンパク
ト且つ高変倍を達成する為の条件式である。条件式
(6)は望遠端での全系の焦点距離に対する第2群の焦
点距離の範囲を規定し、条件式(7)は広角端のバック
フォーカスに対する第2群の焦点距離の範囲を規定し、
条件式(8)は最大像高と変倍比の積に対する広角端の
光学全長を規定するものである。第2群は主な変倍レン
ズであることからレンズ系のコンパクト化に大きく影響
しており、いずれの式に於いても、下限値を越えるとコ
ンパクト化には有利だが第2群で発生する諸収差が大き
くなり、これを他のレンズ群で補正するのが困難とな
り、又、上限値を越えるとレンズ全長が長くなり好まし
くない。
The conditional expressions (6), (7) and (8) are conditional expressions for achieving a compact and high zoom ratio. Conditional expression (6) defines the range of the focal length of the second group with respect to the focal length of the entire system at the telephoto end, and conditional expression (7) defines the range of the focal length of the second group with respect to the back focus at the wide-angle end. And
Conditional expression (8) defines the total optical length at the wide-angle end with respect to the product of the maximum image height and the zoom ratio. Since the second lens group is a main variable power lens, it greatly affects downsizing of the lens system. In any formula, exceeding the lower limit value is advantageous for downsizing, but occurs in the second lens group. Various aberrations increase, which makes it difficult to correct them with other lens groups. If the aberration exceeds the upper limit, the overall length of the lens becomes undesirably long.

【0026】尚、本発明において更に全変倍範囲にわた
り収差変動が少なく、画面全体にわたり高い光学性能を
得るには、次の諸条件のうち少なくとも1つを満足させ
るのが良い。
In the present invention, at least one of the following conditions should be satisfied in order to further reduce aberration variation over the entire zoom range and obtain high optical performance over the entire screen.

【0027】(a1)前記後群は少なくとも1つの非球
面を有していることである。
(A1) The rear group has at least one aspherical surface.

【0028】(a2)前記後群は正の屈折力の第3群、
負の屈折力の第4群、正の屈折力の第5群そして負の屈
折力の第6群の4つのレンズ群を有し、広角端から望遠
端への変倍に際しては、該第i群と第(i+1)群の広
角端と望遠端での空気間隔を各々DiW,DiTとした
とき、 D3W<D3T ‥‥‥(9) D4W>D4T ‥‥‥(10) を満足することである。
(A2) The rear unit is a third unit having a positive refractive power.
The zoom lens has four lens units, a fourth unit having a negative refractive power, a fifth unit having a positive refractive power, and a sixth unit having a negative refractive power. When zooming from the wide-angle end to the telephoto end, the i-th lens unit is used. Assuming that the air spacing at the wide-angle end and the telephoto end of the first lens unit and the (i + 1) -th lens unit are DiW and DiT, respectively, the following condition is satisfied: D3W <D3T ‥‥‥ (9) D4W> D4T ‥‥‥ (10) .

【0029】(a3)前記第i群の焦点距離をfiとし
たとき 0.2<f1/fT<0.5 ‥‥‥(11) 0.06<f3/fT<0.2 ‥‥‥(12) 1<|f4|/f3<1.5 ‥‥‥(13) 0.5<f5/f3<1.5 ‥‥‥(14) 1<|f6|/f3<3.5 ‥‥‥(15) なる条件を満足することである。
(A3) When the focal length of the i-th lens unit is fi, 0.2 <f1 / fT <0.5 {(11) 0.06 <f3 / fT <0.2} ( 12) 1 <| f4 | / f3 <1.5 (13) 0.5 <f5 / f3 <1.5 (14) 1 <| f6 | / f3 <3.5 (15) The following condition must be satisfied.

【0030】条件式(11)は望遠端での全系の焦点距
離に対する第1群の焦点距離の範囲を規定するものであ
り、レンズ全長を短くしかつ望遠端で第2群に入射する
光束径を小さくし、後群のレンズ径を小さくするための
ものである。条件式(11)の、下限値を越えて第1群
の屈折力が強くなると、第1群で発生する収差、特に球
面収差が大きくなりこれを第2群以降のレンズ群で補正
するこたが困難となる。又、上限値を越えて第1群の屈
折力が弱くなるとコンパクト化の達成ができなくなる。
Conditional expression (11) defines the range of the focal length of the first lens group with respect to the focal length of the entire system at the telephoto end. The total lens length is shortened, and the light flux incident on the second lens group at the telephoto end. This is for reducing the diameter and reducing the lens diameter of the rear group. If the refractive power of the first lens unit is increased beyond the lower limit of conditional expression (11), aberrations generated in the first lens unit, particularly spherical aberrations, increase, and this is corrected by the second and subsequent lens units. Becomes difficult. On the other hand, if the refractive power of the first lens unit is weakened beyond the upper limit, compactness cannot be achieved.

【0031】条件式(12)は望遠端での全系の焦点距
離に対する第3群の焦点距離の範囲を規定するものであ
る。条件式(12)の下限値を越えて第3群の屈折力が
強くなると収差補正が困難となり、上限値を越えて第3
群の屈折力が弱くなるとバックフォーカスが長くなりコ
ンパクト化に反する。
Conditional expression (12) defines the range of the focal length of the third lens unit with respect to the focal length of the entire system at the telephoto end. When the refractive power of the third lens unit is increased beyond the lower limit of conditional expression (12), it becomes difficult to correct aberration.
When the refracting power of the group is weak, the back focus becomes long, which is against the compactness.

【0032】条件式(13)〜(15)は各々第3群の
焦点距離に対する第4群、第5群、第6群の焦点距離を
規定し、主にコンパクトおよび高性能を達成する為のも
のであり、条件式(13)の下限値を越えて第4群の屈
折力が強くなると広角端で第5群に入射する軸外光束が
光軸から離れるために第5群以降のレンズ径が大きくな
ってしまう。又、上限値を越えて第4群の屈折力が弱く
なるとレンズ全長が長くなってしまう。
Conditional expressions (13) to (15) define the focal lengths of the fourth, fifth and sixth lens groups with respect to the focal length of the third lens group, respectively, and are mainly for achieving compactness and high performance. When the refractive power of the fourth lens unit is increased beyond the lower limit of conditional expression (13), the off-axis light flux incident on the fifth lens unit at the wide-angle end is separated from the optical axis. Becomes large. On the other hand, if the refractive power of the fourth unit is weakened beyond the upper limit, the overall length of the lens will be long.

【0033】条件式(14)の下限値を越えて第5群の
屈折力が強くなるとこの群で発生する収差、特に像面湾
曲、非点収差が大きくなり補正困難となる。又、上限値
を越えて第5群の屈折力が弱くなるとレンズ全長が長く
なり好ましくない。
When the refractive power of the fifth lens unit is increased beyond the lower limit value of the conditional expression (14), aberrations generated in this lens unit, particularly curvature of field and astigmatism, become large and correction becomes difficult. On the other hand, if the refractive power of the fifth lens unit is weakened beyond the upper limit, the overall length of the lens is undesirably long.

【0034】条件式(15)の下限値を越えて第6群の
屈折力が強くなるとこれに伴って第5群の屈折力も強く
する必要が有り、収差補正上、好ましくない。又、上限
値を越えて第6群の屈折力が弱くなると第6群でフォー
カスを行うための移動量が増大しこのスペースを確保す
るためにレンズ全長が長くなる。
If the refractive power of the sixth lens unit is increased beyond the lower limit of conditional expression (15), the refractive power of the fifth lens unit must be increased accordingly, which is not preferable in terms of aberration correction. If the refractive power of the sixth lens unit becomes weaker than the upper limit, the amount of movement for focusing in the sixth lens unit increases, and the total length of the lens increases to secure this space.

