JPH11150873A - Controller for electric vehicle - Google Patents

Controller for electric vehicle

Info

Publication number
JPH11150873A
JPH11150873A JP31978497A JP31978497A JPH11150873A JP H11150873 A JPH11150873 A JP H11150873A JP 31978497 A JP31978497 A JP 31978497A JP 31978497 A JP31978497 A JP 31978497A JP H11150873 A JPH11150873 A JP H11150873A
Authority
JP
Japan
Prior art keywords
battery
switch
electric vehicle
offset value
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31978497A
Other languages
Japanese (ja)
Other versions
JP3363081B2 (en
Inventor
Makoto Okamura
誠 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31978497A priority Critical patent/JP3363081B2/en
Publication of JPH11150873A publication Critical patent/JPH11150873A/en
Application granted granted Critical
Publication of JP3363081B2 publication Critical patent/JP3363081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect residual capacity of a battery with high accuracy, by detecting an offset value of a discharge current detecting sensor whenever non-charging or nondischarging state of a battery is detected without using any detecting means for detecting the charging and discharging currents of batteries. SOLUTION: When an external switch 70 is turned on, a transistor 73 and a power switch 71 are turned on and a power supply voltage is supplied to a microcomputer 72, resulting in an actuation of the micrcomputer 72. When the switch 70 is conducted, the microcomputer 72 converts an analog signal into a digital signal by means of a built-in A/D converter and outputs a delay signal from a timer 76 to a transistor 74. When the microcomputer 72 is initialized, charging states or discharing states of batteries 1 and 3 are discriminated from numerical value of a digital signal indicating whether or not a key switch is turned on and the turning off of a charging switch. When the batteries 1 and 3 are not in non-charging states nor nondischarging states, the microcomputer 72 calculates the residual capacities of the batteries 1 and 3 at regular time intervals by executing normal control operations. While a vehicle is stopped, the offset value of a current sensor 4, etc., calculated when the timer 76 is actuated and the integrated value of self-discharge values are written in a nonvolatile memory and used for the calculation of the residual capacities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車の制御
装置に関し、特にバッテリの残存容量算出技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an electric vehicle, and more particularly to a technique for calculating a remaining capacity of a battery.

【0002】[0002]

【従来の技術】バッテリの残存容量は、バッテリの充放
電電流を積算することにより高精度に検出される。たと
えば特開平4−368432号公報は、イグニッション
キーを開いている場合でも(エンジン停止中でも)間欠
的に一定期間ずつバッテリの放電電流を検出して、エン
ジン停止中における放電電流の積算などを行ってそれを
バックアップメモリに記憶することにより、これらの処
理に必要な電力消費を低減しつつより高精度の残存容量
算出を実現することを提案している。
2. Description of the Related Art The remaining capacity of a battery is detected with high accuracy by integrating the charge / discharge current of the battery. For example, Japanese Patent Application Laid-Open No. 4-368432 discloses that even when an ignition key is opened, a discharge current of a battery is intermittently detected for a certain period of time (even when the engine is stopped), and the discharge current is integrated while the engine is stopped. By storing it in a backup memory, it is proposed to realize more accurate calculation of the remaining capacity while reducing the power consumption required for these processes.

【0003】[0003]

【発明が解決しようとする課題】上述したようにバッテ
リの残存容量を高精度に検出するためには、バッテリの
充放電電流を高精度に検出する必要がある。したがっ
て、バッテリの充放電電流を検出する電流センサがもし
オフセット値をもつと、このオフセット値の分だけ検出
誤差が累積されて大きな残存容量誤差が生じるので、こ
の電流センサのオフセット値のキャンセル処理が必要と
なる。
As described above, in order to detect the remaining capacity of the battery with high accuracy, it is necessary to detect the charge / discharge current of the battery with high accuracy. Therefore, if the current sensor that detects the charge / discharge current of the battery has an offset value, the detection error is accumulated by the offset value and a large remaining capacity error occurs. Required.

【0004】ところが、電気自動車に搭載される電流セ
ンサのオフセット値は、時間的に無視できない変動をも
ち、これにより、無視できない残存容量の誤差が生じ、
その結果、過充電や過放電といった問題を生じてバッテ
リの性能低下を招く可能性があった。そこで、このよう
な電流センサのオフセット値の時間変動について調べた
ところ、次のような原因がその一つとして存在すること
が判明した。
However, the offset value of a current sensor mounted on an electric vehicle has a temporally non-negligible fluctuation, which causes a non-negligible remaining capacity error.
As a result, a problem such as overcharging or overdischarging may occur, leading to a decrease in battery performance. Thus, when the time variation of the offset value of the current sensor was examined, it was found that one of the following causes existed.

