JPH11172810A - Earthquake resisting wall and earthquake resisting reinforcing structure - Google Patents

Earthquake resisting wall and earthquake resisting reinforcing structure

Info

Publication number
JPH11172810A
JPH11172810A JP34659797A JP34659797A JPH11172810A JP H11172810 A JPH11172810 A JP H11172810A JP 34659797 A JP34659797 A JP 34659797A JP 34659797 A JP34659797 A JP 34659797A JP H11172810 A JPH11172810 A JP H11172810A
Authority
JP
Japan
Prior art keywords
frame
plate
earthquake
concrete
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34659797A
Other languages
Japanese (ja)
Inventor
Haruo Kuramochi
Tatsumasa Shibata
春夫 倉持
辰正 柴田
Original Assignee
Dps Bridge Works Co Ltd
Taiheiyo Cement Corp
ドーピー建設工業株式会社
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dps Bridge Works Co Ltd, Taiheiyo Cement Corp, ドーピー建設工業株式会社, 太平洋セメント株式会社 filed Critical Dps Bridge Works Co Ltd
Priority to JP34659797A priority Critical patent/JPH11172810A/en
Publication of JPH11172810A publication Critical patent/JPH11172810A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of shear fracture by a method wherein an earthquake wall comprises columns juxtaposed, a frame consisting of beams spanning between the columns; and a wall plate arranged in a frame, and a wall plate is molded by superlight high strength concrete. SOLUTION: An earthquake resisting wall 5 comprises a frame 3 formed by assembling together a column 1 and a beam 2; and a wall plate 4. The column 1 is erected on the lower beam 2 and a wall plate 4 is arranged between the columns 1. A gap between the periphery of the wall pale 4 and the inner periphery of the frame 3 is filled with a filler 8, such as nonshrinkage mortar, A tension material 6 axially extending through the column 1 or the beam 2 is anchored in a tension state. A shear cotter 9 is formed at least in a part of a space between the opposite surfaces of the outer periphery of the wall plate 4 and the inner periphery of the frame 3 and through the medium of the filler 8 between the frame 3 and the wall plate. When the earthquake resisting wall 5 is built outside the plane of the structure of the frame of an existing building, the frame 3 of the earthquake wall 5 and the frame of the building are joined together through contact-bonding by a PC steel 13. This constitution prevents the occurrence of the shear crack and shear fracture of the wall plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は既設建物や新設建
物の耐震補強用に、建物自体のフレームの構面内や構面
外に配置される耐震壁とそれを使用した耐震補強構造に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-seismic wall for an existing building or a new building, which is arranged inside or outside the frame of a frame of the building itself, and an anti-seismic reinforcing structure using the same. is there.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】耐震壁
の壁板はその周辺の柱・梁のフレームに比べ、剛性が格
段に高く、変形能力が低いため、地震時の水平せん断力
によりせん断破壊を起こし易い。図7に示すように壁板
は1/500rad程度の部材角を生じたときにせん断ひび割れ
を起こし、その後はフレームが変形を増大させることに
より水平せん断力を維持することになるが、部材角が1/
250rad程度になるまで変形が進展したときには壁板がせ
ん断破壊を起こすため、フレームによる水平せん断力の
維持が困難になる。
2. Description of the Related Art A wall plate of an earthquake-resistant wall is much higher in rigidity and has a lower deformability than a frame of columns and beams around the wall, so that it is sheared by a horizontal shear force during an earthquake. Easy to break down. As shown in FIG. 7, the wall plate causes a shear crack when a member angle of about 1/500 rad is generated, and thereafter the frame increases the deformation to maintain the horizontal shear force. 1 /
When the deformation progresses to about 250 rad, the wall plate causes shear failure, and it becomes difficult to maintain the horizontal shear force by the frame.

【0003】壁板のせん断破壊は剛性を低下させること
で防止することができるが、壁板の面内剛性を低下させ
るには壁板にスリットを入れる以外に有効な方法はな
く、剛性の低下には限界がある。
[0003] The shear failure of the wall plate can be prevented by lowering the rigidity, but there is no other effective method for reducing the in-plane rigidity of the wall plate except for slitting the wall plate. Has limitations.

【0004】この発明は上記背景より、スリットの形成
に依らずに壁板の剛性を低下させ、せん断破壊を防止す
る耐震壁を提案するものである。
[0004] In view of the above background, the present invention proposes an earthquake-resistant wall that reduces the rigidity of a wall plate without depending on the formation of a slit and prevents shear failure.

【0005】[0005]

【課題を解決するための手段】本発明では耐震壁の少な
くとも壁板に普通コンクリートよりヤング係数が小さい
超軽量高強度コンクリートを使用することにより、普通
コンクリートである場合の壁板と同等の耐力を持たせな
がら、壁板の剛性を低下させ、壁板のせん断破壊を抑
制,あるいは防止する。
According to the present invention, an ultra-lightweight high-strength concrete having a Young's modulus smaller than that of ordinary concrete is used for at least the wall plate of the earthquake-resistant wall, so that the same strength as that of the ordinary concrete wall plate can be obtained. While maintaining the rigidity of the wallboard, the rigidity of the wallboard is reduced, and the shear failure of the wallboard is suppressed or prevented.

【0006】本発明の耐震壁は壁板に開口を有する有開
口の耐震壁と、開口を有しない無開口の耐震壁の双方を
含む。
The earthquake-resistant wall of the present invention includes both an apertured earthquake-resistant wall having an opening in a wall plate and a non-opening earthquake-resistant wall having no opening.

