JPH11168171A - Hybrid integrated circuit device and manufacture thereof - Google Patents

Hybrid integrated circuit device and manufacture thereof

Info

Publication number
JPH11168171A
JPH11168171A JP9333113A JP33311397A JPH11168171A JP H11168171 A JPH11168171 A JP H11168171A JP 9333113 A JP9333113 A JP 9333113A JP 33311397 A JP33311397 A JP 33311397A JP H11168171 A JPH11168171 A JP H11168171A
Authority
JP
Japan
Prior art keywords
solder
bonding
chip
flip
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9333113A
Other languages
Japanese (ja)
Inventor
Toru Nomura
徹 野村
Yoshiyuki Miyase
善行 宮瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9333113A priority Critical patent/JPH11168171A/en
Publication of JPH11168171A publication Critical patent/JPH11168171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To shorten the distance between a part junctioning part and a wire bonding part with bonding junction property which is kept properly and the compact configuration of an overall device is achieved. SOLUTION: On an alumina substrate 1, a conductor 3 comprising, e.g., Cu conductor material is formed in the specified pattern. A large number of lands 3a, 3b and 3c for mounting parts are formed on the conductor 3. On the land 3c, an electronic component (a part other than a flip chip) 6 such as, e.g. a chip capacitor is bonded by conducting adhesive 5 having electrical conductivity and superior thermal conductivity. On the land 3b, a flip chip 8 is bonded by solder 7. The land 3c and a power element P are connected electrically by an aluminum wire 9. In this case, the amount of flux, which becomes the case of the contamination of the bonding land 3c is decreased, and troubles such as the deterioration of the bonding junction property can be suppressed. Furthermore, the cleaning work of the solder flux can be reduced by the adhesive junction of the electronic component 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、混成集積回路装置
及びその製造方法に関するものである。
The present invention relates to a hybrid integrated circuit device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の混成集積回路装置において、厚膜
基板と電子部品とは主にはんだ付けにより接合される。
すなわち、厚膜基板上のはんだ付けランドにフラックス
を含有したはんだぺーストを印刷し、フリップチップI
C等の電子部品を組み付ける。そして、熱板等にて約2
35℃のはんだリフローを実施し、その後、代替フロン
若しくは水系洗浄剤でフラックスを洗浄する。ここで、
はんだペーストの印刷時にははんだボールが発生し、そ
のはんだボールが基板に付着すると、多数のバンプ電極
を有するフリップチップICを基板に組み付ける際にバ
ンプ電極間のショート不良が懸念される。そのため、基
板上のはんだフラックスの洗浄後においてフリップチッ
プICの接合時には、再度フラックスの塗布→フリップ
チップ搭載→リフローといった工程が行われる。
2. Description of the Related Art In a conventional hybrid integrated circuit device, a thick film substrate and an electronic component are joined mainly by soldering.
That is, the solder paste containing the flux is printed on the soldering land on the thick film substrate, and the flip chip I is printed.
Assemble electronic components such as C. And about 2 on a hot plate
A solder reflow at 35 ° C. is performed, and then the flux is washed with an alternative Freon or an aqueous cleaning agent. here,
When solder paste is printed, solder balls are generated, and if the solder balls adhere to the substrate, a short circuit between the bump electrodes may occur when a flip chip IC having a large number of bump electrodes is mounted on the substrate. Therefore, at the time of bonding the flip chip IC after cleaning the solder flux on the substrate, the steps of applying the flux, mounting the flip chip and reflowing are performed again.

【0003】また一般に、厚膜基板上の配線導体とパワ
ー素子や外部接続用のケースなどとを電気接続するに
は、AlやAuなどの線材を使ったワイヤボンディング
が行われる。
In general, in order to electrically connect a wiring conductor on a thick film substrate to a power element or a case for external connection, wire bonding using a wire material such as Al or Au is performed.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来技
術では以下の問題が生ずる。つまり、はんだ接合後、は
んだぺースト中に含まれるフラックス成分のBr、Cl
やチクソ材が広がり、ワイヤをボンディングするための
配線導体(ボンディング用ランド)を汚染する。この汚
染によりボンディング接合性が悪化するといった不具合
が生じ、その不具合を回避するには、例えばNiメッキ
を施したNi−Fe合金板等からなるボンディングパッ
ド部材を設け、そのパッド部材上にボンディングを行う
といった対策が強いられる。この場合、パッド部材など
の付加的な構成を要するためにコスト高の原因となる。
However, the above-mentioned prior art has the following problems. In other words, after solder joining, the flux components Br and Cl contained in the solder paste
Or thixotropic material spreads and contaminates wiring conductors (bonding lands) for bonding wires. This contamination causes a problem that the bonding property is deteriorated. To avoid the problem, a bonding pad member made of, for example, a Ni-Fe alloy plate plated with Ni is provided, and bonding is performed on the pad member. Such measures are imposed. In this case, an additional configuration such as a pad member is required, which causes an increase in cost.

【0005】また、上記不具合を回避するには、はんだ
付けされる各種電子部品とワイヤボンディング部との間
の距離を長くするといった対策も必要となり、必然とし
て回路装置の大型化を招く。
In order to avoid the above-mentioned problems, it is necessary to take measures such as increasing the distance between various electronic components to be soldered and the wire bonding portion, which inevitably leads to an increase in the size of the circuit device.

【0006】また、はんだペースト中のフラックス洗浄
を行うにあたり、洗浄剤として代替フロン、水系洗浄剤
を使用するが、洗浄コストや設備費用が嵩むなど、大幅
なコスト高を招くおそれがあり、無洗浄化が非常に望ま
れている。
In cleaning the flux in the solder paste, an alternative chlorofluorocarbon or water-based cleaning agent is used as a cleaning agent. However, cleaning costs and equipment costs are increased, which may lead to a significant increase in cost. Is very much desired.

【0007】本発明は上記問題に着目してなされるもの
であって、その第1の目的は、ボンディング接合性を良
好に保持しつつ部品接合部とワイヤボンディング部との
距離を短縮し、装置全体の小型化を図ることができる混
成集積回路装置及びその製造方法を提供することであ
る。また、本発明の第2の目的は、無洗浄化を図ること
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a first object of the present invention is to reduce the distance between a component bonding portion and a wire bonding portion while maintaining good bonding properties. An object of the present invention is to provide a hybrid integrated circuit device capable of reducing the overall size and a method of manufacturing the same. A second object of the present invention is to eliminate cleaning.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の混成集積回路装置では、フリップ
チップICを厚膜基板上に搭載する部位では当該フリッ
プチップICをはんだにて接合し、フリップチップIC
以外の電子部品を厚膜基板上に搭載する部位では当該電
子部品を導電性接着剤にて接合している。
In order to achieve the above object, in the hybrid integrated circuit device according to the first aspect, the flip chip IC is soldered at a portion where the flip chip IC is mounted on the thick film substrate. Bonded and flip-chip IC
Electronic components other than those mounted on the thick film substrate are bonded to each other with a conductive adhesive.