【0005】電流センサとしては高精度の電流検出が可
能な半導体磁気センサが用いられることが一般的である
が、被検出導体に近接配置される半導体磁気センサに
は、外部磁界たとえば地磁気、近傍のモータやリレーや
トランスやコイルなどから漏れる磁束、更には、送電線
などの磁束が作用する。また、この半導体磁気センサに
被検出導体に通電される被検出電流の磁束を集中するた
めにスリット付きに磁気コアを巻装し、このスリットに
半導体磁気センサを収容することも行われるが、このコ
アは上記と同様に外部磁界を吸収して半導体磁気センサ
にオフセット値を発生させ、この外部磁界も車両走行と
ともに変動し、オフセット値が変動する。
As a current sensor, a semiconductor magnetic sensor capable of detecting a current with high accuracy is generally used. However, a semiconductor magnetic sensor disposed close to a conductor to be detected includes an external magnetic field, for example, terrestrial magnetism. Magnetic flux leaking from motors, relays, transformers, coils, and the like, and furthermore, magnetic flux from transmission lines and the like act. Further, a magnetic core is wound around the semiconductor magnetic sensor with a slit in order to concentrate a magnetic flux of a current to be detected flowing through a conductor to be detected, and the semiconductor magnetic sensor is housed in the slit. The core absorbs an external magnetic field and generates an offset value in the semiconductor magnetic sensor in the same manner as described above, and the external magnetic field also fluctuates as the vehicle travels, and the offset value fluctuates.

【0006】その他、このコアに強い外部磁界が作用す
るとその解消後も残留磁界がコアに残り、オフセット値
が同様に発生し、変動する。結局、電気自動車のバッテ
リの充放電電流を検出する電流センサでは、車両移動に
よりオフセット値がわずかながら変動するが、バッテリ
の残存容量を検出するために、バッテリの充放電電流を
積算すると、充電電流と放電電流とは互いにキャンセル
しあうにもかかわらず、このオフセット値は経時的に積
算されるので次第に大きな値となり、残存容量の大きな
誤差を生じる。このオフセット値が一定で変化しなけれ
ばそれを測定し、記憶して充放電電流の測定値からそれ
を差し引けばなんら問題はない。ところが電気自動車で
は車両内部の磁気発生源や外部の磁気状態が空間的、時
間的に変化するので、これが経時的なオフセット値変動
をもたらし、単純なオフセット値記憶キャンセルが実施
できない。
In addition, when a strong external magnetic field acts on the core, a residual magnetic field remains in the core even after the strong external magnetic field is eliminated, and the offset value similarly occurs and varies. Eventually, in the current sensor that detects the charge / discharge current of the battery of the electric vehicle, the offset value slightly fluctuates due to the movement of the vehicle, but when the charge / discharge current of the battery is integrated to detect the remaining capacity of the battery, the charge current becomes Although the offset current and the discharge current cancel each other, the offset value is integrated over time, so that the offset value becomes gradually larger, resulting in a large error in the remaining capacity. If the offset value is constant and does not change, it is measured, stored, and subtracted from the measured value of the charging / discharging current, and there is no problem. However, in an electric vehicle, the magnetic source inside the vehicle and the magnetic state outside the vehicle change spatially and temporally, and this causes a temporal change in the offset value, so that simple offset value storage cannot be canceled.

【0007】結局、電気自動車は移動手段そのものであ
るので、電流センサの周囲環境の変化による上記オフセ
ット値の変動は避ける事が困難となる。本発明は上記問
題点に鑑みなされたものであり、電気自動車のバッテリ
容量の高精度の検出が可能な電気自動車の制御装置を提
供することをその目的とするものである。
[0007] After all, since the electric vehicle is the vehicle itself, it is difficult to avoid the fluctuation of the offset value due to the change of the surrounding environment of the current sensor. The present invention has been made in view of the above problems, and has as its object to provide an electric vehicle control device capable of detecting the battery capacity of an electric vehicle with high accuracy.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の構成に
よれば、電流検出手段以外の手段により前記バッテリの
所定の非充放電状態を検出し、それを検出するごとに、
電気自動車に搭載されるバッテリの放電電流を検出する
電流センサのオフセット値が検出される。これにより、
電気自動車の空間移動や電流センサの経時変化などによ
り、そのオフセット値が時間的に変動したとしても、電
気自動車搭載のバッテリの放電電流や充電電流を高精度
に検出することができるので、オフセット値の誤差の積
算によりバッテリの残存容量推定がばらついて、その過
充電や過放電が発生したり、バッテリの有効利用が阻害
されたりするいった問題を解決することができる。
According to the first aspect of the present invention, a predetermined non-charging / discharging state of the battery is detected by means other than the current detecting means.
An offset value of a current sensor that detects a discharge current of a battery mounted on the electric vehicle is detected. This allows
Even if the offset value fluctuates with time due to space movement of the electric vehicle or changes over time of the current sensor, the discharge current and the charging current of the battery mounted on the electric vehicle can be detected with high accuracy. It is possible to solve such a problem that the estimation of the remaining capacity of the battery varies due to the integration of the errors, and the overcharge and overdischarge occur, and the effective use of the battery is hindered.