【0007】例えば普通コンクリートの圧縮強度F1が30
0kgf/cm2で、比重γ1 が2.3 の場合のヤング係数E1は2.
57×105kg/cm2 であり、この普通コンクリートの圧縮強
度F1と同等の圧縮強度F2を持たせた超軽量高強度コンク
リートのヤング係数E2は比重γ2 が1.2 の場合に0.97×
105kg/cm2 となり、普通コンクリートのヤング係数E
の半分以下になる。
[0007] For example, the compressive strength F 1 of ordinary concrete 30
At 0 kgf / cm 2 and a specific gravity γ 1 of 2.3, the Young's modulus E 1 is 2.
57 × 10 5 kg / cm 2 , and the Young's modulus E 2 of the ultra-lightweight high-strength concrete having a compressive strength F 2 equivalent to the compressive strength F 1 of this ordinary concrete is 0.97 when the specific gravity γ 2 is 1.2. ×
10 5 kg / cm 2, and the Young's modulus of the ordinary concrete E 1
Less than half.

【0008】剛性は材料のヤング係数に関係するため、
少なくとも壁板に超軽量高強度コンクリートを使用する
ことにより耐震壁のフレームが普通コンクリートの場合
を含め、壁板にフレームと同等の耐力を持たせながら、
剛性を大幅に低下させ、壁板の変形能力を高めることが
できる。
Since stiffness is related to the Young's modulus of a material,
At least by using ultra-light and high-strength concrete for the wallboard, including the case where the frame of the earthquake-resistant wall is ordinary concrete, while giving the wallboard the same strength as the frame,
The rigidity can be greatly reduced, and the deformability of the wall plate can be increased.

【0009】壁板の変形能力が高まることにより、普通
コンクリートの壁板がせん断破壊を起こす1/250rad程度
の部材角になるまで変形が進展したときにも壁板がせん
断破壊を起こす事態を抑制,または防止することが可能
になる。
[0009] By increasing the deformation capability of the wall plate, it is possible to suppress the situation in which the wall plate causes shear failure even when the deformation progresses to a member angle of about 1/250 rad, which causes the shear failure of the ordinary concrete wall plate. , Or can be prevented.

【0010】仮に壁板にせん断ひび割れが発生し、ある
いは壁板がせん断破壊を起こした場合にも、請求項2,
もしくは請求項3のようにフレームと壁板が別体で製作
されていれば、壁板をフレームから分離させることがで
きるため、壁板のみを交換することが可能である。
[0010] Even if a shear crack occurs in the wall plate or a shear failure occurs in the wall plate,
Alternatively, if the frame and the wall plate are manufactured separately as in claim 3, since the wall plate can be separated from the frame, it is possible to replace only the wall plate.

【0011】コンクリートのヤング係数Ec は比重γと
圧縮強度Fc によって決まり(Ec=2.1 ×105 ×(γ/
2.3)1.5 ×(Fc /200)0.5)、超軽量高強度コンクリ
ートのヤング係数E2も同様であることから、比重γ2
圧縮強度F2の設定によりヤング係数E2を自由に変化さ
せ、壁板の変形能力を制御することが可能になる。
The Young's modulus E c of concrete is determined by specific gravity γ and compressive strength F c (E c = 2.1 × 10 5 × (γ /
2.3) Since the Young's modulus E 2 of 1.5 × (F c / 200) 0.5 ) and ultra-light and high-strength concrete is the same, the Young's modulus E 2 can be freely changed by setting the specific gravity γ 2 and the compressive strength F 2. In addition, it is possible to control the deformation ability of the wall plate.

【0012】本発明で言う超軽量高強度コンクリートは
比重(気乾比重)γ2 が1.5 以下で、圧縮強度F2が300k
gf/cm2程度以上のコンクリートを指すが、圧縮強度F2
関してはフレームと同等の耐力を持たせる関係から、普
通コンクリートの圧縮強度F1と同等程度以上であればよ
いため、300kgf/cm2以下の場合もある。
The ultra-light and high-strength concrete referred to in the present invention has a specific gravity (air-dry specific gravity) γ 2 of 1.5 or less and a compressive strength F 2 of 300 k.
gf / cm 2 of about or more refers to concrete, from the relationship to provide the same strength and the frame with respect to compressive strength F 2, or for as long as ordinary concrete compressive strength F 1 equal to about or more, 300 kgf / cm 2 The following cases are also possible.

【0013】超軽量高強度コンクリートの圧縮強度F2
比重γ2 が一定であっても骨材等の配合や養生方法によ
っても異なる。具体的な数値としては、蒸気養生した場
合、材齢1日の、比重γ2 が1.22の圧縮強度F2は337kgf
/cm2、ヤング係数E2は1.18×105kg/cm2 であり、水中養
生した場合で、材齢28日の、比重γ2 が1.27の圧縮強度
F2は362kgf/cm2、ヤング係数E2は1.27×105kg/cm2 であ
る。
[0013] compressive strength F 2 ultra lightweight high strength concrete varies depending compounding and curing method of aggregate such as even density gamma 2 constant. Specific numerical values, when the steam curing, the compressive strength F 2 of the age of 1 day, density gamma 2 is 1.22 337kgf
/ cm 2 , Young's modulus E 2 is 1.18 × 10 5 kg / cm 2 , compressive strength of 28 days old, specific gravity γ 2 1.27 when cured in water
F 2 is 362 kgf / cm 2 and Young's modulus E 2 is 1.27 × 10 5 kg / cm 2 .