【0035】(a4)前記第1群は1つの負レンズと2
つの正レンズを有し、前記第2群は少なくとも2つの負
レンズと、1つの正レンズを有し、前記第3群は1つの
負レンズと少なくとも1つの正レンズを有し、前記第4
群は1つの負レンズと1つの正レンズを有していること
である。
(A4) The first group is composed of one negative lens and 2
The second group has at least two negative lenses and one positive lens; the third group has one negative lens and at least one positive lens;
The group has one negative lens and one positive lens.

【0036】これによって極力少ないレンズ枚数でバラ
ンス良く収差を補正し、コンパクトで高性能なズーム
レンズを達成している。
As a result, aberrations are corrected with a small number of lenses as much as possible to achieve a compact and high-performance zoom lens.

【0037】(a5)前記第5群は少なくとも1つの正
レンズと、物体側に強い凹面を向けた負レンズ、そして
レンズ中心からレンズ周辺にいくに従って、正の屈折力
が弱くなる形状の非球面を有していることである。
(A5) The fifth lens unit includes at least one positive lens, a negative lens having a strong concave surface facing the object side, and an aspherical surface having a shape in which the positive refractive power becomes weaker from the center of the lens toward the periphery of the lens. It is to have.

【0038】これによって極力少ないレンズ枚数でバラ
ンス良く収差を補正し、コンパクトで高性能なズーム
レンズを達成している。
As a result, aberrations are corrected with a minimum number of lenses as well as a balance, and a compact and high-performance zoom lens is achieved.

【0039】(a6)前記第6群は像面側に強い凹面を
有する負レンズと、物体側に凸面を向けた正レンズとを
有し、該負レンズの像面側のレンズ面の曲率半径をR
N、該正レンズの物体側のレンズ面の曲率半径をRPと
したとき 0.3<RN/|f6|<0.8 ‥‥‥(16) 0.7<RN/RP<1.2 ‥‥‥(17) なる条件を満足することである。
(A6) The sixth unit has a negative lens having a strong concave surface on the image surface side, and a positive lens having a convex surface facing the object side, and the radius of curvature of the lens surface on the image surface side of the negative lens. To R
N, where RP is the radius of curvature of the lens surface on the object side of the positive lens 0.3 <RN / | f6 | <0.8 {(16) 0.7 <RN / RP <1.2} Satisfies the following condition:

【0040】条件式(16)、(17)は第6群のレン
ズの形状を規定するものであり、この条件式を満足する
ことでバランス良く諸収差を補正し、また第6群でフォ
ーカスを行った場合でも物体距離無限から至近距離まで
良好な光学性能を達成している。
The conditional expressions (16) and (17) define the shape of the lens of the sixth unit. By satisfying this conditional expression, various aberrations are corrected in a well-balanced manner, and the focus is adjusted by the sixth unit. Even when it is performed, good optical performance is achieved from an infinite object distance to a close distance.

【0041】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。又、非球面形
状はレンズ面の中心部の曲率半径をRとし、光軸方向
(光の進行方向)をX軸とし、光軸と垂直方向をY軸と
し、B,C,Dをそれぞれ非球面係数としたとき、
Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass. In the aspherical shape, the radius of curvature at the center of the lens surface is R, the optical axis direction (the traveling direction of light) is the X axis, the direction perpendicular to the optical axis is the Y axis, and B, C, and D are asymmetrical. Assuming spherical coefficients,

【0042】[0042]