【0009】なお、電気自動車の非充放電状態の検出
は、たとえば、キースイッチのオフ、充電を指令する充
電スイッチのオフの両条件を満足する場合に、非充放電
状態と判定することができるが、その他の手段を採用す
ることも可能である。このような非充放電状態において
バッテリの充放電電流を検出する電流検出手段(電流セ
ンサ)の出力値はオフセット値となるので、正確にそれ
を検出することができる。
[0009] The non-charge / discharge state of the electric vehicle can be detected as a non-charge / discharge state when both the conditions of turning off the key switch and turning off the charge switch for instructing charging are satisfied. However, other means can be employed. In such a non-charging / discharging state, the output value of the current detecting means (current sensor) for detecting the charging / discharging current of the battery is an offset value, so that it can be detected accurately.

【0010】本構成の好適態様において、電流検出手段
は、検出すべき電流が流れる導体を囲む磁気コアと、こ
の磁気コアを流れる磁束を検出する磁気センサとを有す
る。このようにすれば、車両搭載磁気発生機器からの漏
洩磁界の時間変動以外に車両移動による地磁気を含む外
部磁界変化の影響を良好にキャンセルすることができ
る。
[0010] In a preferred aspect of this configuration, the current detecting means has a magnetic core surrounding a conductor through which a current to be detected flows, and a magnetic sensor for detecting a magnetic flux flowing through the magnetic core. With this configuration, it is possible to favorably cancel the influence of the external magnetic field change including the geomagnetism due to the vehicle movement, in addition to the time change of the leakage magnetic field from the vehicle-mounted magnetism generating device.

【0011】請求項2記載の構成によれば請求項1記載
の電気自動車の制御装置において更に、非充放電状態を
検出する期間内にオフセット値を定期的に検出して不揮
発メモリに記憶する。このようにすれば、非充放電状態
におけるオフセット値非検出期間は、制御装置への電源
電圧の印加をオフして、バッテリの消耗を防止すること
ができる。たとえば、信号を処理するマイコン構成の電
池制御用のコントロ−ラをタイマにより車両停止時に定
期的に立ち上げてその結果に不揮発メモリに保存するこ
とにより、バッテリの無駄な電力消費を低減することが
できる。
According to a second aspect of the present invention, in the control apparatus for an electric vehicle according to the first aspect, an offset value is periodically detected and stored in a non-volatile memory during a period in which a non-charge / discharge state is detected. With this configuration, during the offset value non-detection period in the non-charge / discharge state, the application of the power supply voltage to the control device is turned off, and the battery can be prevented from being consumed. For example, it is possible to reduce unnecessary power consumption of a battery by starting up a battery control controller having a microcomputer configured to process a signal by a timer periodically when the vehicle is stopped and storing the result in a nonvolatile memory. it can.

【0012】請求項3記載の構成によれば請求項2記載
の電気自動車の制御装置において更に、この非充放電状
態期間内に、バッテリの自己放電量を定期的に算出作業
と、オフセット値の検出記憶作業とを一緒に行う。この
ようにすれば、非充放電状態期間におけるバッテリの自
己放電量の定期的な立ち上げ時にオフセット値の検出記
憶を行うので、追加のバッテリ電力消費はほとんど無視
することができる。
According to a third aspect of the present invention, in the control apparatus for an electric vehicle according to the second aspect, during the non-charge / discharge state period, the operation of periodically calculating the amount of self-discharge of the battery, and The detection storage operation is performed together. With this configuration, the offset value is detected and stored when the self-discharge amount of the battery is periodically started during the non-charge / discharge state period, so that the additional battery power consumption can be almost ignored.

【0013】請求項4記載の構成によれば請求項2記載
の電気自動車の制御装置において、非充放電状態時に自
己放電量及びオフセット値検出作業を制御部(通常マイ
コン)を定期的に立ち上げて実行し、その終了と同時に
制御部への電源電圧印加を遮断し、パワ−セ−ブを行
う。この電源部は、電源スイッチ、タイマ及びタイマ入
力制御スイッチを備え、電源スイッチはタイマにより制
御されてバッテリから制御部への給電を断続制御する。
一方、制御部は、自己の起動がタイマに起因するもので
あると判別した場合に所定作業を実行した後にタイマを
スタ−トさせるとともに電源スイッチを遮断する。
According to a fourth aspect of the present invention, in the control apparatus for an electric vehicle according to the second aspect, the control unit (usually a microcomputer) periodically starts the work of detecting the self-discharge amount and the offset value in the non-charge / discharge state. At the same time, power supply voltage application to the control unit is cut off, and power saving is performed. The power supply unit includes a power switch, a timer, and a timer input control switch. The power switch is controlled by the timer to intermittently control power supply from the battery to the control unit.
On the other hand, when the control section determines that the activation of the control section is caused by the timer, the control section executes a predetermined operation and then starts the timer and shuts off the power switch.