【0014】表1に本発明で言う超軽量高強度コンクリ
ートの使用材料を、表2にその配合例を示す。
Table 1 shows the materials used for the ultra-light and high-strength concrete referred to in the present invention, and Table 2 shows examples of the formulations.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】図7に普通コンクリートの壁板とフレーム
の、水平力と水平変位(部材角)の関係を示す。前記の
通り、普通コンクリートの壁板は1/250rad程度の部材角
が生じたときにせん断破壊するのに対し、フレームは部
材角が1/30rad 程度になるまで破壊を生じない。
FIG. 7 shows the relationship between the horizontal force and horizontal displacement (member angle) of the wall plate and frame of ordinary concrete. As described above, the wall plate made of ordinary concrete is sheared when a member angle of about 1/250 rad occurs, whereas the frame does not break until the member angle becomes about 1/30 rad.

【0018】そこで超軽量高強度コンクリートの壁板と
普通コンクリート,もしくは超軽量高強度コンクリート
のフレームを組み合わせて耐震壁を構成すれば、その耐
震壁の水平力と水平変位の関係を示す曲線は普通コンク
リートの壁板のみの曲線とフレームのみの曲線の中間に
位置することになり、超軽量高強度コンクリートのヤン
グ係数E2の調整により、普通コンクリートの壁板の剛性
と普通コンクリートのフレームの剛性の範囲で壁板の剛
性を自由に制御できることになる。
Therefore, if an earthquake-resistant wall is constructed by combining an ultralight high-strength concrete wall plate and ordinary concrete or an ultralight high-strength concrete frame, the curve showing the relationship between the horizontal force and horizontal displacement of the earthquake-resistant wall is usually It will be located in the middle of the curve of only the curve and the frame of the wall panel only concrete, by adjusting the Young's modulus E 2 ultra lightweight high strength concrete, ordinary wallboard concrete rigidity and ordinary concrete frame stiffness The rigidity of the wall plate can be freely controlled within the range.

【0019】以上のことから、特に請求項1,請求項2
のように壁板とフレームの双方が超軽量高強度コンクリ
ートの場合には、耐力を普通コンクリートの場合と同等
に維持しながら、普通コンクリートのフレームの剛性よ
り剛性を低下させることもできるため、壁板が1/250rad
程度の部材角を生じたときにもせん断ひび割れを起こさ
せないことが可能になる。この場合、耐震壁は図7にお
ける普通コンクリートのフレームの曲線より緩いカーブ
の曲線を描くことになる。
From the above, in particular, claim 1 and claim 2
When both the wall plate and the frame are made of ultra-light and high-strength concrete, the stiffness can be made lower than the rigidity of the frame of ordinary concrete, while maintaining the proof strength equal to that of ordinary concrete. Board is 1 / 250rad
It is possible to prevent the occurrence of shear cracks even when the member angle is formed to a certain degree. In this case, the earthquake-resistant wall draws a curve that is gentler than the curve of the ordinary concrete frame in FIG.

【0020】耐震壁は請求項1に記載のように壁板とフ
レームが共に超軽量高強度コンクリートのプレキャスト
コンクリートで一体的に成型される他、請求項2に記載
のようにフレームと壁板が共に超軽量高強度コンクリー
トのプレキャストコンクリートで別体で製作され、柱と
梁の少なくともいずれか一方の軸方向に挿通する引張材
が緊張されることにより壁板がフレームに接続して一体
化する場合と、請求項3に記載のようにフレームが普通
コンクリートのプレキャストコンクリートで、壁板が超
軽量高強度コンクリートのプレキャストコンクリートで
別体で製作され、両者が引張材によって接続して一体化
する場合がある。
As for the earthquake-resistant wall, both the wall plate and the frame are integrally formed of pre-cast concrete of ultra-light and high-strength concrete as described in claim 1, and the frame and the wall plate are formed as described in claim 2. Both are made of pre-cast concrete made of ultra-light and high-strength concrete separately, and the wall plate is connected to the frame and integrated by tensioning the tensile material inserted in the axial direction of at least one of the pillar and the beam And a case where the frame is made of precast concrete of ordinary concrete and the wall plate is made of precast concrete of ultra-light high-strength concrete as a separate body, and the two are connected and integrated by a tensile material. is there.

【0021】請求項1乃至請求項3のいずれかの耐震壁
は建物に対しては既設と新設を問わず、請求項4に記載
のように建物の柱・梁からなるフレームの構面内,もし
くは構面外に配置され、耐震壁のフレームと建物のフレ
ームを構面内方向,もしくは構面外方向に貫通するPC
鋼材によって建物のフレームに圧着接合される。
The earthquake-resistant wall according to any one of the first to third aspects of the present invention may be applied to a building, whether existing or newly installed, as described in the fourth aspect of the present invention, in the construction of a frame composed of columns and beams of a building. Alternatively, a PC that is located outside the building surface and penetrates the frame of the earthquake-resistant wall and the frame of the building in the building surface or in the outside direction
It is crimped to the building frame by steel.