【0009】かかる場合、フリップチップIC以外の電
子部品をはんだに代えて導電性接着剤で接合し、はんだ
接合する電子部品はフリップチップに限定したことによ
り、ワイヤボンディング部(ボンディング用ランド)の
汚染の原因となるはんだフラックス等の量が低減され
る。そのため、上記導電性接着剤による電子部品の接合
部は、ワイヤボンディング部に接近した状態で配置でき
ることとなる。またこのとき、ボンディング接合性が悪
化するといった不具合が抑制でき、ボンディングパッド
部材が不要となる。その結果、ボンディング接合性を良
好に保持しつつ部品接合部とワイヤボンディング部との
距離を短縮し、ひいては装置全体の小型化を図ることが
できる。また、電子部品の接着剤接合により、はんだフ
ラックスの洗浄作業が削減できる。
In such a case, the electronic components other than the flip-chip IC are joined with a conductive adhesive instead of the solder, and the electronic components to be soldered are limited to the flip-chip, so that the wire bonding portion (bonding land) is contaminated. Therefore, the amount of solder flux or the like which causes the above is reduced. Therefore, the joining part of the electronic component by the conductive adhesive can be arranged in a state close to the wire bonding part. Further, at this time, it is possible to suppress a problem that the bonding property is deteriorated, and the bonding pad member becomes unnecessary. As a result, the distance between the component bonding portion and the wire bonding portion can be reduced while maintaining good bonding property, and the overall size of the device can be reduced. Further, the soldering operation of the solder flux can be reduced by bonding the electronic component with the adhesive.

【0010】因みに、フリップチップICは多数のバン
プ電極を接合させるための微細なランドを要するため、
導電性接着剤にて接合するよりもはんだ接合の方が有利
であると言える。
Incidentally, flip-chip ICs require fine lands for bonding a large number of bump electrodes.
It can be said that solder joining is more advantageous than joining with a conductive adhesive.

【0011】請求項2に記載の発明では、フリップチッ
プICはそのバンプ電極にはんだを予め具備したものと
している。この場合、回路基板の製造時における作業性
が向上する。
According to the second aspect of the present invention, the flip-chip IC has bump electrodes provided with solder in advance. In this case, workability at the time of manufacturing the circuit board is improved.

【0012】請求項3に記載の発明では、フリップチッ
プICをはんだ付けする導体の周辺を厚膜材料の壁で囲
っている。特に請求項4に記載の発明では、前記厚膜材
料の壁の高さを30μm以上としている。この場合、は
んだフラックスのダレが厚膜材料の壁によりくい止めら
れ、ボンディング用ランドの汚染がより一層確実に回避
できる。
According to the third aspect of the present invention, the periphery of the conductor to which the flip-chip IC is soldered is surrounded by a wall of a thick film material. In particular, in the invention described in claim 4, the height of the wall of the thick film material is 30 μm or more. In this case, dripping of the solder flux is blocked by the wall of the thick film material, and contamination of the bonding lands can be avoided more reliably.

【0013】また、請求項5に記載の混成集積回路装置
の製造方法は、フリップチップIC以外の電子部品を導
電性接着剤にて基板に接合する工程と、予めはんだを具
備したフリップチップICを用意し、該フリップチップ
ICを基板にはんだ付けする工程とを有する。上記工程
により製造される混成集積回路装置は、はんだフラック
スによるボンディング用ランドの汚染が抑制できるもの
となる。その結果、ボンディング接合性を良好に保持し
つつ部品接合部とワイヤボンディング部との距離を短縮
し、ひいては装置全体の小型化を図ることができる。ま
た、電子部品の接着剤接合により、はんだフラックスの
洗浄作業が削減できる。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a hybrid integrated circuit device, comprising the steps of: bonding an electronic component other than the flip-chip IC to the substrate with a conductive adhesive; Preparing and soldering the flip chip IC to a substrate. In the hybrid integrated circuit device manufactured by the above process, the contamination of the bonding lands by the solder flux can be suppressed. As a result, the distance between the component bonding portion and the wire bonding portion can be reduced while maintaining good bonding property, and the overall size of the device can be reduced. Further, the soldering operation of the solder flux can be reduced by bonding the electronic component with the adhesive.

【0014】上記製造工程においては、請求項6に記載
したように、マウンタヘッドのヒータを用い該ヒータの
熱によりはんだをリフローさせることとしてもよい。こ
の場合、フリップチップICのマウントとはんだリフロ
ーとが連続的に実施でき、作業性が向上する。
In the above-described manufacturing process, the solder of the mounter head may be reflowed by the heat of the heater using the heater of the mounter head. In this case, the mounting of the flip chip IC and the solder reflow can be performed continuously, and the workability is improved.

【0015】請求項7に記載の発明では、電子部品の接
合時における導電性接着剤の硬化と、フリップチップI
Cのはんだリフローとを同時に行うこととしている。こ
のため、工数が減り低コスト化が実現できる。
According to the seventh aspect of the present invention, the conductive adhesive is cured when the electronic component is joined, and the flip chip I
The solder reflow of C is performed at the same time. For this reason, man-hours can be reduced and cost reduction can be realized.

【0016】請求項8に記載の発明では、約150〜1
70℃の温度域で所定時間保持した後、はんだのリフロ
ー温度に推移させる温度プロファイルを用いる。発明者
によれば、約150〜170℃での温度保持時間を1.
5分以上とすることで、良好なる結果が得られることが
確認されている。つまり、導電性接着剤の硬化とはんだ
リフローとを同時に行う場合、通常のはんだリフロー温
度(約235℃)に直ぐに移行させる温度プロファイル
を用いると、導電性接着剤は硬化するものの、急激な硬
化により溶剤中のガスが放出されずその表面が膨れ上が
ってしまう。これに対し、「約150〜170℃×1.
5分以上→リフロー温度」の温度プロファイルを設定す
ることにより、硬化反応に伴い溶剤中のガスが十分に気
化放出され、膨れのない接合面が得られる。
According to the eighth aspect of the present invention, about 150 to 1
A temperature profile is used in which the temperature is maintained in a temperature range of 70 ° C. for a predetermined time and then the temperature is changed to a reflow temperature of the solder. According to the inventor, the temperature holding time at about 150 to 170 ° C. is 1.
It has been confirmed that good results can be obtained by setting the time to 5 minutes or longer. In other words, in the case where the curing of the conductive adhesive and the solder reflow are performed at the same time, if a temperature profile that immediately shifts to a normal solder reflow temperature (about 235 ° C.) is used, the conductive adhesive cures, but the rapid curing causes The gas in the solvent is not released and the surface swells. On the other hand, “about 150 to 170 ° C. × 1.
By setting the temperature profile of “5 minutes or more → reflow temperature”, the gas in the solvent is sufficiently vaporized and released in association with the curing reaction, and a joint surface without swelling can be obtained.