【0014】このようにすれば、なんら複雑な回路手段
を増設することなく、タイマという簡素な構成追加だけ
で電気自動車の制御装置を定期的に立ち上げて所定の作
業を行わせ、その後、次の作業開始時点まで制御装置を
遮断してその電力消費電力をタイマ分だけとすることが
でき、電気自動車のバッテリの消耗を防ぎ、かつ、その
消費電力の累積による蓄電量の推定が不正確となること
を抑止することができる。
[0014] In this manner, the control device of the electric vehicle is started up periodically to perform a predetermined operation by simply adding a simple configuration such as a timer without adding any complicated circuit means. Until the start of the work, the control device can be shut down and its power consumption can be used only for the timer, to prevent the battery of the electric vehicle from being consumed, and the estimation of the power storage amount due to the accumulation of the power consumption is inaccurate. Can be suppressed.

【0015】請求項5記載の構成によれば請求項4記載
の電気自動車の制御装置において更に、外部信号により
作動される外部入力制御スイッチ、制御部により作動さ
れる制御部入力制御スイッチ及びタイマにより作動され
るタイマ入力制御スイッチを並列接続して、その出力に
より電源スイッチを断続制御する。このようにすれば、
制御部への給電停止期間にこれら各制御スイッチがDC
電流消費をすることがないので、一層電力消費を低減す
ることができる。
According to a fifth aspect of the present invention, there is provided the electric vehicle control device according to the fourth aspect, further comprising an external input control switch operated by an external signal, a control unit input control switch operated by the control unit, and a timer. A timer input control switch to be operated is connected in parallel, and the power switch is intermittently controlled by its output. If you do this,
During the power supply interruption period to the control unit, each of these control switches
Since no current is consumed, power consumption can be further reduced.

【0016】[0016]

【発明の実施の形態】本発明の好適な実施態様を以下の
実施例を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described with reference to the following examples.

【0017】[0017]

【実施例】本発明の電気自動車の充電装置の一実施例を
図面を参照して説明する。 (回路構成)この実施例のハイブリッド電気自動車にお
ける主バッテリ1の制御装置を図1に示すブロック図に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the electric vehicle charging apparatus of the present invention will be described with reference to the drawings. (Circuit Configuration) A control device of the main battery 1 in the hybrid electric vehicle of this embodiment will be described with reference to a block diagram shown in FIG.

【0018】高圧(約300V)の主バッテリ1は、走
行モータを含む走行動力制御回路2に給電している。3
は低圧の補機バッテリ、4は主バッテリ1の充放電電流
を検出する電流センサ、7はバッテリ管理用のコントロ
−ラであるECU、70はキ−スイッチからなる外部ス
イッチである。ECU7の構成を以下に説明する。
A high-voltage (about 300 V) main battery 1 supplies power to a traveling power control circuit 2 including a traveling motor. 3
Is a low-voltage auxiliary battery, 4 is a current sensor for detecting the charge / discharge current of the main battery 1, 7 is an ECU which is a controller for battery management, and 70 is an external switch comprising a key switch. The configuration of the ECU 7 will be described below.

【0019】71は補機バッテリ3から電源電圧を給電
されるトランジスタ(電源スイッチ)、72はマイコン
(制御部)、73は電源スイッチ71の制御端子と接地
間に介設されて外部スイッチ70の導通により導通され
るエミッタ接地のトランジスタ(外部入力制御スイッ
チ)、74はトランジスタ73と並列接続されるエミッ
タ接地のトランジスタ(タイマ入力制御スイッチ)、7
5はトランジスタ73、74と並列接続されて、マイコ
ン72により制御されるエミッタ接地のトランジスタ
(制御部入力制御スイッチ)である。76はタイマであ
り、補機バッテリ3から直接給電され、マイコン72か
らのカウント開始指令信号の入力により内蔵のクロック
発生器で発生したクロックパルスをカウントしてそれが
所定値に達した場合に遅延信号をなすハイレベル電圧を
トランジスタ74に出力する。
Reference numeral 71 denotes a transistor (power switch) supplied with a power supply voltage from the auxiliary battery 3, 72 denotes a microcomputer (control unit), and 73 denotes an external switch 70 provided between the control terminal of the power switch 71 and ground. A grounded-emitter transistor (external input control switch) which is rendered conductive by conduction; 74, a grounded-emitter transistor (timer input control switch) which is connected in parallel with the transistor 73;
Reference numeral 5 denotes a common-emitter transistor (control unit input control switch) connected in parallel with the transistors 73 and 74 and controlled by the microcomputer 72. Reference numeral 76 denotes a timer, which is directly supplied with power from the auxiliary battery 3, counts clock pulses generated by a built-in clock generator in response to a count start command signal input from the microcomputer 72, and delays the count when the count reaches a predetermined value. A high-level voltage forming a signal is output to the transistor 74.