【0022】[0022]

【発明の実施の形態】この発明の耐震壁5は図5,図6
に示すように並列する柱1,1と、柱1,1間に架設さ
れる梁2,2からなるフレーム3と、フレーム3内に配
置される壁板4から構成され、少なくとも壁板4が超軽
量高強度コンクリートのプレキャストコンクリートで製
作されるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A shear wall 5 of the present invention is shown in FIGS.
As shown in FIG. 3, the frame 1 is composed of pillars 1 and 1 arranged in parallel, beams 3 and 2 erected between the pillars 1 and 1, and a wall plate 4 disposed in the frame 3, and at least the wall plate 4 It is made of pre-cast concrete of ultra-light and high-strength concrete.

【0023】前記の通り、本発明では普通コンクリート
は比重が1.5 以上で、圧縮強度が300kgf/cm2程度以上の
コンクリートを言い、超軽量高強度コンクリートは比重
が1.5 以下で、圧縮強度が300kgf/cm2程度以上のコンク
リートを言う。
As described above, in the present invention, ordinary concrete refers to concrete having a specific gravity of 1.5 or more and compressive strength of about 300 kgf / cm 2 or more, and ultra-lightweight high-strength concrete has a specific gravity of 1.5 or less and compressive strength of 300 kgf / cm 2. A concrete of about 2 cm2 or more.

【0024】図5,図6は分割してプレキャストコンク
リートで製作された柱1,1及び梁2,2と壁板4を組
み立てて耐震壁5を構成した場合の例を示すが、耐震壁
5はフレーム3と壁板4を一体にしたプレキャストコン
クリートで製作される場合もある。その場合、壁板4と
フレーム3が超軽量高強度コンクリートになる。
FIG. 5 and FIG. 6 show an example in which the wall 1, the pillars 1, 1 and the beams 2, 2 made of precast concrete and the wall plate 4 are assembled to form the earthquake-resistant wall 5. May be made of precast concrete in which the frame 3 and the wall plate 4 are integrated. In this case, the wall plate 4 and the frame 3 are made of ultra-light and high-strength concrete.

【0025】図5に示す要領で耐震壁5を構成する場合
には、フレーム3と壁板4が共に超軽量高強度コンクリ
ートの場合と、フレーム3が普通コンクリートで、壁板
4が超軽量高強度コンクリートの場合がある。
When the earthquake-resistant wall 5 is constructed in the manner shown in FIG. 5, the frame 3 and the wall plate 4 are both made of ultra-light and high-strength concrete, and the frame 3 is made of ordinary concrete and the wall plate 4 is made of an ultra-light May be high-strength concrete.

【0026】別個に製作された柱1,1と梁2,2から
耐震壁5のフレーム3を組み立てる場合には二本の柱
1,1と二本の梁2,2があれば足りるが、図5では柱
1が梁2を貫通する形でフレーム3を形成していること
から、柱1の外側に梁2の端部材2aを配置している。図
5の中心線の片側は配筋の状態を示している。
When assembling the frame 3 of the earthquake-resistant wall 5 from the columns 1, 1 and the beams 2, 2 separately manufactured, it is sufficient to have the two columns 1, 1 and the two beams 2, 2. In FIG. 5, since the column 1 forms the frame 3 so as to penetrate the beam 2, the end member 2a of the beam 2 is arranged outside the column 1. One side of the center line in FIG. 5 shows a state of arrangement of reinforcing bars.

【0027】また図5,図6中、2bは梁2を幅方向に貫
通し、後述のPC鋼材13が挿通する挿通孔を示すが、こ
の挿通孔2bは柱1に形成される場合もある他、梁2や柱
1に壁板4の面内方向に形成される場合もある。
5 and 6, reference numeral 2b denotes an insertion hole which penetrates the beam 2 in the width direction and through which a PC steel 13 to be described later is inserted. The insertion hole 2b may be formed in the column 1. Alternatively, the beam 2 or the column 1 may be formed in the in-plane direction of the wall plate 4.

【0028】別個に製作された柱1,1と梁2,2から
フレーム3を組み立てる場合で、図5に示すように柱1
が耐震壁5の全高に亘る場合には、柱1と梁2の接合は
梁2を軸方向に貫通する引張材6を緊張し、柱1の側
面,もしくは端部材2aに定着することにより行われ、梁
2が耐震壁5の全幅に亘る場合は柱1を軸方向に貫通す
る引張材6を緊張し、上側の梁2の上端と下側の梁2の
下端に定着することにより柱1と梁2の接合が行われ
る。柱1と梁2の突合せ部分には必要により目地モルタ
ル7が充填される。
In the case where the frame 3 is assembled from the pillars 1 and 1 and the beams 2 and 2 manufactured separately, as shown in FIG.
When the beam spans the entire height of the earthquake-resistant wall 5, the connection between the column 1 and the beam 2 is performed by tensioning the tension member 6 that penetrates the beam 2 in the axial direction and fixing it to the side surface of the column 1 or the end member 2a. When the beam 2 extends over the entire width of the earthquake-resistant wall 5, the tension member 6 penetrating the column 1 in the axial direction is tensioned and fixed to the upper end of the upper beam 2 and the lower end of the lower beam 2. And the beam 2 are joined. The joint portion between the column 1 and the beam 2 is filled with joint mortar 7 as necessary.

【0029】引張材6は柱1や梁2に軸方向にプレスト
レスを導入することで、フレーム3による壁板4の拘束
の度合いを調整し、壁板4の剛性を制御する目的でも使
用されるため、図5では柱1と梁2の双方に引張材6を
挿通している。
The tensile member 6 is also used for controlling the rigidity of the wall plate 4 by adjusting the degree of restraint of the wall plate 4 by the frame 3 by introducing prestress in the column 1 or the beam 2 in the axial direction. Therefore, in FIG. 5, the tensile member 6 is inserted into both the column 1 and the beam 2.