【数1】 なる式で表している。又「e−X」は「×10-X」を意
味している。また前述の各条件式と数値実施例における
諸数値との関係を表−1に示す。 数値実施例 1 f=29.3〜 293.3 FNo=1:3.4〜28.3 2ω=72.8 °〜8.4 ° R 1= 147.162 D 1= 2.00 N 1=1.84666 ν 1=23.9 R 2= 71.603 D 2= 0.50 R 3= 72.247 D 3= 8.70 N 2=1.59240 ν 2=68.3 R 4= -805.329 D 4= 0.12 R 5= 60.048 D 5= 6.00 N 3=1.72916 ν 3=54.7 R 6= 152.457 D 6= 可変 R 7= 58.250 D 7= 1.20 N 4=1.80400 ν 4=46.6 R 8= 14.906 D 8= 6.20 R 9= -32.317 D 9= 1.10 N 5=1.77250 ν 5=49.6 R10= 65.022 D10= 0.10 R11= 30.303 D11= 4.80 N 6=1.81786 ν 6=23.7 R12= -28.937 D12= 0.68 R13= -23.786 D13= 1.10 N 7=1.83481 ν 7=42.7 R14= 97.594 D14= 可変 R15= ∞ D15= 可変 R16= ( 絞り) D16= 0.00 R17= 32.673 D17= 4.10 N 8=1.60311 ν 8=60.7 R18= -39.395 D18= 0.12 R19= 30.683 D19= 5.50 N 9=1.60311 ν 9=60.7 R20= -20.132 D20= 1.15 N10=1.85026 ν10=32.3 R21= -313.649 D21= 可変 R22= -36.081 D22= 3.10 N11=1.74077 ν11=27.8 R23= -16.516 D23= 1.10 N12=1.83481 ν12=42.7 R24= 85.263 D24= 可変 R25= 48.326 D25= 3.30 N13=1.58313 ν13=59.4 R26= -52.469 D26= 0.15 R27= 617.644 D27= 5.30 N14=1.51633 ν14=64.2 R28= -23.673 D28= 0.15 R29= 89.658 D29= 6.20 N15=1.51633 ν15=64.2 R30= -19.735 D30= 1.20 N16=1.85026 ν16=32.3 R31= -262.927 D31= 可変 R32= -906.276 D32= 1.70 N17=1.77250 ν17=49.6 R33= 23.490 D33= 1.20 R34= 25.588 D34= 2.60 N18=1.84666 ν18=23.9 R35= 47.160 D35= 可変 R36= ∞ 焦点距離 29.34 79.16 293.34 可変間隔 D 6 1.20 29.86 58.53 D 14 10.93 5.51 0.08 D 15 7.20 3.24 1.03 D 21 1.78 3.43 5.09 D 24 9.49 4.88 0.99 D 31 1.48 8.87 1.42 D 35 0.00 6.29 24.95 非球面係数 第18面 B C D -4.398542e-06 -1.062085e-08 -4.509332e-11 第26面 B C D 1.787188e-05 2.204995e-08 -3.845670e-11 数値実施例 2 f= 29.1〜 293.4 FNo=1: 3.4 〜28.3 2ω=73.3 °〜 8.4° R 1= 161.035 D 1= 2.00 N 1=1.84666 ν 1=23.9 R 2= 73.711 D 2= 0.50 R 3= 75.268 D 3= 8.13 N 2=1.59240 ν 2=68.3 R 4= -622.915 D 4= 0.12 R 5= 60.379 D 5= 5.66 N 3=1.72916 ν 3=54.7 R 6= 175.454 D 6= 可変 R 7= 68.597 D 7= 1.20 N 4=1.80400 ν 4=46.6 R 8= 17.807 D 8= 8.05 R 9= -40.483 D 9= 1.10 N 5=1.77250 ν 5=49.6 R10= 62.018 D10= 0.10 R11= 34.572 D11= 5.20 N 6=1.81786 ν 6=23.7 R12= -32.490 D12= 0.68 R13= -26.629 D13= 1.10 N 7=1.83481 ν 7=42.7 R14= 160.370 D14= 可変 R15= ∞ D15= 可変 R16= ( 絞り) D16= 0.00 R17= 42.318 D17= 4.30 N 8=1.60311 ν 8=60.7 R18= -40.708 D18= 0.12 R19= 44.885 D19= 5.50 N 9=1.60311 ν 9=60.7 R20= -22.354 D20= 1.15 N10=1.85026 ν10=32.3 R21= 1085.160 D21= 可変 R22= -39.776 D22= 3.90 N11=1.74077 ν11=27.8 R23= -17.858 D23= 1.10 N12=1.83481 ν12=42.7 R24= 952.872 D24= 可変 R25= 72.008 D25= 3.80 N13=1.58313 ν13=59.4 R26= -59.547 D26= 0.15 R27= 194.065 D27= 5.30 N14=1.51633 ν14=64.2 R28= -29.392 D28= 0.15 R29= 66.043 D29= 6.20 N15=1.51633 ν15=64.2 R30= -28.210 D30= 1.20 N16=1.85026 ν16=32.3 R31= 1036.891 D31= 可変 R32=558693.510 D32= 1.70 N17=1.77250 ν17=49.6 R33= 27.554 D33= 1.20 R34= 27.360 D34= 3.50 N18=1.84666 ν18=23.9 R35= 38.788 D35= 可変 R36= ∞ 焦点距離 29.10 76.59 293.43 可変間隔 D 6 1.50 27.07 52.64 D 14 10.93 5.57 0.20 D 15 14.22 8.90 1.20 D 21 1.78 9.12 15.09 D 24 14.56 7.21 1.24 D 31 4.19 5.62 1.45 D 35 0.00 11.18 30.35 非球面係数 第18面 B C D -2.753723e-06 -3.014994e-09 -1.340648e-11 第26面 B C D 9.640159e-06 7.779398e-09 -3.959658e-12 数値実施例 3 f= 29.1〜 293.4 FNo=1: 3.4 〜 5.9 2ω=73.2 °〜 8.4° R 1= 159.429 D 1= 2.00 N 1=1.84666 ν 1=23.9 R 2= 74.844 D 2= 0.50 R 3= 75.353 D 3= 9.00 N 2=1.59240 ν 2=68.3 R 4= -642.596 D 4= 0.12 R 5= 62.980 D 5= 5.80 N 3=1.72916 ν 3=54.7 R 6= 180.083 D 6= 可変 R 7= 103.387 D 7= 1.20 N 4=1.80400 ν 4=46.6 R 8= 19.542 D 8= 9.27 R 9= -41.774 D 9= 1.10 N 5=1.77250 ν 5=49.6 R10= 62.034 D10= 0.10 R11= 37.044 D11= 5.20 N 6=1.81786 ν 6=23.7 R12= -32.164 D12= 0.68 R13= -27.280 D13= 1.10 N 7=1.83481 ν 7=42.7 R14= 162.068 D14= 可変 R15= ∞ D15= 可変 R16= ( 絞り) D16= 0.00 R17= 39.921 D17= 4.30 N 8=1.60311 ν 8=60.7 R18= -42.916 D18= 0.12 R19= 42.927 D19= 5.50 N 9=1.60311 ν 9=60.7 R20= -23.500 D20= 1.15 N10=1.85026 ν10=32.3 R21= 1193.550 D21= 可変 R22= -39.465 D22= 3.90 N11=1.74077 ν11=27.8 R23= -19.636 D23= 1.10 N12=1.83481 ν12=42.7 R24= 624.286 D24= 可変 R25= 43.718 D25= 6.70 N13=1.58313 ν13=59.4 R26= -26.475 D26= 0.15 R27= 41.063 D27= 7.70 N14=1.48749 ν14=70.2 R28= -23.701 D28= 1.20 N15=1.87400 ν15=35.3 R29= 985.069 D29= 可変 R30= 367.002 D30= 1.70 N16=1.77250 ν16=49.6 R31= 26.090 D31= 1.20 R32= 28.774 D32= 3.50 N17=1.84666 ν17=23.9 R33= 41.780 D33= 可変 R34= ∞ 焦点距離 29.11 73.45 293.44 可変間隔 D 6 1.50 27.66 53.82 D 14 10.93 5.56 0.19 D 15 15.34 10.32 1.19 D 21 1.78 5.58 9.39 D 24 13.19 7.22 1.29 D 29 2.47 3.15 1.46 D 33 0.16 13.35 33.02 非球面係数 第18面 B C D -2.033999e-06 -3.668419e-09 -6.128422e-12 第26面 B C D 1.019878e-05 8.957166e-09 -2.083278e-11 数値実施例 4 f= 29.1〜 293.4 FNo=1: 3.5 〜 5.9 2ω=73.2 °〜 8.4° R 1= 166.814 D 1= 2.00 N 1=1.84666 ν 1=23.9 R 2= 76.531 D 2= 0.50 R 3= 77.217 D 3= 9.16 N 2=1.59240 ν 2=68.3 R 4= -510.331 D 4= 0.12 R 5= 62.609 D 5= 5.85 N 3=1.72916 ν 3=54.7 R 6= 176.276 D 6= 可変 R 7= 116.709 D 7= 1.20 N 4=1.80400 ν 4=46.6 R 8= 19.257 D 8= 8.28 R 9= -42.983 D 9= 1.10 N 5=1.77250 ν 5=49.6 R10= 69.016 D10= 0.10 R11= 36.359 D11= 5.20 N 6=1.81786 ν 6=23.7 R12= -32.572 D12= 0.68 R13= -27.622 D13= 1.10 N 7=1.83481 ν 7=42.7 R14= 129.928 D14= 可変 R15= ∞ D15= 可変 R16= ( 絞り) D16= 0.00 R17= 36.258 D17= 4.30 N 8=1.60311 ν 8=60.7 R18= -40.026 D18= 0.12 R19= 42.476 D19= 5.50 N 9=1.60311 ν 9=60.7 R20= -21.079 D20= 1.15 N10=1.85026 ν10=32.3 R21= 385.651 D21= 可変 R22= -45.725 D22= 3.90 N11=1.74077 ν11=27.8 R23= -17.148 D23= 1.10 N12=1.83481 ν12=42.7 R24= 262.403 D24= 可変 R25= 72.819 D25= 5.30 N13=1.58313 ν13=59.4 R26= -37.006 D26= 0.15 R27= 73.092 D27= 7.00 N14=1.48749 ν14=70.2 R28= -26.888 D28= 2.00 R29= -30.346 D29= 1.20 N15=1.84666 ν15=23.8 R30= -68.383 D30= 可変 R31= 430.508 D31= 1.70 N16=1.77250 ν16=49.6 R32= 28.425 D32= 1.20 R33= 29.781 D33= 3.50 N17=1.84666 ν17=23.9 R34= 39.405 D34= 可変 R35= ∞ 焦点距離 29.11 73.70 293.43 可変間隔 D 6 1.50 27.68 53.86 D 14 10.93 5.53 0.13 D 15 14.55 9.69 1.13 D 21 1.78 5.18 8.58 D 24 14.73 7.96 1.22 D 30 3.21 3.74 1.45 D 34 0.00 14.42 35.34 非球面係数 第18面 B C D -1.854221e-06 -1.156923e-08 1.107726e-12 第26面 B C D 1.120399e-05 1.617871e-08 1.616471e-11 数値実施例 5 f= 29.2〜 293.4 FNo=1: 3.4 〜 5.9 2ω=73.1 °〜 8.4° R 1= 176.095 D 1= 2.00 N 1=1.84666 ν 1=23.9 R 2= 78.897 D 2= 0.50 R 3= 79.445 D 3= 9.16 N 2=1.59240 ν 2=68.3 R 4= -412.913 D 4= 0.12 R 5= 65.114 D 5= 5.37 N 3=1.72916 ν 3=54.7 R 6= 171.328 D 6= 可変 R 7= 82.164 D 7= 1.60 N 4=1.88300 ν 4=40.8 R 8= 22.879 D 8= 5.84 R 9= -146.218 D 9= 1.20 N 5=1.77250 ν 5=49.6 R10= 30.217 D10= 4.20 N 6=1.76182 ν 6=26.5 R11= -451.170 D11= 2.10 R12= -32.770 D12= 1.00 N 7=1.77250 ν 7=49.6 R13= 30.717 D13= 3.50 N 8=1.84666 ν 8=23.9 R14= -537.666 D14= 可変 R15= ∞ D15= 可変 R16= ( 絞り) D16= 0.00 R17= 