【0020】このECU7の動作を以下に説明する。外
部スイッチ70をオンすると、トランジスタ73、電源
スイッチ71がオンし、マイコン72に電源電圧が給電
されてマイコン72が起動する。外部スイッチ70の導
通状態はマイコン72に入力され、それが内蔵するAD
コンバ−タによりデジタル信号に変換される。また、タ
イマ76から遅延信号がトランジスタ74に出力され
て、電源スイッチ71が導通すると、上記と同様にマイ
コン72に電源電圧が給電されてマイコン72が起動す
る。
The operation of the ECU 7 will be described below. When the external switch 70 is turned on, the transistor 73 and the power switch 71 are turned on, the power supply voltage is supplied to the microcomputer 72, and the microcomputer 72 starts. The conduction state of the external switch 70 is input to the microcomputer 72, and the built-in AD
It is converted to a digital signal by a converter. When a delay signal is output from the timer 76 to the transistor 74 and the power switch 71 is turned on, the power supply voltage is supplied to the microcomputer 72 in the same manner as described above, and the microcomputer 72 starts up.

【0021】マイコン(制御部)72の動作を図2を参
照して説明する。上記2種類の起動モ−ドのどちらかで
マイコン72が起動されると、まず初期設定がなされ
(S100)、次にバッテリが非充放電状態(電気自動
車が休止状態)かどうかが検出される。なお、この非充
放電状態は、この実施例では、キ−スイッチ(従来のイ
グニッションスイッチに相当)がオンされたかどうかを
上記デジタル信号の数値が所定値以上かどうかを判定
し、かつ、図示しない商用電源から主バッテリ1や補機
バッテリ3への充電を行う充電装置の休止を図示しない
充電スイッチがタ−ンオフされていることにより判別す
る(S102)。非充放電状態でなければ通常の制御動
作(通常処理)を実行する(S104)。この通常処理
では少なくとも一定期間毎にバッテリ1、3の残存容量
の算出を行う。
The operation of the microcomputer (control section) 72 will be described with reference to FIG. When the microcomputer 72 is started in one of the two types of start modes, initial settings are first made (S100), and then it is detected whether the battery is in a non-charging / discharging state (electric vehicle is in a halt state). . In the non-charge / discharge state, in this embodiment, it is determined whether a key switch (corresponding to a conventional ignition switch) is turned on by determining whether the numerical value of the digital signal is equal to or greater than a predetermined value, and not shown. The suspension of the charging device for charging the main battery 1 and the auxiliary battery 3 from the commercial power supply is determined by the fact that a charging switch (not shown) is turned off (S102). If it is not in the non-charge / discharge state, a normal control operation (normal processing) is executed (S104). In this normal process, the remaining capacity of the batteries 1 and 3 is calculated at least at regular intervals.

【0022】一方、非充放電状態であれば、タイマ76
による起動であると判定して、電流センサ100、30
0のオフセット値(出力信号値)を検出し、内蔵の不揮
発メモリに書き込み(S105)、次にマイコン72の
温度(内蔵サ−ミスタで検出)を計測し、この温度とバ
ッテリ1、3の自己放電量との関係を示す内蔵のマップ
からこれらバッテリ1、3の自己放電量を推定し、それ
を前回に累算した自己放電量の累積値に加算して今回の
累積値とし(S106)、それをマイコン72に含まれ
る不揮発メモリに書き込む(S108)、その後、タイ
マ76にカウント開始指令信号を出力し(S110)、
トランジスタ75を遮断する(S112)。
On the other hand, if it is in the non-charge / discharge state,
And the current sensors 100 and 30
The offset value (output signal value) of 0 is detected and written in the built-in nonvolatile memory (S105), and then the temperature of the microcomputer 72 (detected by the built-in thermistor) is measured, and this temperature and the self- The self-discharge amount of these batteries 1 and 3 is estimated from a built-in map indicating the relationship with the discharge amount, and is added to the accumulated value of the self-discharge amount accumulated last time to obtain the current accumulated value (S106). This is written into the nonvolatile memory included in the microcomputer 72 (S108), and thereafter, a count start command signal is output to the timer 76 (S110).
The transistor 75 is turned off (S112).