【0017】請求項9に記載の発明では、フリップチッ
プICのはんだ付け工程時において、無洗浄フラックス
を使用する。この場合、はんだ付け後の洗浄工程が省略
でき、コスト低減が実現できる。無洗浄フラックスを使
用する場合、印刷性向上のために用いるチクソ材等がは
んだ付けしたランド間に残ってランド間の絶縁性が低下
したり、ボンディング用ランドの汚染などによりボンデ
ィング性が低下したりするおそれもあるが、はんだ接合
と導電性接着剤による接合とを使い分ける上記構成によ
れば、こうした不具合も解消される。
According to the ninth aspect of the present invention, a non-cleaning flux is used in the step of soldering the flip chip IC. In this case, a cleaning step after soldering can be omitted, and cost reduction can be realized. When non-cleaning flux is used, the thixotropic material used for improving printability remains between the soldered lands and the insulation between the lands is reduced, or the bonding property is reduced due to contamination of the bonding lands. However, according to the above configuration in which solder bonding and bonding with a conductive adhesive are selectively used, such a problem is solved.

【0018】[0018]

【発明の実施の形態】(第1の実施の形態)以下、この
発明の混成集積回路装置を具体化した第1の実施の形態
を図面に従って説明する。図1には、本実施の形態にお
ける厚膜基板の断面構造を示す。同図において、セラミ
ック絶縁基板としてのアルミナ基板1上には、例えばC
u導体材料からなる導体3が所定の配線パターンにて形
成されている。導体3にはオーバーコートガラス層4が
印刷形成されており、このオーバーコートガラス層4に
より部品搭載用の多数のランド3a,3b,3cが形成
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment of a hybrid integrated circuit device according to the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional structure of a thick film substrate according to the present embodiment. In FIG. 1, an alumina substrate 1 as a ceramic insulating substrate has, for example, C
A conductor 3 made of a u conductor material is formed in a predetermined wiring pattern. An overcoat glass layer 4 is formed on the conductor 3 by printing, and the overcoat glass layer 4 forms a number of lands 3a, 3b, 3c for component mounting.

【0019】図の略中央のランド3a上には、導電性を
有し且つ熱伝導性にも優れた導電性接着剤5により例え
ばチップコンデンサなどの電子部品(フリップチップ以
外の部品)6が接合されている。導電性接着剤5として
は、例えば銀−フィラ入り接着剤や金−シリコン(S
i)共晶接着剤などが知られている。フリップチップ用
バンプ電極に対向して形成されたランド3b上には、は
んだ7によりフリップチップ8(フリップチップIC)
が接合されている。
An electronic component (a component other than a flip chip) 6, such as a chip capacitor, is bonded to the land 3a substantially at the center of the figure by a conductive adhesive 5 having conductivity and excellent heat conductivity. Have been. Examples of the conductive adhesive 5 include a silver-filled adhesive and a gold-silicon (S
i) Eutectic adhesives and the like are known. Flip chip 8 (flip chip IC) is applied by solder 7 on land 3b formed opposite to the flip chip bump electrode.
Are joined.

【0020】また、アルミナ基板1上にはヒートシンク
Sが搭載され、ヒートシンクS上にはパワー素子Pが載
置されている。前記導体3のランド3cとパワー素子P
とはアルミワイヤ9により電気的に接続されている。
A heat sink S is mounted on the alumina substrate 1, and a power element P is mounted on the heat sink S. The land 3c of the conductor 3 and the power element P
Are electrically connected by an aluminum wire 9.

【0021】次に、上記構成の厚膜基板の製造方法を説
明する。 (1)先ずは、アルミナ基板1上に導体3を形成する。
具体的には、所定の配線パターンでCu導体ペーストを
印刷し、これを約120℃×10分で乾燥した後、不活
性ガス(N2 )雰囲気下において約600℃×10分で
焼成する。
Next, a method of manufacturing the thick film substrate having the above configuration will be described. (1) First, the conductor 3 is formed on the alumina substrate 1.
Specifically, a Cu conductor paste is printed in a predetermined wiring pattern, dried at about 120 ° C. for 10 minutes, and then baked at about 600 ° C. for 10 minutes in an inert gas (N 2) atmosphere.

【0022】(2)オーバーコートガラス層4を形成す
る。具体的には、導体3上にオーバーコートガラス材を
印刷し、これを約120℃×10分で乾燥した後、不活
性ガス(N2 )雰囲気下において約570℃×10分で
焼成する。
(2) The overcoat glass layer 4 is formed. Specifically, an overcoat glass material is printed on the conductor 3, dried at about 120 ° C. for 10 minutes, and baked at about 570 ° C. for 10 minutes in an inert gas (N 2) atmosphere.

【0023】(3)導体3のランド3a上に導電性接着
剤ペーストを印刷すると共に、その接着剤ペースト上に
フリップチップ以外の電子部品6を搭載する。そして、
不活性ガス(N2 )雰囲気下において約150℃×10
分で導電性接着剤ペーストを硬化させ、電子部品6を接
合する。またこのとき、予めパワー素子Pとヒートシン
クSとを組み付けたものを接合する。
(3) A conductive adhesive paste is printed on the lands 3a of the conductors 3, and an electronic component 6 other than a flip chip is mounted on the adhesive paste. And
Approx. 150 ° C x 10 in an inert gas (N2) atmosphere
Then, the conductive adhesive paste is hardened and the electronic component 6 is joined. At this time, the power element P and the heat sink S which have been assembled in advance are joined.

【0024】(4)バンプ電極にはんだ7を付けたフリ
ップチップ8を用意し、そのはんだ7又は厚膜基板上の
ランド3bにフラックス(無洗浄フラックス)を塗布す
る。そして、マウンタにてフリップチップ8を基板に搭
載すると同時に約235℃ではんだリフローを行う。具
体的には、ヘッドに熱源(ヒータ)を有するマウンタを
用い、そのマウンタでフリップチップ8をマウントする
と同時にヘッドの熱源をONにする。これにより、フリ
ップチップ8を介してはんだ7が溶融され、当該チップ
8が基板上に接合される。
(4) A flip chip 8 having a solder 7 attached to a bump electrode is prepared, and a flux (no-cleaning flux) is applied to the solder 7 or the land 3b on the thick film substrate. Then, the flip chip 8 is mounted on the substrate by the mounter, and at the same time, the solder reflow is performed at about 235 ° C. Specifically, a mounter having a heat source (heater) is used for the head, and the flip chip 8 is mounted by the mounter, and at the same time, the heat source of the head is turned on. As a result, the solder 7 is melted via the flip chip 8, and the chip 8 is bonded on the substrate.

【0025】(5)そして、パワー素子Pと導体3のラ
ンド3cとをアルミワイヤ9により電気的に接続する。
このワイヤボンディングに際し、例えば超音波溶着法が
用いられる。
(5) Then, the power element P and the land 3c of the conductor 3 are electrically connected by the aluminum wire 9.
In this wire bonding, for example, an ultrasonic welding method is used.