36.678 D17= 4.30 N 9=1.60311 ν 9=60.7 R18= -48.951 D18= 0.12 R19= 41.305 D19= 5.50 N10=1.60311 ν10=60.7 R20= -24.016 D20= 1.15 N11=1.85026 ν11=32.3 R21= 3006.130 D21= 可変 R22= -41.049 D22= 3.90 N12=1.74077 ν12=27.8 R23= -19.216 D23= 1.10 N13=1.83481 ν13=42.7 R24= 174.787 D24= 可変 R25= 64.567 D25= 3.80 N14=1.58313 ν14=59.4 R26= -55.024 D26= 0.15 R27= 120.999 D27= 5.30 N15=1.51633 ν15=64.2 R28= -31.558 D28= 0.15 R29= 80.834 D29= 6.20 N16=1.51633 ν16=64.2 R30= -26.649 D30= 1.20 N17=1.85026 ν17=32.3 R31= -736.496 D31= 可変 R32= 504.957 D32= 1.70 N18=1.77250 ν18=49.6 R33= 24.057 D33= 1.20 R34= 25.302 D34= 3.50 N19=1.84666 ν19=23.9 R35= 35.122 D35= 可変 R36= ∞ 焦点距離 29.18 70.82 293.41 可変間隔 D 6 1.07 28.32 55.57 D 14 11.18 5.59 0.00 D 15 14.54 10.33 1.00 D 21 1.78 4.08 6.38 D 24 14.49 8.59 1.13 D 31 2.95 3.62 3.91 D 35 0.00 12.72 32.50 非球面係数 第18面 B C D -2.192208e-06 -5.428259e-09 -1.605349e-11 第26面 B C D 9.913685e-06 6.922341e-09 -4.960535e-12 数値実施例 6 f= 29.2〜 293.4 FNo=1: 3.2 〜 5.9 2ω=73.2 °〜 8.4° R 1= 179.983 D 1= 2.00 N 1=1.84666 ν 1=23.9 R 2= 79.963 D 2= 0.50 R 3= 80.392 D 3= 8.96 N 2=1.59240 ν 2=68.3 R 4= -489.305 D 4= 0.12 R 5= 66.234 D 5= 5.41 N 3=1.72916 ν 3=54.7 R 6= 178.683 D 6= 可変 R 7= 88.005 D 7= 1.60 N 4=1.88300 ν 4=40.8 R 8= 23.692 D 8= 5.25 R 9= -149.406 D 9= 1.20 N 5=1.77250 ν 5=49.6 R10= 30.124 D10= 4.20 N 6=1.76182 ν 6=26.5 R11= -374.753 D11= 2.10 R12= -36.531 D12= 1.00 N 7=1.77250 ν 7=49.6 R13= 32.990 D13= 3.50 N 8=1.84666 ν 8=23.9 R14= -502.240 D14= 可変 R15= ∞ D15= 可変 R16= ( 絞り) D16= 0.00 R17= 34.110 D17= 4.30 N 9=1.60311 ν 9=60.7 R18= -48.852 D18= 0.12 R19= 49.608 D19= 5.50 N10=1.60311 ν10=60.7 R20= -24.687 D20= 1.15 N11=1.85026 ν11=32.3 R21= 443.556 D21= 可変 R22= -40.507 D22= 3.90 N12=1.74077 ν12=27.8 R23= -19.622 D23= 1.10 N13=1.83481 ν13=42.7 R24= 219.661 D24= 可変 R25= 60.152 D25= 3.80 N14=1.58313 ν14=59.4 R26= -69.157 D26= 0.15 R27= 148.517 D27= 5.30 N15=1.51633 ν15=64.2 R28= -32.318 D28= 0.15 R29= 91.680 D29= 6.20 N16=1.51633 ν16=64.2 R30= -29.909 D30= 1.20 N17=1.85026 ν17=32.3 R31= -302.836 D31= 可変 R32= 166.517 D32= 1.70 N18=1.77250 ν18=49.6 R33= 23.219 D33= 1.20 R34= 24.003 D34= 3.50 N19=1.84666 ν19=23.9 R35= 30.380 D35= 可変 R36= ∞ 焦点距離 29.15 70.26 293.42 可変間隔 D 6 1.07 28.70 56.32 D 14 11.18 5.63 0.09 D 15 18.81 12.81 1.09 D 21 1.78 3.67 5.56 D 24 16.18 9.80 1.20 D 31 3.55 4.43 5.98 D 35 0.00 12.65 32.56 非球面係数 第18面 B C D -1.097627e-06 -3.935952e-09 -9.163848e-12 第26面 B C D 1.012967e-05 6.024586e-09 -4.395509e-12
(Equation 1) This is represented by “E−X” means “× 10 −X ”. Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples. Numerical example 1 f = 29.3 to 293.3 FNo = 1: 3.4 to 28.3 2ω = 72.8 ° to 8.4 ° R 1 = 147.162 D 1 = 2.00 N 1 = 1.84666 ν 1 = 23.9 R 2 = 71.603 D 2 = 0.50 R 3 = 72.247 D 3 = 8.70 N 2 = 1.59240 ν 2 = 68.3 R 4 = -805.329 D 4 = 0.12 R 5 = 60.048 D 5 = 6.00 N 3 = 1.72916 ν 3 = 54.7 R 6 = 152.457 D 6 = Variable R 7 = 58.250 D 7 = 1.20 N 4 = 1.80400 ν 4 = 46.6 R 8 = 14.906 D 8 = 6.20 R 9 = -32.317 D 9 = 1.10 N 5 = 1.77250 ν 5 = 49.6 R10 = 65.022 D10 = 0.10 R11 = 30.303 D11 = 4.80 N 6 = 1.81786 ν 6 = 23.7 R12 = -28.937 D12 = 0.68 R13 = -23.786 D13 = 1.10 N 7 = 1.83481 ν 7 = 42.7 R14 = 97.594 D14 = Variable R15 = ∞ D15 = Variable R16 = (Aperture) D16 = 0.00 R17 = 32.673 D17 = 4.10 N 8 = 1.60311 ν 8 = 60.7 R18 = -39.395 D18 = 0.12 R19 = 30.683 D19 = 5.50 N 9 = 1.60311 ν 9 = 60.7 R20 = -20.132 D20 = 1.15 N10 = 1.85026 ν10 = 32.3 R21 =- 313.649 D21 = Variable R22 = -36.081 D22 = 3.10 N11 = 1.74077 ν11 = 27.8 R23 = -16.516 D23 = 1.10 N12 = 1.83481 ν12 = 42.7 R24 = 85.263 D24 = Variable R25 = 48.326 D25 = 3.30 N13 = 1.58313 ν13 = 59.4 R26 = -52.469 D26 = 0.15 R27 = 617.644 D27 = 5.30 N14 = 1.51633 ν14 = 64.2 R28 = -23.673 D28 = 0.15 R29 = 89.658 D29 = 6.20 N15 = 1.51633 ν15 = 64.2 R30 = -19.735 D30 = 1.20 N16 = 1.85026 ν16 = 32.3 R31 = -262.927 D31 = Variable R32 = -906.276 D32 = 1.70 N17 = 1.77250 ν17 = 49.6 R33 = 23.490 D33 = 1.20 R34 = 25.588 D34 = 2.60 N18 = 1.84666 ν18 = 23.9 R35 = 47.160 D35 = Variable R36 = ∞ Focal length 29.34 79.16 293.34 Variable interval D 6 1.20 29.86 58.53 D 14 10.93 5.51 0.08 D 15 7.20 3.24 1.03 D 21 1.78 3.43 5.09 D 24 9.49 4.88 0.99 D 31 1.48 8.87 1.42 D 35 0.00 6.29 24.95 Aspheric surface 18th surface BCD -4.398542e-06 -1.062085e-08 -4.509332e-11 26th surface BCD 1.787188e- 05 2.204995e-08 -3.845670e-11 Numerical example 2 f = 29.1 to 293.4 FNo = 1: 3.4 to 28.3 2ω = 73.3 ° to 8.4 ° R 1 = 161.035 D 1 = 2.00 N 1 = 1.84666 ν 1 = 23.9 R 2 = 73.711 D 2 = 0.50 R 3 = 75.268 D 3 = 8.13 N 2 = 1.59240 ν 2 = 68.3 R 4 = -622.915 D 4 = 0.12 R 5 = 60.379 D 5 = 5.66 N 3 = 1.72916 ν 3 = 54.7 R 6 = 175.454 D 6 = Variable R 7 = 68.597 D 7 = 1.20 N 4 = 1.80400 ν 4 = 46.6 R 8 = 17.807 D 8 = 8.05 R 9 = -40.483 D 9 = 1.10 N 5 = 1.77250 ν 5 = 49.6 R10 = 62.018 D10 = 0.10 R11 = 34.572 D11 = 5.20 N 6 = 1.81786 ν 6 = 23.7 R12 = -32.490 D12 = 0.68 R13 = -26.629 D13 = 1.10 N 7 = 1.83481 ν 7 = 42.7 R14 = 160.370 D14 = Variable R15 = ∞ D15 = Variable R16 = (Aperture) D16 = 0.00 R17 = 42.318 D17 = 4.30 N 8 = 1.60311 ν 8 = 60.7 R18 = -40.708 D18 = 0.12 R19 = 44.885 D19 = 5.50 N 9 = 1.60311 ν 9 = 60.7 R20 = -22.354 D20 = 1.15 N10 = 1.85026 ν10 = 32.3 R21 = 1085.160 D21 = Variable R22 = -39.776 D22 = 3.90 N11 = 1.74077 ν11 = 27.8 R23 = -17.858 D23 = 1.10 N12 = 1.83481 ν12 = 42.7 R24 = 952.872 D24 = Variable R25 = 72.008 D25 = 3.80 N13 = 1.58313 ν13 = 59.4 R26 = -59.547 D26 = 0.15 R27 = 194.065 D27 = 5.30 N14 = 1.51633 ν14 = 64.2 R28 = -29.392 D28 = 0.15 R29 = 66.043 D29 = 6.20 N15 = 1.51633 ν15 = 64.2 R30 = -28.210 D30 = 1.20 N16 = 1.85026 ν16 = 32.3 R31 = 1036.891 D31 = variable R32 = 558693.510 D32 = 1.70 N17 = 1.77250 ν17 = 49.6 R33 = 27.554 D33 = 1.20 R34 = 27.360 D34 = 3.50 N18 = 1.84666 ν18 = 23.9 R35 = 38.788 D35 = variable R36 = 焦点 Focal length 29.10 76.59 293.43 Variable spacing D 6 1.50 27.07 52.64 D 14 10.93 5.57 0.20 D 15 14.22 8.90 1.20 D 21 1 .78 9.12 15.09 D 24 14.56 7.21 1.24 D 31 4.19 5.62 1.45 D 35 0.00 11.18 30.35 Aspheric surface 18th surface BCD -2.753723e-06 -3.014994e-09 -1.340648e-11 26th surface BCD 9.640159e-06 7.779398 e-09 -3.959658e-12 Numerical example 3 f = 29.1 to 293.4 FNo = 1: 3.4 to 5.9 2ω = 73.2 ° to 8.4 ° R 1 = 159.429 D 1 = 2.00 N 1 = 1.84666 ν 1 = 23.9 R 2 = 74.844 D 2 = 0.50 R 3 = 75.353 D 3 = 9.00 N 2 = 1.59240 ν 2 = 68.3 R 4 = -642.596 D 4 = 0.12 R 5 = 62.980 D 5 = 5.80 N 3 = 1.72916 ν 3 = 54.7 R 6 = 180.083 D 6 = Variable R 7 = 103.387 D 7 = 1.20 N 4 = 1.80400 ν 4 = 46.6 R 8 = 19.542 D 8 = 9.27 R 9 = -41.774 D 9 = 1.10 N 5 = 1.77250 ν 5 = 49.6 