【0030】柱1,1と梁2,2から組み立てられたフ
レーム3と壁板4から耐震壁5を構成する場合は、下側
の梁2上に柱1,1を立設すると共に、柱1,1間に壁
板4を設置して上側の梁2を柱1,1間に架設し、壁板
4の周囲とフレーム3の内周間に無収縮モルタル等の充
填材8を充填した後、柱1,もしくは梁2を軸方向に貫
通する引張材6を緊張し、定着することにより耐震壁5
が完成する。充填材8は壁板4の外周とフレーム3の内
周間の一部,もしくは全周に充填される。
When the earthquake-resistant wall 5 is composed of the frame 3 and the wall plate 4 assembled from the columns 1, 1 and the beams 2, 2, the columns 1, 1 are erected on the lower beam 2, and A wall plate 4 is installed between the columns 1 and 1, the upper beam 2 is erected between the columns 1 and 1, and a filler 8 such as a non-shrink mortar is filled between the periphery of the wall plate 4 and the inner periphery of the frame 3. Thereafter, the tension member 6 penetrating through the column 1 or the beam 2 in the axial direction is tensioned and fixed, thereby forming the earthquake-resistant wall 5.
Is completed. The filler 8 fills a part or the entire circumference between the outer periphery of the wall plate 4 and the inner periphery of the frame 3.

【0031】壁板4の外周とフレーム3の内周の対向す
る面の少なくとも一部には、充填材8を介してフレーム
3と壁板4間で面内の水平せん断力を伝達するためのシ
アコッター9が形成される。
At least a part of the opposing surface between the outer periphery of the wall plate 4 and the inner periphery of the frame 3 is provided with a filler 8 for transmitting an in-plane horizontal shear force between the frame 3 and the wall plate 4. A shear cotter 9 is formed.

【0032】図1〜図4に耐震壁5を既設建物の柱10と
梁11からなるフレーム12の構面外に配置した様子を示
す。この場合、耐震壁5は耐震壁5のフレーム3と建物
のフレーム12を構面外方向に貫通するPC鋼材13で建物
のフレーム12に圧着接合される。図示しないが、耐震壁
5をフレーム12の構面内に配置する場合も、耐震壁5は
そのフレーム3と建物のフレーム12を構面内方向に貫通
するPC鋼材13でフレーム12に圧着接合される。
FIGS. 1 to 4 show a state in which the earthquake-resistant wall 5 is disposed outside the plane of a frame 12 including columns 10 and beams 11 of an existing building. In this case, the earthquake-resistant wall 5 is pressure-bonded to the building frame 12 with a PC steel material 13 penetrating the frame 3 of the earthquake-resistant wall 5 and the frame 12 of the building in a direction outside the construction plane. Although not shown, when the earthquake-resistant wall 5 is arranged on the surface of the frame 12, the earthquake-resistant wall 5 is also bonded to the frame 12 with a PC steel material 13 penetrating the frame 3 and the frame 12 of the building in the in-plane direction. You.

【0033】図1〜図4ではフレーム3の梁2を貫通す
るPC鋼材13によって耐震壁5をフレーム12の梁11に接
合しているが、柱1を貫通するPC鋼材13によって柱10
に接合する場合もある。耐震壁5のフレーム3とフレー
ム12間にはPC鋼材13の緊張に先立ち、PC鋼材13への
張力導入による圧縮力を負担し、フレーム3とフレーム
12間の間隔を保持する無収縮モルタル14が充填される。
In FIG. 1 to FIG. 4, the earthquake-resistant wall 5 is joined to the beam 11 of the frame 12 by the PC steel 13 penetrating the beam 2 of the frame 3.
It may be joined to Prior to the tension of the PC steel 13 between the frame 3 and the frame 12 of the anti-seismic wall 5, a compressive force due to the introduction of tension into the PC steel 13 is borne.
Non-shrink mortar 14, which maintains the spacing between 12, is filled.

【0034】図1〜図4では既設建物の最下層から上層
へ複数層に亘って耐震壁5を配置した場合を示すが、既
設と新設を問わず、耐震壁5は建物の必要な区間に配置
されれば足りるため、図5,図6に示す一層,一スパン
分の耐震壁5をそのまま使用する場合もある。また図面
では建物が鉄筋コンクリート造の場合を示すが、既設と
新設を問わず、建物は鉄骨造の場合と鉄骨鉄筋コンクリ
ート造の場合もあり、前者の場合、PC鋼材13は鉄骨を
貫通し、後者の場合は鉄骨とコンクリートを貫通する形
になる。
FIGS. 1 to 4 show a case in which the earthquake-resistant wall 5 is arranged in a plurality of layers from the lowest layer to the upper layer of the existing building. Since it is sufficient if they are arranged, the single-layer, one-span earthquake-resistant wall 5 shown in FIGS. 5 and 6 may be used as it is. Also, the drawings show the case where the building is reinforced concrete, but whether it is an existing building or a new building, the building may be a steel frame or a steel reinforced concrete building. In this case, it will penetrate steel and concrete.