【0026】上記(1)〜(5)の工程により、前記図
1の厚膜基板が製造できる。因みに、無洗浄フラックス
を使用したはんだ付け工程では、はんだが溶融し始める
温度で、単一若しくは複合材料からなるフラックスを分
解若しくは蒸発させないではんだ部に液体状で存在さ
せ、はんだ付け工程終了時に当該フラックスを残存させ
ずに蒸発させることとしている。なおその詳細は、本出
願人が先に出願した特開平9−94691号公報に開示
されている。
Through the steps (1) to (5), the thick film substrate shown in FIG. 1 can be manufactured. By the way, in the soldering process using a non-cleaning flux, at a temperature at which the solder begins to melt, the flux composed of a single or composite material is present in a liquid state in the solder portion without decomposing or evaporating, and at the end of the soldering process. The flux is evaporated without leaving it. The details are disclosed in Japanese Patent Application Laid-Open No. 9-94691 filed earlier by the present applicant.

【0027】下記の表1は、マウンタのヘッド温度とは
んだ接合性の良否との関係を示す実験結果である。
Table 1 below shows the experimental results showing the relationship between the mounter head temperature and the quality of the solder joint.

【0028】[0028]

【表1】 表1によれば、チップサイズが□11の場合、ヘッド温
度を270℃以上にすることで良好なるはんだ接合性が
得られる。また、チップサイズが□5.8の場合、ヘッ
ド温度を250℃以上にすることで良好なるはんだ接合
性が得られる。
[Table 1] According to Table 1, when the chip size is □ 11, good solder jointability can be obtained by setting the head temperature to 270 ° C. or higher. Further, when the chip size is □ 5.8, good solder jointability can be obtained by setting the head temperature to 250 ° C. or higher.

【0029】以上詳述した本実施の形態によれば、以下
に示す効果が得られる。フリップチップ8をはんだ7で
接合し、それ以外の電子部品6を導電性接着剤5で接合
した。かかる場合、フリップチップ以外の電子部品6を
はんだに代えて導電性接着剤5で接合し、はんだ接合す
る電子部品はフリップチップ8に限定したことにより、
ボンディング用ランド3cの汚染の原因となるはんだフ
ラックスの量が低減される。そのため、ボンディング接
合性が悪化するなどの不具合が抑制でき、ボンディング
パッド部材が不要となる。その結果、ボンディング接合
性を良好に保持しつつ部品接合部とワイヤボンディング
部との距離を短縮し、ひいては装置全体の小型化を図る
ことができる。また、電子部品6の接着剤接合により、
はんだフラックスの洗浄作業が削減できる。
According to the embodiment described in detail above, the following effects can be obtained. The flip chip 8 was joined with the solder 7, and the other electronic components 6 were joined with the conductive adhesive 5. In such a case, the electronic component 6 other than the flip chip is joined with the conductive adhesive 5 instead of the solder, and the electronic component to be soldered is limited to the flip chip 8.
The amount of solder flux that causes contamination of the bonding lands 3c is reduced. For this reason, problems such as deterioration in bonding property can be suppressed, and a bonding pad member is not required. As a result, the distance between the component bonding portion and the wire bonding portion can be reduced while maintaining good bonding property, and the overall size of the device can be reduced. Also, by bonding the electronic component 6 with an adhesive,
Cleaning work of solder flux can be reduced.

【0030】因みに、フリップチップ8は多数のバンプ
電極を接合させるための微細なランド3bを要するた
め、導電性接着剤にて接合するよりもはんだ接合の方が
有利であると言える。
Incidentally, since the flip chip 8 requires fine lands 3b for joining a large number of bump electrodes, it can be said that solder joining is more advantageous than joining with a conductive adhesive.

【0031】図2には、部品接合部−ワイヤボンディン
グ部間の距離と、ボンディング部におけるせん断強度と
の関係について、本実施の形態の構造と従来構造との比
較結果を示す。但し、従来構造とは全ての電子部品をは
んだ付けする構造のものを指す。同図によれば、せん断
強度を維持した状態での比較において、本実施の形態の
場合、部品接合部とワイヤボンディング部との間の距離
を従来の半分程度にまで短縮することが可能となる。
FIG. 2 shows a comparison result between the structure of the present embodiment and the conventional structure with respect to the relationship between the distance between the component bonding portion and the wire bonding portion and the shear strength at the bonding portion. However, the conventional structure refers to a structure in which all electronic components are soldered. According to the figure, in comparison with the state where the shear strength is maintained, in the case of the present embodiment, the distance between the component bonding portion and the wire bonding portion can be reduced to about half of the conventional case. .

【0032】また上記構成によれば、電子部品6の接合
部において、はんだとCu導体(低温焼成導体)との合
金層形成時における応力やそれに伴うはんだ自体の疲労
といった、はんだ接合による応力がなくなる。その結
果、各種電子部品の接合強度が高められ、厚膜基板の信
頼性を向上させることができる。
Further, according to the above configuration, at the joint portion of the electronic component 6, stress due to solder joining such as stress at the time of forming an alloy layer of the solder and the Cu conductor (low temperature fired conductor) and accompanying fatigue of the solder itself are eliminated. . As a result, the bonding strength of various electronic components is increased, and the reliability of the thick film substrate can be improved.

【0033】はんだ代替材料として導電性接着剤5を使
い、その導電性接着剤5により電子部品6を実装するこ
とでPb量が減り、環境保護にも寄与できる。フリップ
チップ8は、そのバンプ電極にはんだ7を予め具備した
ものとした。そのため、回路基板の製造時における作業
性が向上する。
By using the conductive adhesive 5 as a substitute material for the solder and mounting the electronic component 6 with the conductive adhesive 5, the amount of Pb is reduced, which can contribute to environmental protection. The flip chip 8 had the bump electrode provided with the solder 7 in advance. Therefore, workability at the time of manufacturing the circuit board is improved.

【0034】上記基板の製造工程においては、マウンタ
ヘッドのヒータを用い該ヒータの熱によりはんだをリフ
ローさせることとした。この場合、フリップチップ8の
マウントとはんだリフローとが連続的に実施でき、作業
性が向上する。
In the substrate manufacturing process, the solder of the mounter head is used to reflow the solder by the heat of the heater. In this case, the mounting of the flip chip 8 and the solder reflow can be performed continuously, and the workability is improved.

【0035】フリップチップ8の実装には導電性接着剤
5を使用しないため、微細なバンプ電極に合わせて導電
性接着剤5を印刷することもなく、作業の煩雑化を招く
こともない。この場合、組み付け不良が多発するフリッ
プチップにおいて、はんだのリペアも容易に実施でき
る。
Since the conductive adhesive 5 is not used for mounting the flip chip 8, the conductive adhesive 5 is not printed in accordance with the fine bump electrodes, and the operation is not complicated. In this case, solder repair can be easily performed in a flip chip in which assembly failures frequently occur.