R10 = 62.034 D10 = 0.10 R11 = 37.044 D11 = 5.20 N 6 = 1.81786 ν 6 = 23.7 R12 = -32.164 D12 = 0.68 R13 = -27.280 D13 = 1.10 N 7 = 1.83481 ν 7 = 42.7 R14 = 162.068 D14 = Variable R15 = ∞ D15 = Variable R16 = (Aperture) D16 = 0.00 R17 = 39.921 D17 = 4.30 N 8 = 1.60311 ν 8 = 60.7 R18 = -42.916 D18 = 0.12 R19 = 42.927 D19 = 5.50 N 9 = 1.60311 ν 9 = 60.7 R20 = -23.500 D20 = 1.15 N10 = 1.85026 ν10 = 32.3 R21 = 1193.550 D21 = Variable R22 = -39.465 D22 = 3.90 N11 = 1.74077 ν11 = 27.8 R23 = -19.636 D23 = 1.10 N12 = 1.83481 ν12 = 42.7 R24 = 624.286 D24 = Variable R25 = 43.718 D25 = 6.70 N13 = 1.58313 ν13 = 59.4 R26 = -26.475 D26 = 0.15 R27 = 41.063 D27 = 7.70 N14 = 1.48749 ν14 = 70.2 R28 = -23.701 D28 = 1.20 N15 = 1.87400 ν15 = 35.3 R29 = 985.069 D29 = Variable R30 = 367.002 D30 = 1.70 N16 = 1.77250 ν16 = 49.6 R31 = 26.090 D31 = 1.20 R32 = 28.774 D32 = 3.50 N17 = 1.84666 ν17 = 23.9 R33 = 41.780 D33 = Variable R34 = ∞ Focal length 29.11 73.45 293.44 Variable interval D 6 1.50 27.66 53.82 D 14 10.93 5.56 0.19 D 15 15.34 10.32 1.19 D 21 1.78 5.58 9.39 D 24 13.19 7.22 1.29 D 29 2.47 3.15 1.46 D 33 0.16 13.35 33.02 Aspheric surface 18th surface BCD -2.033999e-06 -3.668419e-09 -6.128422e-12 26th surface BCD 1.019878e-05 8.957166e-09 -2.083278e-11 Numerical example 4 f = 29.1 to 293.4 FNo = 1: 3.5 to 5.9 2ω = 73.2 ° to 8.4 ° R 1 = 166.814 D 1 = 2.00 N 1 = 1.84666 ν 1 = 23.9 R 2 = 76.531 D 2 = 0.50 R 3 = 77.217 D 3 = 9.16 N 2 = 1.59240 ν 2 = 68.3 R 4 = -510.331 D 4 = 0.12 R 5 = 62.609 D 5 = 5.85 N 3 = 1.72916 ν 3 = 54.7 R 6 = 1 76.276 D 6 = Variable R 7 = 116.709 D 7 = 1.20 N 4 = 1.80400 ν 4 = 46.6 R 8 = 19.257 D 8 = 8.28 R 9 = -42.983 D 9 = 1.10 N 5 = 1.77250 ν 5 = 49.6 R10 = 69.016 D10 = 0.10 R11 = 36.359 D11 = 5.20 N 6 = 1.81786 ν 6 = 23.7 R12 = -32.572 D12 = 0.68 R13 = -27.622 D13 = 1.10 N 7 = 1.83481 ν 7 = 42.7 R14 = 129.928 D14 = Variable R15 = ∞ D15 = Variable R16 = (aperture) D16 = 0.00 R17 = 36.258 D17 = 4.30 N 8 = 1.60311 ν 8 = 60.7 R18 = -40.026 D18 = 0.12 R19 = 42.476 D19 = 5.50 N 9 = 1.60311 ν 9 = 60.7 R20 = -21.079 D20 = 1.15 N10 = 1.85026 ν10 = 32.3 R21 = 385.651 D21 = Variable R22 = -45.725 D22 = 3.90 N11 = 1.74077 ν11 = 27.8 R23 = -17.148 D23 = 1.10 N12 = 1.83481 ν12 = 42.7 R24 = 262.403 D24 = Variable R25 = 72.819 D25 = 5.30 N13 = 1.58313 ν13 = 59.4 R26 = -37.006 D26 = 0.15 R27 = 73.092 D27 = 7.00 N14 = 1.48749 ν14 = 70.2 R28 = -26.888 D28 = 2.00 R29 = -30.346 D29 = 1.20 N15 = 1.84666 ν15 = 23.8 R30 = -68.383 D30 = Variable R31 = 430.508 D31 = 1.70 N16 = 1.77250 ν16 = 49.6 R32 = 28.425 D32 = 1.20 R33 = 29.781 D33 = 3.50 N17 = 1.84666 ν17 = 23.9 R34 = 39.405 D34 = Variable R35 = ∞ Focal length 29.11 7 3.70 293.43 Variable spacing D 6 1.50 27.68 53.86 D 14 10.93 5.53 0.13 D 15 14.55 9.69 1.13 D 21 1.78 5.18 8.58 D 24 14.73 7.96 1.22 D 30 3.21 3.74 1.45 D 34 0.00 14.42 35.34 Aspheric coefficient Surface 18 BCD -1.854221e- 06 -1.156923e-08 1.107726e-12 Surface 26 BCD 1.120399e-05 1.617871e-08 1.616471e-11 Numerical example 5 f = 29.2 to 293.4 FNo = 1: 3.4 to 5.9 2ω = 73.1 ° to 8.4 ° R 1 = 176.095 D 1 = 2.00 N 1 = 1.84666 ν 1 = 23.9 R 2 = 78.897 D 2 = 0.50 R 3 = 79.445 D 3 = 9.16 N 2 = 1.59240 ν 2 = 68.3 R 4 = -412.913 D 4 = 0.12 R 5 = 65.114 D 5 = 5.37 N 3 = 1.72916 ν 3 = 54.7 R 6 = 171.328 D 6 = Variable R 7 = 82.164 D 7 = 1.60 N 4 = 1.88300 ν 4 = 40.8 R 8 = 22.879 D 8 = 5.84 R 9 =- 146.218 D 9 = 1.20 N 5 = 1.77250 ν 5 = 49.6 R10 = 30.217 D10 = 4.20 N 6 = 1.76182 ν 6 = 26.5 R11 = -451.170 D11 = 2.10 R12 = -32.770 D12 = 1.00 N 7 = 1.77250 ν 7 = 49.6 R13 = 30.717 D13 = 3.50 N 8 = 1.84666 ν 8 = 23.9 R14 = -537.666 D14 = Variable R15 = ∞ D15 = Variable R16 = (Aperture) D16 = 0.00 R17 = 36.678 D17 = 4.30 N 9 = 1.60311 ν 9 = 60.7 R18 = -48.951 D18 = 0.12 R19 = 41.305 D19 = 5 .50 N10 = 1.60311 ν10 = 60.7 R20 = -24.016 D20 = 1.15 N11 = 1.85026 ν11 = 32.3 R21 = 3006.130 D21 = Variable R22 = -41.049 D22 = 3.90 N12 = 1.74077 ν12 = 27.8 R23 = -19.216 D23 = 1.10 N13 = 1.83481 ν13 = 42.7 R24 = 174.787 D24 = Variable R25 = 64.567 D25 = 3.80 N14 = 1.58313 ν14 = 59.4 R26 = -55.024 D26 = 0.15 R27 = 120.999 D27 = 5.30 N15 = 1.51633 ν15 = 64.2 R28 = -31.558 D28 = 0.15 R29 = 80.834 D29 = 6.20 N16 = 1.51633 ν16 = 64.2 R30 = -26.649 D30 = 1.20 N17 = 1.85026 ν17 = 32.3 R31 = -736.496 D31 = Variable R32 = 504.957 D32 = 1.70 N18 = 1.77250 ν18 = 49.6 R33 = 24.057 D33 = 1.20 R34 = 25.302 D34 = 3.50 N19 = 1.84666 ν19 = 23.9 R35 = 35.122 D35 = Variable R36 = ∞ Focal length 29.18 70.82 293.41 Variable interval D 6 1.07 28.32 55.57 D 14 11.18 5.59 0.00 D 15 14.54 10.33 1.00 D 21 1.78 4.08 6.38 D 24 14.49 8.59 1.13 D 31 2.95 3.62 3.91 D 35 0.00 12.72 32.50 Aspheric surface 18th surface BCD -2.192208e-06 -5.428259e-09 -1.605349e-11 26th surface BCD 9.913685e-06 6.922341e-09 -4.960535e-12 Numerical value Example 6 f = 29.2 to 293.4 FNo = 1: 3.2 to 5.9 2ω = 73.2 ° to 8.4 ° R 1 = 179.983 D 1 = 2.00 N 1 = 1.84666 ν 1 = 23.9 R 2 = 79.963 D 2 = 0.50 R 3 = 80.392 D 3 = 8.96 N 2 = 1.59240 ν 2 = 68.3 R 4 = -489.305 D 4 = 0.12 R 5 = 66.234 D 5 = 5.41 N 3 = 1.72916 ν 3 = 54.7 R 6 = 178.683 D 6 = Variable R 7 = 88.005 D 7 = 1.60 N 4 = 1.88300 ν 4 = 40.8 R 8 = 23.692 D 8 = 5.25 R 9 =- 149.406 D 9 = 1.20 N 5 = 1.77250 ν 5 = 49.6 R10 = 30.124 D10 = 4.20 N 6 = 1.76182 ν 6 = 26.5 R11 = -374.753 D11 = 2.10 R12 = -36.531 D12 = 1.00 N 7 = 1.77250 ν 7 = 49.6 R13 = 32.990 D13 = 3.50 N 8 = 1.84666 ν 8 = 23.9 R14 = -502.240 D14 = Variable R15 = ∞ D15 = Variable R16 = (Aperture) D16 = 0.00 R17 = 34.110 D17 = 4.30 N 9 = 1.60311 ν 9 = 60.7 R18 = -48.852 D18 = 0.12 R19 = 49.608 D19 = 5.50 N10 = 1.60311 ν10 = 60.7 R20 = -24.687 D20 = 1.15 N11 = 1.85026 ν11 = 32.3 R21 = 443.556 D21 = Variable R22 = -40.507 D22 = 3.90 N12 = 1.74077 ν12 = 27.8 R23 = -19.622 D23 = 1.10 N13 = 1.83481 ν13 = 42.7 R24 = 219.661 D24 = Variable R25 = 60.152 D25 = 3.80 N14 = 1.58313 ν14 = 59.4 R26 = -69.157 D26 = 0.15 R27 = 148.517 D27 = 5.30 N15 = 1.51633 ν15 = 64.2 R28 = -32.318 D28 = 0.15 R29 = 91.680 D29 = 6.20 N16 = 1.51633 ν16 = 64.2 R30 = -29.909 D30 = 1.20 N17 = 1.85026 ν17 = 32.3 R31 = -302.836 D31 = Variable R32 = 166.517 D32 = 1.70 N18 = 1.77250 ν18 = 49.6 R33 = 23.219 D33 = 1.20 R34 = 24.003 D34 = 3.50 N19 = 1.84666 ν19 = 23.9 R35 = 30.380 D35 = Variable R36 = ∞ Focal length 29.15 70.26 293.42 Variable distance D 6 1.07 28.70 56.32 D 14 11.18 5.63 0.09 D 15 18.81 12.81 1.09 D 21 1.78 3.67 5.56 D 24 16.18 9.80 1.20 D 31 3.55 4.43 5.98 D 35 0.00 12.65 32.56 Aspheric surface 18th surface BCD -1.097627e-06 -3.935952e-09 -9.163848e-12 26th surface BCD 1.012967e-05 6.024586e-09 -4.395509e-12