【0035】建物が既設の場合で、耐震壁5を構面外に
配置する場合、PC鋼材13は図2,図3に示すようにフ
レーム3の柱1,もしくは梁2に形成されている挿通孔
2bと、フレーム12の柱10,もしくは梁11に形成された削
孔を貫通し、フレーム12の屋内側とフレーム3の屋外側
で定着される。
In the case where the building is already existing and the earthquake-resistant wall 5 is disposed outside the construction plane, the PC steel 13 is inserted into the column 1 or the beam 2 of the frame 3 as shown in FIGS. Hole
2b penetrates a hole formed in the pillar 10 or the beam 11 of the frame 12, and is fixed on the indoor side of the frame 12 and the outdoor side of the frame 3.

【0036】既設建物の地中梁15に対しても図3に示す
ように地上の梁11に対する定着と同様に定着することが
できるが、地中梁15に接続するスラブに孔を明けること
になることから、図4では地中梁15の屋外側から削孔を
穿設して後施工のアンカー16を地中梁15に定着させると
共に、地中梁15の屋外側に隣接し、基礎17上に新規に地
中梁18を構築し、アンカー16により地中梁15と地中梁18
を一体化させた上で、この地中梁18に耐震壁5の下側の
梁2をPC鋼材13により一体化させている。
As shown in FIG. 3, it is possible to fix the underground beam 15 of the existing building in the same manner as the anchoring to the beam 11 on the ground, but a hole is formed in the slab connected to the underground beam 15. Therefore, in FIG. 4, a hole is drilled from the outdoor side of the underground beam 15 so that the anchor 16 to be installed later is fixed to the underground beam 15, and the foundation 17 is located adjacent to the outdoor side of the underground beam 15. A new underground beam 18 is constructed on top, and underground beams 15 and 18 are
Then, the beam 2 below the earthquake-resistant wall 5 is integrated with the underground beam 18 by the PC steel 13.

【0037】図示しないが、耐震壁5の設置対象が新設
建物の場合にも、新設建物の柱・梁からなるフレームの
構面内,もしくは構面外に耐震壁5が配置され、耐震壁
5自身のフレームと新設建物のフレームを構面内方向,
もしくは構面外方向に貫通するPC鋼材13によって新設
建物のフレームに圧着接合される。
Although not shown, even when the installation target of the earthquake-resistant wall 5 is a new building, the earthquake-resistant wall 5 is disposed inside or outside the frame of a frame composed of columns and beams of the new building, and Move your own frame and the frame of the new building
Alternatively, it is press-bonded to the frame of the new building by the PC steel material 13 penetrating outside the construction surface.

【0038】[0038]

【発明の効果】耐震壁の少なくとも壁板に、普通コンク
リートと同等の圧縮強度を持ちながら、ヤング係数が普
通コンクリートのヤング係数より小さい超軽量高強度コ
ンクリートを使用するため、普通コンクリートの耐震壁
のフレームや、建物のフレームと同等の耐力を維持しな
がら壁板の剛性を低下させ、変形能力を高めることがで
き、普通コンクリートの壁板がせん断破壊する程の変形
が生じた場合にも壁板のせん断破壊を抑制,あるいは防
止することができる。
According to the present invention, at least the ultra-high-strength concrete having a Young's modulus smaller than that of ordinary concrete while having compressive strength equal to that of ordinary concrete is used for at least the wall plate of the earthquake-resistant wall. It can reduce the rigidity of the wallboard and increase its deformation capacity while maintaining the same strength as the frame or the frame of the building, and even if the concrete wallboard deforms enough to cause shear failure, the wallboard Can be suppressed or prevented.

【0039】また超軽量高強度コンクリートのヤング係
数を比重と圧縮強度によって自由に変化させることがで
きるため、比重と圧縮強度の設定により壁板の変形能力
を制御することが可能になる。
Further, since the Young's modulus of the ultra-light and high-strength concrete can be freely changed by the specific gravity and the compressive strength, it is possible to control the deformation capacity of the wallboard by setting the specific gravity and the compressive strength.

【0040】特に請求項1,請求項2では壁板とフレー
ムの双方が超軽量高強度コンクリートであるため、耐力
を普通コンクリートの場合と同等に維持しながら、普通
コンクリートのフレームの剛性より剛性が低下し、普通
コンクリートの壁板がせん断ひび割れを起こす程の変形
が生じた場合にも壁板にせん断ひび割れを起こさせない
ことが可能になる。
In particular, in the first and second aspects, since both the wall plate and the frame are made of ultra-light and high-strength concrete, the rigidity is higher than the rigidity of the ordinary concrete frame while maintaining the proof strength equal to that of the ordinary concrete. It is possible to prevent the wall plate from causing shear cracking even when the wall plate is lowered and deformed enough to cause shear cracking of the ordinary concrete wall plate.

【0041】仮に壁板にせん断ひび割れが発生し、ある
いは壁板がせん断破壊を起こした場合にも、請求項2,
もしくは請求項3ではフレームと壁板が別体で製作され
ているため、壁板のみを交換することが可能である。
Even if a shear crack occurs in the wall plate or a shear failure occurs in the wall plate,
Alternatively, in the third aspect, since the frame and the wall plate are manufactured separately, it is possible to replace only the wall plate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐震壁を既設建物の構面外に配置した様子を示
した立面図である。
FIG. 1 is an elevational view showing a state in which an earthquake-resistant wall is arranged outside a building surface of an existing building.

【図2】図1の横断面図である。FIG. 2 is a cross-sectional view of FIG.

【図3】図1の縦断面図である。FIG. 3 is a longitudinal sectional view of FIG.