【0036】フリップチップ8のはんだ付け工程時にお
いて、無洗浄フラックスを使用した。この場合、はんだ
付け後の洗浄工程が省略でき、製造コストの低減が実現
できる。無洗浄フラックスを使用する場合、印刷性向上
のために用いるチクソ材等がボンディング用ランドを汚
染してボンディング性が低下したりするおそれもある
が、上記実施の形態によればこうした不具合も解消され
る。
In the soldering step of the flip chip 8, a non-cleaning flux was used. In this case, a cleaning step after soldering can be omitted, and a reduction in manufacturing cost can be realized. When using a non-cleaning flux, there is a possibility that the thixotropic material or the like used for improving printability may contaminate the bonding lands and reduce the bonding property, but according to the above-described embodiment, such a problem is also solved. You.

【0037】(第2の実施の形態)次に、本発明におけ
る第2の実施の形態を図3を用いて説明する。但し、以
下の実施の形態の構成において、上述した第1の実施の
形態と同等であるものについては図面に同一の記号を付
すと共にその説明を簡略化する。そして、以下には第1
の実施の形態との相違点を中心に説明する。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. However, in the configurations of the following embodiments, the same components as those of the above-described first embodiment are denoted by the same reference numerals and the description thereof is simplified. And below is the first
The following description focuses on the differences from this embodiment.

【0038】本第2の実施の形態では、本発明の混成集
積回路装置を厚膜多層基板に具体化しており、その断面
構造を図3に示す。図3において、アルミナ基板1上に
は、Ag系導体材料からなる内層導体11が所定の配線
パターンにて形成され、その上には例えば結晶化ガラス
からなる絶縁層12,13が形成されている。絶縁層1
2,13のビィアホール12a,13aには、Ag系導
体材料からなるビィアホール導体14,15が充填され
ている。
In the second embodiment, the hybrid integrated circuit device of the present invention is embodied on a thick-film multilayer substrate, and the sectional structure is shown in FIG. In FIG. 3, an inner conductor 11 made of an Ag-based conductor material is formed in a predetermined wiring pattern on an alumina substrate 1, and insulating layers 12 and 13 made of, for example, crystallized glass are formed thereon. . Insulation layer 1
The via holes 12a and 13a are filled with via hole conductors 14 and 15 made of an Ag-based conductor material.

【0039】絶縁層13上には、RuO系材料からなる
抵抗体16が形成されると共に、Cu導体材料からなる
表層導体17が所定の配線パターンにて形成されてい
る。抵抗体16及び表層導体17上にはオーバーコート
ガラス層18が印刷形成されており、このオーバーコー
トガラス層18により部品搭載用の多数のランド17a
が形成されると共に抵抗体16が保護されている。前記
内層導体11と表層導体17とはビィアホール導体1
4,15を介して電気的に接続されている。
On the insulating layer 13, a resistor 16 made of a RuO-based material is formed, and a surface conductor 17 made of a Cu conductor material is formed in a predetermined wiring pattern. An overcoat glass layer 18 is formed on the resistor 16 and the surface conductor 17 by printing, and the overcoat glass layer 18 forms a large number of lands 17a for component mounting.
Are formed and the resistor 16 is protected. The inner conductor 11 and the surface conductor 17 are connected to the via-hole conductor 1.
They are electrically connected via 4 and 15.

【0040】表層導体17のランド17a上には、導電
性接着剤5により電子部品(フリップチップ以外の部
品)6が接合されている。また、図3の左端において、
導体17にはボンディング用ランド17bが形成されて
おり、このボンディング用ランド17bにはアルミワイ
ヤ9が接続されている。
An electronic component (a component other than a flip chip) 6 is joined to the land 17 a of the surface conductor 17 by a conductive adhesive 5. Also, at the left end of FIG.
A bonding land 17b is formed on the conductor 17, and an aluminum wire 9 is connected to the bonding land 17b.

【0041】内層導体11のランド11a上には、はん
だ7によりフリップチップ8が接合されている。フリッ
プチップ8の周辺は高さ30μm以上の絶縁層12,1
3で囲われ、この絶縁層12,13の壁によりはんだフ
ラックスの広がりが抑制されるようになっている。
The flip chip 8 is joined to the land 11 a of the inner conductor 11 by the solder 7. The periphery of the flip chip 8 is an insulating layer 12, 1 having a height of 30 μm or more.
The walls of the insulating layers 12 and 13 suppress the spread of the solder flux.

【0042】次に、上記構成の厚膜多層基板の製造方法
を説明する。 (1)先ずは、アルミナ基板1上に内層導体11を形成
する。具体的には、アルミナ基板1上にAg系導体ペー
ストを印刷し、これを約120℃×10分で乾燥した
後、大気雰囲気下において約850℃×10分で焼成す
る。
Next, a method for manufacturing the thick-film multilayer substrate having the above-described structure will be described. (1) First, the inner conductor 11 is formed on the alumina substrate 1. Specifically, an Ag-based conductor paste is printed on the alumina substrate 1, dried at about 120 ° C. × 10 minutes, and then fired at about 850 ° C. × 10 minutes in the air atmosphere.

【0043】(2)内層導体11上に絶縁層12を印刷
し、約120℃×10分で乾燥した後、大気雰囲気下に
おいて約850℃×10分で焼成する。このとき絶縁層
12にはビィアホール12aが同時に形成される。但
し、フリップチップ8を搭載する部分は、チップ寸法に
合わせた場所を空けておく。
(2) The insulating layer 12 is printed on the inner layer conductor 11, dried at about 120 ° C. × 10 minutes, and baked at about 850 ° C. × 10 minutes in the air atmosphere. At this time, via holes 12a are formed in the insulating layer 12 at the same time. However, the portion where the flip chip 8 is to be mounted has a space corresponding to the chip size.

【0044】(3)ビィアホール導体14を形成する。
具体的には、ビィアホール12a内を充填するようにA
g系導体ペーストを印刷し、約120℃×10分で乾燥
した後、大気雰囲気下において約850℃×10分で焼
成する。上記(2),(3)の工程は、絶縁層が所望の
厚みになるまで繰り返し実施される(本実施の形態で
は、絶縁層12,13、ビィアホール導体14,15を
2層に形成する)。
(3) The via-hole conductor 14 is formed.
Specifically, A is filled so as to fill the via hole 12a.
The g-based conductor paste is printed, dried at about 120 ° C. × 10 minutes, and then fired at about 850 ° C. × 10 minutes in an air atmosphere. The steps (2) and (3) are repeated until the insulating layer has a desired thickness (in the present embodiment, the insulating layers 12, 13 and the via-hole conductors 14, 15 are formed in two layers). .