【0023】この時点では、トランジスタ74はオフし
ているので、トランジスタ75の遮断により電源スイッ
チ71が遮断され、コントローラ71が遮断される。次
に、S104で実行する通常の制御動作実行中におい
て、外部スイッチ70が遮断された場合を説明する。こ
の制御は所定の短間隔ごとに行われる割り込みル−チン
(図3参照)により行われ、この割り込みル−チンの起
動とともにまず通常処理中であるかどうかを調べ(S2
00)、そうでなければメインル−チンへリタ−ンす
る。そうであれば、外部スイッチ70が遮断されている
かどうかを調べ(S202)、外部スイッチ70が導通
していればメインル−チン(図1参照)にリタ−ンし、
遮断していれば通常処理中の必要情報を不揮発メモリに
書き込み(S204)、タイマ76にカウント開始指令
信号を出力し(S206)、トランジスタ75を遮断す
る(S208)。
At this point, since the transistor 74 is off, the power switch 71 is turned off by turning off the transistor 75, and the controller 71 is turned off. Next, a case where the external switch 70 is shut off during the execution of the normal control operation executed in S104 will be described. This control is performed by an interrupt routine (see FIG. 3) performed at predetermined short intervals. At the same time as the activation of the interrupt routine, it is checked whether or not the normal processing is being performed (S2).
00), otherwise return to the main routine. If so, it is checked whether or not the external switch 70 is turned off (S202). If the external switch 70 is turned on, the routine returns to the main routine (see FIG. 1).
If it is shut off, necessary information during normal processing is written to the nonvolatile memory (S204), a count start command signal is output to the timer 76 (S206), and the transistor 75 is shut off (S208).

【0024】このようにして車両休止中(非充放電状
態)におけるタイマ起動時に算出された電流センサ4な
どのオフセット値、及び、積算された自己放電量の積算
値は、不揮発メモリに書き込まれ、その後の残存容量の
算出に用いられる。なお、上記実施例ではバッテリ1、
3の自己放電量をタイマ起動ごとに検出した温度に応じ
てマップで求めたが、簡単には単に自己放電時間だけで
算出することも可能である。
The offset value of the current sensor 4 and the like calculated when the timer is started while the vehicle is at rest (non-charge / discharge state) and the integrated value of the integrated self-discharge amount are written in the nonvolatile memory, It is used for calculating the remaining capacity thereafter. In the above embodiment, the battery 1
Although the self-discharge amount of No. 3 was obtained by a map according to the temperature detected each time the timer was started, it is also possible to simply calculate the self-discharge amount simply by the self-discharge time.

【0025】また、上記実施例では、残存容量の算出方
式自体の説明は省略したが、バッテリの残存容量の算出
又は推定には種々の方式が採用可能である。しかし、高
精度の残存容量算出にはバッテリの充放電電流少なくと
も放電電流の検出とその積算は不可欠であり、この実施
例によるオフセット値の定期的なキャンセルはその高精
度化に有効である。
Further, in the above embodiment, the description of the method of calculating the remaining capacity itself is omitted, but various methods can be adopted for calculating or estimating the remaining capacity of the battery. However, the detection and integration of at least the battery charge / discharge current and the discharge current are indispensable for the highly accurate calculation of the remaining capacity, and the periodic cancellation of the offset value according to this embodiment is effective in improving the accuracy.

【0026】なお、この実施例で説明した非充放電状態
(車両休止状態)の他にバッテリ1の充放電状態時にお
いても電流センサ4などのオフセット値の変動及び自己
放電は生じるので、通常処理(S200)を実施してい
る間も定期的にオフセット値検出及び自己放電量検出、
積算を実行することが好ましい。具体的には、図6に示
す通常処理(S200)中、又は、S204の直前にて
定期的にS105及びS106を実行すればよい。
In addition, in addition to the non-charge / discharge state (vehicle halt state) described in this embodiment, the fluctuation of the offset value of the current sensor 4 and the like and the self-discharge also occur during the charge / discharge state of the battery 1. While performing (S200), offset value detection and self-discharge amount detection are periodically performed,
Preferably, an integration is performed. Specifically, S105 and S106 may be executed during the normal process (S200) shown in FIG. 6 or periodically immediately before S204.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るハイブリッド電気自動車の電池
制御装置の一実施例を示すブロック回路図である。
FIG. 1 is a block circuit diagram showing an embodiment of a battery control device for a hybrid electric vehicle according to the present invention.