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】本発明によれば以上のように、ズームレ
ンズを全体として所定の屈折力を有する複数のレンズ群
より構成し、各レンズ群の屈折力や変倍を行なうための
各レンズ群の移動条件等を適切に設定することにより、
レンズ枚数を少なくし、レンズ全長の短縮化を図りつ
つ、全変倍範囲にわたり高い光学性能を有した広角端の
撮影画角75度程度、変倍比10程度の望遠型のズーム
レンズを達成することができる。
According to the present invention, as described above, the zoom lens is constituted by a plurality of lens groups having a predetermined refractive power as a whole, and each lens group for performing the refractive power and zooming of each lens group. By appropriately setting the moving conditions of
To achieve a telephoto zoom lens with a high angle of view of about 75 degrees at the wide-angle end and a zoom ratio of about 10 with high optical performance over the entire zoom range while reducing the number of lenses and shortening the overall length of the lens. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の数値実施例1のレンズ断面図FIG. 1 is a sectional view of a lens according to a numerical example 1 of the present invention.

【図2】本発明の数値実施例2のレンズ断面図FIG. 2 is a sectional view of a lens according to a numerical example 2 of the present invention.

【図3】本発明の数値実施例3のレンズ断面図FIG. 3 is a sectional view of a lens according to a numerical example 3 of the present invention.