【0045】(4)絶縁層13上にRuO系の抵抗体1
6を印刷し、約120℃×10分で乾燥した後、大気雰
囲気下において約850℃×10分で焼成する。 (5)表層導体17を形成する。具体的には、抵抗体1
6の両端に掛かるようにCu導体ペーストを印刷し、こ
れを約120℃×10分で乾燥した後、不活性ガス(N
2 )雰囲気下において約600℃×10分で焼成する。
(4) RuO-based resistor 1 on insulating layer 13
6 is printed and dried at about 120 ° C. × 10 minutes, and then baked at about 850 ° C. × 10 minutes in the air atmosphere. (5) The surface conductor 17 is formed. Specifically, the resistor 1
6, and printed with a Cu conductor paste at both ends at about 120 ° C. for 10 minutes.
2) Baking at about 600 ° C for 10 minutes in an atmosphere.

【0046】(6)オーバーコートガラス層18を形成
する。具体的には、抵抗体16及び表層導体17上にオ
ーバーコートガラス材を印刷し、これを約120℃×1
0分で乾燥した後、不活性ガス(N2 )雰囲気下におい
て約570℃×10分で焼成する。
(6) The overcoat glass layer 18 is formed. Specifically, an overcoat glass material is printed on the resistor 16 and the surface conductor 17 and is printed at about 120 ° C. × 1.
After drying for 0 minutes, baking is performed at about 570 ° C. for 10 minutes in an inert gas (N2) atmosphere.

【0047】(7)表層導体17のランド17a上に導
電性接着剤ペーストを印刷すると共に、フリップチップ
以外の電子部品6を搭載する。そして、不活性ガス(N
2 )雰囲気下において約150℃×10分で導電性接着
剤ペーストを硬化させ、電子部品6を接合する。
(7) The conductive adhesive paste is printed on the lands 17a of the surface conductor 17, and the electronic components 6 other than the flip chips are mounted. And an inert gas (N
2) The conductive adhesive paste is cured at about 150 ° C. × 10 minutes in an atmosphere, and the electronic component 6 is joined.

【0048】(8)バンプ電極にはんだ7を付けたフリ
ップチップ8を用意し、そのはんだ7又は内層導体11
のランド11aにフラックス(無洗浄フラックス)を塗
布する。そして、フリップチップ8を基板に搭載し、不
活性ガス(N2 )雰囲気下において約235℃ではんだ
リフローを行う(前記第1の実施の形態と同様に、マウ
ンタヘッドによる熱圧着法を用いることも可能)。
(8) A flip chip 8 in which solder 7 is attached to a bump electrode is prepared, and the solder 7 or the inner layer conductor 11 is prepared.
(No-cleaning flux) is applied to the land 11a. Then, the flip chip 8 is mounted on the substrate, and solder reflow is performed at about 235 ° C. in an inert gas (N 2) atmosphere (similar to the first embodiment, a thermocompression bonding method using a mounter head may be used). Possible).

【0049】(9)導体17のボンディング用ランド1
7bにアルミワイヤ9を接続する。上記(1)〜(9)
の工程により、前記図2の厚膜多層基板が製造できる。
以上、厚膜多層基板に具体化した本実施の形態によれ
ば、上記第1の実施の形態と同様に、ボンディング接合
性を良好に保持しつつ部品接合部とワイヤボンディング
部との距離を短縮し、ひいては装置全体の小型化を図る
ことができる。
(9) Land 1 for bonding of conductor 17
The aluminum wire 9 is connected to 7b. The above (1) to (9)
By the above process, the thick film multilayer substrate of FIG. 2 can be manufactured.
As described above, according to the present embodiment embodied in a thick film multilayer substrate, similarly to the first embodiment, the distance between the component bonding portion and the wire bonding portion is reduced while maintaining good bonding property. As a result, the size of the entire apparatus can be reduced.

【0050】また本実施の形態では、フリップチップ8
をはんだ付けする導体(ランド11a)の周辺を30μ
m以上の高さを持つ絶縁層12,13の壁で囲うように
した。この場合、はんだフラックスのダレが絶縁層1
2,13の壁によりくい止められ、ボンディング用ラン
ド17bの汚染がより一層確実に回避できる。つまり、
はんだフラックスは高温で広がり、その近傍のボンディ
ング用ランドに付着する。フラックスはランドの導体酸
化物と反応しボンディング性を劣化させる。しかし上記
構成によれば、こうした不具合が解消できる。
In this embodiment, the flip chip 8
30μ around the conductor (land 11a) to solder
The insulating layers 12 and 13 having a height of not less than m were surrounded by walls. In this case, the dripping of the solder flux is caused by the insulation layer 1
The two or more walls prevent the contamination of the bonding lands 17b. That is,
The solder flux spreads at high temperature and adheres to the bonding lands in the vicinity. The flux reacts with the conductor oxide of the land and degrades the bonding property. However, according to the above configuration, such a problem can be solved.

【0051】なお、本発明の実施の形態は、上記以外に
次の形態にて実現できる。上記各実施の形態における混
成集積回路装置の製造方法において、電子部品6及びフ
リップチップ8を基板に搭載した状態で、導電性接着剤
5の硬化とはんだリフローとを同時に行う。このとき、
不活性ガス(N2 )雰囲気下において150〜170℃
で1.5分以上保持した後、通常のはんだリフロー温度
(235℃)ではんだ付けを行う。
The embodiment of the present invention can be realized in the following modes other than the above. In the method of manufacturing a hybrid integrated circuit device in each of the above embodiments, curing of the conductive adhesive 5 and solder reflow are performed simultaneously with the electronic component 6 and the flip chip 8 mounted on the substrate. At this time,
150-170 ° C under an inert gas (N2) atmosphere
, And soldering is performed at a normal solder reflow temperature (235 ° C.).

【0052】かかる場合、150〜170℃で1.5分
以上温度保持せずに、はんだがリフローされる約235
℃(ピーク温度)に直ぐに移行させると、導電性接着剤
5は硬化するものの急激な硬化作用により溶剤中のガス
が放出されずその表面が膨れるといった不具合が発生す
る。これに対し、上記の通り150〜170℃で1.5
分以上保持することで、硬化反応に伴い溶剤中のガスが
十分に気化放出されて膨れのない接合面が得られる。本
実施の形態によれば、工数が減り低コスト化が実現でき
る。
In such a case, the solder is reflowed at a temperature of 150 to 170 ° C. without holding the temperature for 1.5 minutes or more.
If the temperature is immediately shifted to ° C. (peak temperature), the conductive adhesive 5 cures, but a sudden curing action does not release the gas in the solvent and causes a problem that the surface swells. On the other hand, as described above, 1.5 to
By holding for more than a minute, the gas in the solvent is sufficiently vaporized and released along with the curing reaction, and a joint surface without swelling is obtained. According to the present embodiment, man-hours can be reduced and cost can be reduced.