【図2】ECU7の動作を示すフロ−チャ−トである。FIG. 2 is a flowchart showing the operation of the ECU 7;

【図3】ECU7の動作を示すフロ−チャ−トである。FIG. 3 is a flowchart showing the operation of the ECU 7;

【符号の説明】 1は主バッテリ(バッテリ)、3は補機バッテリ(バッ
テリ)、4は電流センサ、7はECU(走行モ−タ制御
手段、残存容量算出手段、バッテリ充放制御手段、非充
放電状態検出手段、オフセット値検出記憶手段、自己放
電量算出手段)、71は電源スイッチ、72は制御部、
73は外部入力制御スイッチ、74はタイマ入力制御ス
イッチ、75は制御部入力制御スイッチ、76はタイ
マ。
DESCRIPTION OF SYMBOLS 1 is a main battery (battery), 3 is an auxiliary battery (battery), 4 is a current sensor, 7 is an ECU (running motor control means, remaining capacity calculation means, battery charge / discharge control means, Charge / discharge state detection means, offset value detection storage means, self-discharge amount calculation means), 71 is a power switch, 72 is a control unit,
73 is an external input control switch, 74 is a timer input control switch, 75 is a control unit input control switch, and 76 is a timer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】バッテリから給電されて走行モータの出力
を制御する走行モ−タ制御手段、前記バッテリの充放電
電流を検出する電流検出手段、検出された前記放電電流
に基づいて前記バッテリの残存容量を決定する残存容量
算出手段、決定された前記残存容量に基づいて前記バッ
テリの充放電を制御するバッテリ充放電制御手段を備え
る電気自動車の制御装置において、 前記電流検出手段を用いることなく前記バッテリの所定
の非充放電状態を検出する非充放電状態検出手段と、 前記非充放電状態を検出するごとに前記電流検出手段の
出力値を検出して充放電電流補正用のオフセット値とし
て記憶するオフセット値検出記憶手段と、 を備えることを特徴とする電気自動車の制御装置。
1. A traveling motor control means for controlling the output of a traveling motor supplied from a battery, a current detecting means for detecting a charging / discharging current of the battery, and a battery remaining based on the detected discharging current. A control device for an electric vehicle, comprising: a remaining capacity calculation unit that determines a capacity; and a battery charge / discharge control unit that controls charging / discharging of the battery based on the determined remaining capacity. A non-charge / discharge state detecting means for detecting a predetermined non-charge / discharge state; and detecting an output value of the current detecting means each time the non-charge / discharge state is detected, and storing the output value as a charge / discharge current correction offset value. A control device for an electric vehicle, comprising: an offset value detection storage unit.
【請求項2】請求項1記載の電気自動車の制御装置にお
いて、 前記オフセット値検出記憶手段は、前記非充放電状態を
検出する期間内に前記オフセット値を定期的に検出して
不揮発メモリに記憶することを特徴とする電気自動車の
制御装置。
2. The control device for an electric vehicle according to claim 1, wherein the offset value detection storage means periodically detects the offset value within a period for detecting the non-charge / discharge state and stores the offset value in a nonvolatile memory. A control device for an electric vehicle.
【請求項3】請求項2記載の電気自動車の制御装置にお
いて、 前記非充放電状態を検出する期間内に前記バッテリの自
己放電量を定期的に算出する自己放電量算出手段を備
え、 前記オフセット値検出記憶手段は、前記オフセット値の
検出記憶を前記自己放電量算出に連続して行うことを特
徴とする電気自動車の制御装置。
3. The control device for an electric vehicle according to claim 2, further comprising: a self-discharge amount calculating unit that periodically calculates a self-discharge amount of the battery within a period of detecting the non-charge / discharge state. The control device for an electric vehicle, wherein the value detection storage means performs the detection storage of the offset value continuously with the calculation of the self-discharge amount.
【請求項4】請求項2記載の電気自動車の制御装置にお
いて、 前記残存容量算出手段及びバッテリ充放電制御手段を構
成する制御部と、 前記バッテリと前記制御部との間に介設されて前記バッ
テリから前記制御部への電源電流供給を断続制御する電
源部とを備え、 前記電源部は、前記バッテリと前記制御部との間に介設
されて前記バッテリから前記制御部への給電を断続制御
する電源スイッチと、前記バッテリから前記電源スイッ
チを通じることなく給電されて所定のカウント開始指令
信号の入力から所定時間後に遅延信号を出力するタイマ
と、前記タイマからの遅延信号の入力により前記電源ス
イッチを導通させるタイマ入力制御スイッチとを備え、 前記制御部は、自己の起動が前記タイマ入力制御スイッ
チによるものであると判別した場合に前記自己放電量算
出及び前記オフセット値検出記憶からなる定期作業を実
行し、前記定期作業の終了後に前記タイマに前記カウン
ト開始指令信号を出力するとともに前記電源スイッチを
遮断することを特徴とする電気自動車の制御装置
4. The control device for an electric vehicle according to claim 2, wherein the control unit includes the remaining capacity calculation unit and the battery charge / discharge control unit, and the control unit is interposed between the battery and the control unit. A power supply unit for intermittently controlling supply of power current from a battery to the control unit, wherein the power supply unit is interposed between the battery and the control unit and intermittently supplies power from the battery to the control unit. A power switch to be controlled; a timer that is supplied with power from the battery without passing through the power switch and outputs a delay signal a predetermined time after the input of a predetermined count start command signal; and a power supply that receives the delay signal from the timer. A timer input control switch for conducting a switch, wherein the control unit has determined that the self-startup is due to the timer input control switch. In this case, a periodic operation including the self-discharge amount calculation and the offset value detection storage is performed, and after the periodic operation is completed, the count start command signal is output to the timer and the power switch is shut off. Electric vehicle control device
【請求項5】請求項4記載の電気自動車の制御装置にお
いて、 外部信号により作動して前記電源スイッチを導通させる
外部入力制御スイッチと、前記制御部により作動されて
前記電源スイッチを導通させる制御部入力制御スイッチ
とを、前記タイマ入力制御スイッチと並列に有すること
を特徴とする電気自動車の制御装置。
5. The control device for an electric vehicle according to claim 4, wherein an external input control switch that is activated by an external signal to conduct the power switch, and a control unit that is activated by the control unit and conducts the power switch. An electric vehicle control device comprising: an input control switch in parallel with the timer input control switch.
JP31978497A 1997-11-20 1997-11-20 Electric vehicle control device Expired - Fee Related JP3363081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31978497A JP3363081B2 (en) 1997-11-20 1997-11-20 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31978497A JP3363081B2 (en) 1997-11-20 1997-11-20 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JPH11150873A true JPH11150873A (en) 1999-06-02
JP3363081B2 JP3363081B2 (en) 2003-01-07