【図4】本発明の数値実施例4のレンズ断面図FIG. 4 is a sectional view of a lens according to a numerical example 4 of the present invention.

【図5】本発明の数値実施例5のレンズ断面図FIG. 5 is a sectional view of a lens according to a numerical example 5 of the present invention.

【図6】本発明の数値実施例6のレンズ断面図FIG. 6 is a sectional view of a lens according to a sixth numerical example of the present invention;

【図7】本発明の数値実施例1の広角端の収差図FIG. 7 is an aberration diagram at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図8】本発明の数値実施例1の望遠端の収差図FIG. 8 is an aberration diagram at a telephoto end in Numerical Example 1 of the present invention;

【図9】本発明の数値実施例2の広角端の収差図FIG. 9 is an aberration diagram at a wide-angle end according to Numerical Example 2 of the present invention.

【図10】本発明の数値実施例2の望遠端の収差図FIG. 10 is an aberration diagram at a telephoto end in Numerical Example 2 of the present invention;

【図11】本発明の数値実施例3の広角端の収差図FIG. 11 is an aberration diagram at a wide angle end according to Numerical Example 3 of the present invention.

【図12】本発明の数値実施例3の望遠端の収差図FIG. 12 is an aberration diagram at a telephoto end in Numerical Example 3 of the present invention.

【図13】本発明の数値実施例4の広角端の収差図FIG. 13 is an aberration diagram at a wide angle end according to Numerical Example 4 of the present invention.

【図14】本発明の数値実施例4の望遠端の収差図FIG. 14 is an aberration diagram at a telephoto end in Numerical Example 4 of the present invention.

【図15】本発明の数値実施例5の広角端の収差図FIG. 15 is an aberration diagram at a wide angle end according to Numerical Example 5 of the present invention.

【図16】本発明の数値実施例5の望遠端の収差図FIG. 16 is an aberration diagram at a telephoto end in Numerical Example 5 of the present invention.

【図17】本発明の数値実施例6の広角端の収差図FIG. 17 is an aberration diagram at a wide angle end according to Numerical Example 6 of the present invention.

【図18】本発明の数値実施例6の望遠端の収差図FIG. 18 is an aberration diagram at a telephoto end in Numerical Example 6 of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 L5 第5群 L6 第6群 S フレアー絞り SP 絞り IP 像面 d d線 g g線 ΔS サジタル像面 ΔM メリディオナル像面 L1 First group L2 Second group L3 Third group L4 Fourth group L5 Fifth group L6 Sixth group S Flare stop SP stop IP image plane d d-line g g-line ΔS sagittal image plane ΔM meridional image plane