【0053】下記の表2は、150〜170℃での保持
時間と導電性接着剤4の膨れの有無との関係を示す実験
結果である。
Table 2 below shows the experimental results showing the relationship between the holding time at 150 to 170 ° C. and the presence or absence of swelling of the conductive adhesive 4.

【0054】[0054]

【表2】 表2によれば、はんだリフロー温度(ピーク温度)を2
35℃、270℃のいずれにした場合においても、15
0〜170℃での保持時間が1.5分以上であれば、膨
れのない良好な接合面が形成されることが分かる。
[Table 2] According to Table 2, the solder reflow temperature (peak temperature) was 2
In either case of 35 ° C or 270 ° C, 15
It can be seen that if the holding time at 0 to 170 ° C. is 1.5 minutes or more, a good joint surface without swelling is formed.

【0055】上記各実施の形態では、フリップチップI
Cにはんだを予め具備する構成としたが、これを変更す
る。例えば厚膜基板の導体上にはんだペーストを印刷
し、そのはんだ上にフリップチップICを載せる構成で
あってもよい。
In each of the above embodiments, the flip chip I
C is provided with solder in advance, but this is changed. For example, a configuration may be adopted in which a solder paste is printed on a conductor of a thick film substrate and a flip chip IC is mounted on the solder.

【0056】上記各実施の形態では、無洗浄フラックス
を用いたが、勿論、従来通りのフラックスを用いること
も可能である。上記各実施の形態では、マウンタのヒー
タによる熱圧着法にてはんだリフローを行ったが、赤外
線リフロー法、熱板リフロー法、レーザX線リフロー法
などを用いることとしてもよい。
In each of the above embodiments, a non-cleaning flux is used, but it is needless to say that a conventional flux can be used. In each of the above embodiments, the solder reflow is performed by the thermocompression bonding method using the heater of the mounter. However, an infrared reflow method, a hot plate reflow method, a laser X-ray reflow method, or the like may be used.

【0057】フリップチップ8とアルミナ基板1との間
に樹脂層(アンダーレジン)を形成する。具体的には、
所定量の液状エポキシ樹脂をディスペンサにてフリップ
チップ8の1辺に塗布し、約100℃×10分で加熱す
る。すると、毛管作用によりフリップチップ8の下方に
液状エポキシ樹脂が充填される。その後、約150℃×
120分で硬化処理を行う。かかる場合、はんだ接合部
の応力が大幅に低減され、更なる信頼性向上が実現でき
る。
A resin layer (under resin) is formed between the flip chip 8 and the alumina substrate 1. In particular,
A predetermined amount of liquid epoxy resin is applied to one side of the flip chip 8 with a dispenser and heated at about 100 ° C. × 10 minutes. Then, the liquid epoxy resin is filled below the flip chip 8 by the capillary action. Then, about 150 ℃
The curing treatment is performed in 120 minutes. In such a case, the stress at the solder joint is significantly reduced, and further improvement in reliability can be realized.

【0058】上記第2の実施の形態(図3)では、絶縁
層12,13で厚膜材料の壁を作ったが、これを変更す
る。例えば導体上に30μm以上のガラスコート層を形
成すると共に、このガラスコート層にて厚膜材料の壁を
作る。
In the above-described second embodiment (FIG. 3), the walls of the thick film material are formed by the insulating layers 12 and 13, but this is changed. For example, a glass coat layer of 30 μm or more is formed on a conductor, and a wall of a thick film material is formed with the glass coat layer.

【0059】多層のアルミナ層(グリーンシート)を高
温焼成して成形される高温焼成多層基板に本発明を具体
化してもよい。この場合、アルミナ層にて高さ30μm
以上の壁を作り、その壁にて区画される空間内にフリッ
プチップ用ランドを設けると共に、当該ランドにフリッ
プチップICをはんだ接合させる。
The present invention may be embodied in a high-temperature fired multilayer substrate formed by firing a multilayer alumina layer (green sheet) at a high temperature. In this case, the height of the alumina layer is 30 μm.
The above-described wall is formed, a land for flip chip is provided in a space defined by the wall, and a flip chip IC is soldered to the land.

【0060】本発明は、Ag系導体上にフリップチップ
以外の電子部品を接合する混成集積回路装置にも有効で
ある。つまり、500〜700℃焼成(低温焼成)のC
u系導体の他に、800〜900℃焼成のAg系導体に
おいても、高温条件下においてはんだとの合金層の成長
が比較的速いことが確認されている(150℃×500
Hrで、Cu系導体は約20μm、Ag系導体は約15
μm)。因みに、Cu金属膜の場合、150℃×500
Hrで、約5μm程度である。この場合、Ag系導体で
形成される厚膜基板において、はんだ接合による応力が
なくなり、各種電子部品の接合強度が高められる。
The present invention is also effective for a hybrid integrated circuit device in which electronic components other than flip chips are joined on an Ag-based conductor. That is, C of 500-700 ° C. firing (low temperature firing)
In addition to the u-based conductor, it has been confirmed that the growth of the alloy layer with the solder is relatively fast under high-temperature conditions also in the case of the Ag-based conductor fired at 800 to 900 ° C.
Hr, Cu-based conductor is about 20 μm, Ag-based conductor is about 15 μm.
μm). Incidentally, in the case of a Cu metal film, 150 ° C. × 500
Hr is about 5 μm. In this case, in the thick film substrate formed of the Ag-based conductor, the stress due to the solder bonding is eliminated, and the bonding strength of various electronic components is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態における厚膜基板の断面図。FIG. 1 is a cross-sectional view of a thick film substrate according to a first embodiment.

【図2】部品接合部−ワイヤボンディング部間の距離
と、ボンディング部におけるせん断強度との関係を示す
グラフ。
FIG. 2 is a graph showing a relationship between a distance between a component bonding portion and a wire bonding portion and a shear strength at the bonding portion.

【図3】第2の実施の形態における厚膜多層基板の断面
図。
FIG. 3 is a sectional view of a thick-film multilayer substrate according to a second embodiment.