【図4】図3の変形例を示した縦断面図である。FIG. 4 is a longitudinal sectional view showing a modification of FIG.

【図5】耐震壁の製作例を示した立面図である。FIG. 5 is an elevation view showing an example of manufacturing a shear wall.

【図6】図5のx−x線断面図である。FIG. 6 is a sectional view taken along line xx of FIG. 5;

【図7】普通コンクリートの壁板及びフレームと、超軽
量高強度コンクリートの壁板の水平力と水平変位の関係
を示したグラフである。
FIG. 7 is a graph showing the relationship between horizontal force and horizontal displacement of a wall plate and a frame of ordinary concrete and a wall plate of ultra-light and high-strength concrete.

【符号の説明】[Explanation of symbols]

1……柱、2……梁、2a……端部材、2b……挿通孔、3
……フレーム、4……壁板、5……耐震壁、6……引張
材、7……目地モルタル、8……充填材、9……シアコ
ッター、10……柱、11……梁、12……フレーム、13……
PC鋼材、14……無収縮モルタル、15……地中梁、16…
…アンカー、17……基礎、18……地中梁。
1 ... pillar, 2 ... beam, 2a ... end member, 2b ... insertion hole, 3
... frame, 4 ... wall plate, 5 ... shockproof wall, 6 ... tensile material, 7 ... joint mortar, 8 ... filler, 9 ... sheacotter, 10 ... column, 11 ... beam, 12 …… Frame, 13 ……
PC steel, 14 ... Non-shrink mortar, 15 ... Underground beam, 16 ...
… Anchor, 17 …… foundation, 18 …… underground beam.

Claims (4)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 並列する柱と柱間に架設される梁からな
    るフレームと、フレーム内に配置される壁板から構成さ
    れ、フレームと壁板は超軽量高強度コンクリートのプレ
    キャストコンクリートで一体的に成型されている耐震
    壁。
    1. A frame comprising a parallel column and a beam constructed between the columns, and a wall plate disposed in the frame, wherein the frame and the wall plate are integrally made of precast concrete of ultra-light and high-strength concrete. A molded earthquake-resistant wall.
  2. 【請求項2】 プレキャストコンクリート製の並列する
    柱と、柱間に架設されるプレキャストコンクリート製の
    梁からなるフレームと、フレーム内に配置されるプレキ
    ャストコンクリート製の壁板から構成され、フレームと
    壁板は共に超軽量高強度コンクリートであり、柱と梁の
    少なくともいずれか一方の軸方向に引張材が挿通し、引
    張材が緊張されて壁板がフレームに接続している耐震
    壁。
    2. A frame composed of precast concrete parallel columns, a frame made of precast concrete beams installed between the columns, and a precast concrete wall plate disposed in the frame, wherein the frame and the wall plate are provided. Both are ultra-lightweight high-strength concrete, and a tensile material is inserted in at least one of the columns and beams in the axial direction, the tensile material is tensioned, and the wall plate is connected to the frame.
  3. 【請求項3】 プレキャストコンクリート製の並列する
    柱と、柱間に架設されるプレキャストコンクリート製の
    梁からなるフレームと、フレーム内に配置されるプレキ
    ャストコンクリート製の壁板から構成され、フレームは
    普通コンクリートで、壁板は超軽量高強度コンクリート
    であり、柱と梁の少なくともいずれか一方の軸方向に引
    張材が挿通し、引張材が緊張されて壁板がフレームに接
    続している耐震壁。
    3. A frame made of precast concrete parallel columns, a frame made of precast concrete beams installed between the columns, and a precast concrete wall plate placed in the frame, wherein the frame is made of ordinary concrete. The wall plate is made of ultra-light and high-strength concrete, and a tensile member is inserted in at least one of the columns and beams in the axial direction, and the tensile member is tensioned to connect the wall plate to the frame.
  4. 【請求項4】 請求項1乃至請求項3のいずれかに記載
    の耐震壁を建物の柱・梁からなるフレームの構面内,も
    しくは構面外に配置し、耐震壁のフレームと建物のフレ
    ームを構面内方向,もしくは構面外方向に貫通するPC
    鋼材で耐震壁を建物のフレームに圧着接合してある耐震
    補強構造。
    4. The frame of the earthquake-resistant wall and the frame of the building, wherein the earthquake-resistant wall according to any one of claims 1 to 3 is arranged inside or outside the plane of the frame composed of columns and beams of the building. PC that penetrates in-plane direction or out-of-plane direction
    An earthquake-resistant reinforcement structure in which the earthquake-resistant wall is made of steel and crimped to the building frame.
JP34659797A 1997-12-16 1997-12-16 Earthquake resisting wall and earthquake resisting reinforcing structure Pending JPH11172810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34659797A JPH11172810A (en) 1997-12-16 1997-12-16 Earthquake resisting wall and earthquake resisting reinforcing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34659797A JPH11172810A (en) 1997-12-16 1997-12-16 Earthquake resisting wall and earthquake resisting reinforcing structure

Publications (1)

Publication Number Publication Date
JPH11172810A true JPH11172810A (en) 1999-06-29

Family

ID=18384514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34659797A Pending JPH11172810A (en) 1997-12-16 1997-12-16 Earthquake resisting wall and earthquake resisting reinforcing structure

Country Status (1)