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1レンズ
群、負の屈折力の第2レンズ群、そして複数のレンズ群
を有し、全体として正の屈折力の後群より成り、変倍に
際しては複数のレンズ群を移動して行っており、該第1
群と第2群の広角端と望遠端での間隔を各々D1W,D
1T、該第2群と後群の広角端と望遠端での間隔を各々
D2W,D2T、広角端と望遠端における該後群の最も
物体側のレンズ面から前側主点位置までの距離を各々o
3W,o3T、広角端でのバックフォーカスと光学全
長、そして半画角を各々SKW,OTLW,ωW、該第
2群の焦点距離をf2、広角端と望遠端における全系の
焦点距離を各々fW,fT、該第2群の広角端と望遠端
における結像倍率を各々β2W,β2Tとしたとき D1W<D1T D2W>D2T 0.2<(o3W−o3T)/fW<1 4<β2T/β2W 0.2<SKW/OTLW<0.4 0.03<|f2|/fT<0.07 0.3<|f2|/SKW<0.5 0.4<OTLW/(fT・tan(ωW))<0.8
5 なる条件を満足することを特徴とするズームレンズ。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, and a plurality of lens groups in order from the object side. At the time of zooming, a plurality of lens groups are moved.
The distance between the wide-angle end and the telephoto end of the second group and the second group is D1W and D1, respectively.
1T, the distances between the wide angle end and the telephoto end of the second group and the rear group are D2W and D2T, respectively, and the distance from the most object side lens surface of the rear group to the front principal point position at the wide angle end and the telephoto end are respectively o
3W, o3T, the back focus and the optical total length at the wide-angle end and the half angle of view are SKW, OTLW, and ωW, respectively, the focal length of the second lens unit is f2, and the focal length of the whole system at the wide-angle end and the telephoto end is fW. , FT, and when the imaging magnifications of the second group at the wide-angle end and the telephoto end are β2W and β2T, respectively, D1W <D1T D2W> D2T 0.2 <(o3W-o3T) / fW <14 <β2T / β2W 0 .2 <SKW / OTLW <0.4 0.03 <| f2 | / fT <0.07 0.3 <| f2 | / SKW <0.5 0.4 <OTLW / (fT · tan (ωW)) <0.8
5. A zoom lens characterized by satisfying the following condition:
【請求項2】 前記後群は少なくとも1つの非球面を有
していることを特徴とする請求項1のズームレンズ。
2. The zoom lens according to claim 1, wherein the rear group has at least one aspheric surface.
【請求項3】 前記後群は正の屈折力の第3群、負の屈
折力の第4群、正の屈折力の第5群そして負の屈折力の
第6群の4つのレンズ群を有し、広角端から望遠端への
変倍に際しては、該第i群と第(i+1)群の広角端と
望遠端での空気間隔を各々DiW,DiTとしたとき、 D3W<D3T D4W>D4T を満足することを特徴とする請求項1又は2のズームレ
ンズ。
3. The rear unit includes four lens units including a third unit having a positive refractive power, a fourth unit having a negative refractive power, a fifth unit having a positive refractive power, and a sixth unit having a negative refractive power. When zooming from the wide-angle end to the telephoto end, when the air spacing at the wide-angle end and the telephoto end of the i-th and (i + 1) -th groups is DiW and DiT, respectively, D3W <D3T D4W> D4T The zoom lens according to claim 1, wherein the following is satisfied.
【請求項4】 前記第i群の焦点距離をfiとしたとき 0.2<f1/fT<0.5 0.06<f3/fT<0.2 1<|f4|/f3<1.5 0.5<f5/f3<1.5 1<|f6|/f3<3.5 なる条件を満足することを特徴とする請求項3のズーム
レンズ。
4. When the focal length of the i-th lens unit is fi, 0.2 <f1 / fT <0.5 0.06 <f3 / fT <0.2 1 <| f4 | / f3 <1.5 4. The zoom lens according to claim 3, wherein the following condition is satisfied: 0.5 <f5 / f3 <1.5 1 <| f6 | / f3 <3.5.
【請求項5】 前記第1群は1つの負レンズと2つの正
レンズを有し、前記第2群は少なくとも2つの負レンズ
と、1つの正レンズを有し、前記第3群は1つの負レン
ズと少なくとも1つの正レンズを有し、前記第4群は1
つの負レンズと1つの正レンズを有していることを特徴
とする請求項4のズームレンズ。
5. The first group has one negative lens and two positive lenses, the second group has at least two negative lenses and one positive lens, and the third group has one A fourth lens unit having a negative lens and at least one positive lens;
The zoom lens according to claim 4, comprising one negative lens and one positive lens.
【請求項6】 前記第5群は少なくとも1つの正レンズ
と、物体側に強い凹面を向けた負レンズ、そしてレンズ
中心からレンズ周辺にいくに従って、正の屈折力が弱く
なる形状の非球面を有していることを特徴とする請求項
4又は5のズームレンズ。
6. The fifth unit includes at least one positive lens, a negative lens having a strong concave surface facing the object side, and an aspheric surface having a shape in which positive refractive power becomes weaker from the center of the lens toward the periphery of the lens. The zoom lens according to claim 4, wherein the zoom lens has a zoom lens.
【請求項7】 前記第6群は像面側に強い凹面を有する
負レンズと、物体側に凸面を向けた正レンズとを有し、
該負レンズの像面側のレンズ面の曲率半径をRN、該正
レンズの物体側のレンズ面の曲率半径をRPとしたとき 0.3<RN/|f6|<0.8 0.7<RN/RP<1.2 なる条件を満足することを特徴とする請求項4のズーム
レンズ。
7. The sixth group includes a negative lens having a strong concave surface on the image surface side, and a positive lens having a convex surface facing the object side,
When the radius of curvature of the lens surface on the image surface side of the negative lens is RN and the radius of curvature of the lens surface on the object side of the positive lens is RP, 0.3 <RN / | f6 | <0.8 0.7 < The zoom lens according to claim 4, wherein the following condition is satisfied: RN / RP <1.2.
JP36318897A 1997-12-15 1997-12-15 Zoom lens Pending JPH11174327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36318897A JPH11174327A (en) 1997-12-15 1997-12-15 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36318897A JPH11174327A (en) 1997-12-15 1997-12-15 Zoom lens

Publications (1)

Publication Number Publication Date
JPH11174327A true JPH11174327A (en) 1999-07-02

Family

ID=18478715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36318897A Pending JPH11174327A (en) 1997-12-15 1997-12-15 Zoom lens

Country Status (1)

Country Link
JP (1) JPH11174327A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142090A1 (en) * 2008-05-21 2009-11-26 株式会社ニコン Variable magnification optical system, optical apparatus with the same and method for manufacturing variable magnification optical system
US7746563B2 (en) 2006-06-21 2010-06-29 Tamron Co., Ltd. Large magnification factor zoom lens
JP2010197766A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
US7961402B2 (en) 2009-02-02 2011-06-14 Hoya Corporation High zoom-ratio zoom lens system
JP2013257507A (en) * 2012-06-14 2013-12-26 Canon Inc Zoom lens and optical instrument including the same
US9470881B2 (en) 2013-10-25 2016-10-18 Ricoh Company, Ltd. Zoom lens and imaging device using zoom lens
JP2017207730A (en) * 2016-05-16 2017-11-24 リコーイメージング株式会社 Zoom lens system
JPWO2016194811A1 (en) * 2015-05-29 2018-03-29 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3139205A1 (en) 2006-06-21 2017-03-08 Tamron Co., Ltd. Large magnification factor zoom lens
US7746563B2 (en) 2006-06-21 2010-06-29 Tamron Co., Ltd. Large magnification factor zoom lens
JP2009282214A (en) * 2008-05-21 2009-12-03 Nikon Corp Variable power optical system, optical equipment having it, and variable power method
US8339712B2 (en) 2008-05-21 2012-12-25 Nikon Corporation Variable magnification optical system, optical apparatus with the same, and method for manufacturing variable magnification optical system
WO2009142090A1 (en) * 2008-05-21 2009-11-26 株式会社ニコン Variable magnification optical system, optical apparatus with the same and method for manufacturing variable magnification optical system
US7961402B2 (en) 2009-02-02 2011-06-14 Hoya Corporation High zoom-ratio zoom lens system
JP2010197766A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP2013257507A (en) * 2012-06-14 2013-12-26 Canon Inc Zoom lens and optical instrument including the same
US9470881B2 (en) 2013-10-25 2016-10-18 Ricoh Company, Ltd. Zoom lens and imaging device using zoom lens
JPWO2016194811A1 (en) * 2015-05-29 2018-03-29 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
US10782512B2 (en) 2015-05-29 2020-09-22 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
US11415788B2 (en) 2015-05-29 2022-08-16 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
JP2017207730A (en) * 2016-05-16 2017-11-24 リコーイメージング株式会社 Zoom lens system

Similar Documents

Publication Publication Date Title
JP3109342B2 (en) Rear focus zoom lens
JP4829586B2 (en) Zoom lens and imaging apparatus having the same
JP4902240B2 (en) Zoom lens and imaging apparatus having the same
JP2988164B2 (en) Rear focus zoom lens
JP2808915B2 (en) Zoom lens
US6061186A (en) Zoom lens
JP3067481B2 (en) Zoom lens
JP2002098893A (en) Imaging lens device
JP2001350092A (en) Image pickup lens device
JP3144191B2 (en) Zoom lens
US5973854A (en) Zoom lens system
JP3144193B2 (en) Zoom lens
JP2001042217A (en) Zoom lens
JPH0815608A (en) Zoom lens
JPH07151974A (en) Zoom lens
JPH11352400A (en) Zoom lens system
JP3387687B2 (en) Zoom lens
JPH09189862A (en) Zoom lens
JP3352248B2 (en) Zoom lens
JPH10133113A (en) Zoom lens
JPH05313066A (en) Zoom lens
JPH11174327A (en) Zoom lens
JP3376143B2 (en) Zoom lens
JP2006184430A (en) Zoom lens
JP3144192B2 (en) Zoom lens