【符号の説明】 1…アルミナ基板、3…導体、3a,3b,3c…ラン
ド、5…導電性接着剤、6…電子部品、7…はんだ、8
…フリップチップ(フリップチップIC)、9…アルミ
ワイヤ、11…内層導体、11a…ランド、12,13
…絶縁層(厚膜材料)、17…表層導体、17b…ボン
ディング用ランド。
[Description of Signs] 1 ... Alumina substrate, 3 ... Conductor, 3a, 3b, 3c ... Land 5 ... Conductive adhesive, 6 ... Electronic component, 7 ... Solder, 8
... Flip chip (flip chip IC), 9 ... Aluminum wire, 11 ... Inner layer conductor, 11a ... Land, 12,13
... insulating layer (thick film material), 17 ... surface conductor, 17b ... bonding land.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】厚膜基板上に各種電子部品を接合する混成
集積回路装置であって、 フリップチップICを前記基板上に搭載する部位では当
該フリップチップICをはんだにて接合し、フリップチ
ップIC以外の電子部品を前記基板上に搭載する部位で
は当該電子部品を導電性接着剤にて接合したことを特徴
とする混成集積回路装置。
1. A hybrid integrated circuit device for bonding various electronic components on a thick-film substrate, wherein the flip-chip IC is bonded by solder at a portion where the flip-chip IC is mounted on the substrate. A hybrid integrated circuit device, wherein electronic components other than the electronic components are mounted on the substrate by using a conductive adhesive.
【請求項2】前記フリップチップICはそのバンプ電極
にはんだを予め具備したものである請求項1に記載の混
成集積回路装置。
2. The hybrid integrated circuit device according to claim 1, wherein said flip-chip IC has a bump electrode provided with solder in advance.
【請求項3】前記フリップチップICをはんだ付けする
導体の周辺を厚膜材料の壁で囲った請求項1又は請求項
2に記載の混成集積回路装置。
3. The hybrid integrated circuit device according to claim 1, wherein a periphery of a conductor to which said flip-chip IC is soldered is surrounded by a wall of a thick film material.
【請求項4】請求項3に記載の混成集積回路装置におい
て、 前記厚膜材料の壁の高さを30μm以上とした混成集積
回路装置。
4. The hybrid integrated circuit device according to claim 3, wherein the height of the wall of the thick film material is 30 μm or more.
【請求項5】厚膜基板上に各種電子部品を接合する混成
集積回路装置の製造方法であって、 フリップチップIC以外の電子部品を導電性接着剤にて
基板に接合する工程と、 予めはんだを具備したフリップチップICを用意し、該
フリップチップICを基板にはんだ付けする工程とを有
することを特徴とする混成集積回路装置の製造方法。
5. A method of manufacturing a hybrid integrated circuit device for bonding various electronic components on a thick film substrate, comprising: bonding an electronic component other than a flip-chip IC to the substrate with a conductive adhesive; Preparing a flip-chip IC provided with: and soldering the flip-chip IC to a substrate.
【請求項6】前記フリップチップICのはんだ付け工程
において、マウンタヘッドのヒータを用い該ヒータの熱
によりはんだをリフローさせる請求項5に記載の混成集
積回路装置の製造方法。
6. The method for manufacturing a hybrid integrated circuit device according to claim 5, wherein in the step of soldering the flip-chip IC, the solder of the mounter head is used to reflow the solder by the heat of the heater.
【請求項7】前記電子部品の接合時における導電性接着
剤の硬化と、前記フリップチップICのはんだリフロー
とを同時に行う請求項5に記載の混成集積回路装置の製
造方法。
7. The method of manufacturing a hybrid integrated circuit device according to claim 5, wherein curing of the conductive adhesive at the time of bonding the electronic components and solder reflow of the flip-chip IC are simultaneously performed.
【請求項8】請求項7に記載の混成集積回路装置の製造
方法において、 約150〜170℃の温度域で所定時間保持した後、は
んだのリフロー温度に推移させる温度プロファイルを用
いる混成集積回路装置の製造方法。
8. A method for manufacturing a hybrid integrated circuit device according to claim 7, wherein the temperature profile is maintained at a temperature in a range of about 150 to 170 ° C. for a predetermined time and then changed to a reflow temperature of the solder. Manufacturing method.
【請求項9】前記フリップチップICのはんだ付け工程
時において、無洗浄フラックスを使用する請求項5〜請
求項8のいずれかに記載の混成集積回路装置の製造方
法。
9. The method for manufacturing a hybrid integrated circuit device according to claim 5, wherein a non-cleaning flux is used in the step of soldering the flip-chip IC.
JP9333113A 1997-12-03 1997-12-03 Hybrid integrated circuit device and manufacture thereof Pending JPH11168171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9333113A JPH11168171A (en) 1997-12-03 1997-12-03 Hybrid integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9333113A JPH11168171A (en) 1997-12-03 1997-12-03 Hybrid integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11168171A true JPH11168171A (en) 1999-06-22

Family

ID=18262439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9333113A Pending JPH11168171A (en) 1997-12-03 1997-12-03 Hybrid integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11168171A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037332A1 (en) * 1999-11-16 2001-05-25 Indian Space Research Organisation A high density hybrid integrated circuit package having a flip-con structure
EP1906719A1 (en) * 2006-09-26 2008-04-02 Denso Corporation Electronic controller
JP2016091709A (en) * 2014-10-31 2016-05-23 岡谷電機産業株式会社 Manufacturing method of discharge tube, and discharge tube
EP3780916A4 (en) * 2018-04-12 2021-04-14 Fuji Corporation Printed substrate forming method, and printed substrate forming device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037332A1 (en) * 1999-11-16 2001-05-25 Indian Space Research Organisation A high density hybrid integrated circuit package having a flip-con structure
EP1906719A1 (en) * 2006-09-26 2008-04-02 Denso Corporation Electronic controller
US7679914B2 (en) 2006-09-26 2010-03-16 Denso Corporation Electronic controller
JP2016091709A (en) * 2014-10-31 2016-05-23 岡谷電機産業株式会社 Manufacturing method of discharge tube, and discharge tube
EP3780916A4 (en) * 2018-04-12 2021-04-14 Fuji Corporation Printed substrate forming method, and printed substrate forming device

Similar Documents

Publication Publication Date Title
US7936569B2 (en) Circuit device and method of manufacturing the same
JP3320979B2 (en) How to mount a device directly on a device carrier
JP3262497B2 (en) Chip mounted circuit card structure
KR100605435B1 (en) Semiconductor device and assembling method thereof
JP2595909B2 (en) Semiconductor device
JP2751912B2 (en) Semiconductor device and manufacturing method thereof
US6013877A (en) Solder bonding printed circuit boards
CN100399558C (en) Semiconductor device and manufacturing method of the same
JP5649805B2 (en) Manufacturing method of semiconductor device
US5057969A (en) Thin film electronic device
US5115964A (en) Method for bonding thin film electronic device
KR20020044577A (en) Advanced flip-chip join package
KR100808746B1 (en) Method for manufacturing circuit device
JPH11168171A (en) Hybrid integrated circuit device and manufacture thereof
US6326239B1 (en) Mounting structure of electronic parts and mounting method of electronic parts
JPH11177016A (en) Composite integrated circuit device
JPH10275522A (en) Conductive resin paste, package board using it, and semi-conductor package
JPH07226421A (en) Ic chip mounting circuit device and method of mounting ic chip
JPH02234447A (en) Method of connection semiconductor integrated circuit element
JP2692522B2 (en) Package module board
JP2000151086A (en) Printed circuit unit and its manufacture
JP3450838B2 (en) Manufacturing method of electronic component package
JPH0637438A (en) Hybrid integrated circuit
JP2002368038A (en) Flip-chip mounting method
JP7322369B2 (en) Semiconductor device manufacturing method