Country Link
JP (1) JPH11172810A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671429B1 (en) 2005-12-28 2007-01-19 주식회사 포스코건설 Horizontal supporting structure of shear wall
CN101736834A (en) * 2008-11-25 2010-06-16 苏州皇家整体住宅系统有限公司 Typhoon-resistance earthquake-resistance strengthening device for wall
CN101736835A (en) * 2008-11-25 2010-06-16 苏州皇家整体住宅系统有限公司 Typhoon-resistance and earthquake-resistance fixing device for walls
CN102808465A (en) * 2012-08-08 2012-12-05 沈阳建筑大学 Assembly connecting structure and assembly connecting method of assembled concrete frame and shear wall combination
CN102900168A (en) * 2012-10-08 2013-01-30 沈阳建筑大学 Splitting and assembling structure and assembling connecting method of assembled type concrete frame-shear wall
CN102936929A (en) * 2012-11-29 2013-02-20 东南大学 Prefabricated assembling whole type shear wall connected with staggered-height vertical steel bar
CN103437458A (en) * 2013-09-06 2013-12-11 南京工业大学 Precast concrete double-board shear wall with internal inclined braces and construction method for same
CN103669636A (en) * 2013-12-24 2014-03-26 海南大学 Self-reset shear walls with replaceable coupling beams
CN104295004A (en) * 2014-10-24 2015-01-21 福州大学 UHPC-CFST combination column structure and construction method thereof
CN104652654A (en) * 2015-02-11 2015-05-27 沈阳建筑大学 Novel assembled shear wall structure
CN106351460A (en) * 2016-08-26 2017-01-25 四川省建筑科学研究院 Method for maintenance and reinforcement of rural dangerous building

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671429B1 (en) 2005-12-28 2007-01-19 주식회사 포스코건설 Horizontal supporting structure of shear wall
CN101736835A (en) * 2008-11-25 2010-06-16 苏州皇家整体住宅系统有限公司 Typhoon-resistance and earthquake-resistance fixing device for walls
CN101736834A (en) * 2008-11-25 2010-06-16 苏州皇家整体住宅系统有限公司 Typhoon-resistance earthquake-resistance strengthening device for wall
CN102808465A (en) * 2012-08-08 2012-12-05 沈阳建筑大学 Assembly connecting structure and assembly connecting method of assembled concrete frame and shear wall combination
CN102900168B (en) * 2012-10-08 2014-08-20 沈阳建筑大学 Splitting and assembling structure and assembling connecting method of assembled type concrete frame-shear wall
CN102900168A (en) * 2012-10-08 2013-01-30 沈阳建筑大学 Splitting and assembling structure and assembling connecting method of assembled type concrete frame-shear wall
CN102936929A (en) * 2012-11-29 2013-02-20 东南大学 Prefabricated assembling whole type shear wall connected with staggered-height vertical steel bar
CN103437458A (en) * 2013-09-06 2013-12-11 南京工业大学 Precast concrete double-board shear wall with internal inclined braces and construction method for same
CN103669636A (en) * 2013-12-24 2014-03-26 海南大学 Self-reset shear walls with replaceable coupling beams
CN104295004A (en) * 2014-10-24 2015-01-21 福州大学 UHPC-CFST combination column structure and construction method thereof
CN104295004B (en) * 2014-10-24 2016-03-30 福州大学 A kind of UHPC-CFST composite column structure and construction method thereof
CN104652654A (en) * 2015-02-11 2015-05-27 沈阳建筑大学 Novel assembled shear wall structure
CN104652654B (en) * 2015-02-11 2017-04-26 沈阳建筑大学 Assembled shear wall structure
CN106351460A (en) * 2016-08-26 2017-01-25 四川省建筑科学研究院 Method for maintenance and reinforcement of rural dangerous building

Similar Documents

Publication Publication Date Title
JP3828153B2 (en) Underground structure for constructing tunnels, underground passages, underground parking lots, etc., construction method thereof, and prefabricated member for the structure
US8733050B2 (en) Compressive force transmitting connection element
US9534411B2 (en) Earthquake resisting design method on the basis of PC binding articulation construction method
JP2006045776A (en) Construction method of shear wall
KR20060052720A (en) Constructing the large-span self-braced building of composite load-bearing wall-panels and floors
US7930863B1 (en) Connector for reinforcing the attachment among structural components
KR100797194B1 (en) Composite concrete column and construction method using the same
KR101767677B1 (en) Compisite column structure for steel and concrete
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
JP2004308121A (en) Joint structure of steel and concrete
KR100704874B1 (en) Structures of prefabricated concrete pier strengthened in shear by steel pipe
Park Seismic design and construction of precast concrete buildings in New Zealand
US10378197B2 (en) Method for jointing concrete column and iron beam
JP4277212B2 (en) Seismic reinforcement structure
JP5595393B2 (en) Lightweight load bearing structure reinforced by core material made from segments
KR20060024850A (en) Steel-concrete sandwitch type hybrid beam and high strength hybrid structure system using the same
JP2010047910A (en) Composite beam, construction method for the same, and fireproof building
JP4220919B2 (en) Seismic reinforcement structure
JP2010059717A (en) Joint structure of structural body and anchoring member for shear force transmission used in the same
US4285179A (en) Plate shaped prefabricated guilding element and a process for the production of walls by using these elements
JP2004263497A (en) Semi-rigid connection structure for foundation of structure
JP3799036B2 (en) Building basic structure and construction method
US20060272251A1 (en) Composite floor system with fully-embedded studs
JP4419088B2 (en) Seismic reinforcement structure for buildings
US20010037615A1 (en) Prefabricated storm shelter and associated methods

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020129