Family

ID=18114157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31978497A Expired - Fee Related JP3363081B2 (en) 1997-11-20 1997-11-20 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3363081B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151165A (en) * 2000-11-15 2002-05-24 Toyota Motor Corp Secondary battery device
WO2003047902A1 (en) * 2001-12-06 2003-06-12 Panasonic Ev Energy Co., Ltd. Battery power source apparatus of electric car
EP1429440A2 (en) * 2002-12-13 2004-06-16 Toyota Jidosha Kabushiki Kaisha Apparatus and method for calculating offset value for a current sensor
US7138775B2 (en) 2002-07-24 2006-11-21 Nissan Motor Co., Ltd. Control for battery pack
US7180267B2 (en) * 2004-03-23 2007-02-20 Nissan Motor Co., Ltd. Capacity adjustment apparatus for battery pack and capacity adjustment method for battery pack
US7180266B2 (en) * 2004-03-23 2007-02-20 Nissan Motor Co., Ltd. Capacity adjustment apparatus for battery pack and capacity adjustment method for battery pack
US8115423B2 (en) 2005-03-18 2012-02-14 Toyota Jidosha Kabushiki Kaisha Motor driving system and controlling method of the same
JP2013230078A (en) * 2012-03-28 2013-11-07 Semiconductor Energy Lab Co Ltd Protection circuit, charging device and power storage device
CN103459189A (en) * 2011-03-31 2013-12-18 丰田自动车株式会社 Charging device for vehicle, vehicle equipped with charging device, and offset correction method for current sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732992B (en) * 2016-08-11 2021-05-14 北京小米移动软件有限公司 Terminal equipment power supply management method and device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151165A (en) * 2000-11-15 2002-05-24 Toyota Motor Corp Secondary battery device
US7019488B2 (en) 2001-12-06 2006-03-28 Panasonic Ev Energy Co., Ltd. Battery power source device of electric power vehicle
WO2003047902A1 (en) * 2001-12-06 2003-06-12 Panasonic Ev Energy Co., Ltd. Battery power source apparatus of electric car
JP2003174738A (en) * 2001-12-06 2003-06-20 Panasonic Ev Energy Co Ltd Battery power supply unit for motor-driven vehicle
US7138775B2 (en) 2002-07-24 2006-11-21 Nissan Motor Co., Ltd. Control for battery pack
EP1429440A2 (en) * 2002-12-13 2004-06-16 Toyota Jidosha Kabushiki Kaisha Apparatus and method for calculating offset value for a current sensor
EP1429440A3 (en) * 2002-12-13 2005-07-20 Toyota Jidosha Kabushiki Kaisha Apparatus and method for calculating offset value for a current sensor
US7268532B2 (en) 2002-12-13 2007-09-11 Toyota Jidosha Kabushiki Kaisha Apparatus and method for calculating offset value for an electric sensor
US7180267B2 (en) * 2004-03-23 2007-02-20 Nissan Motor Co., Ltd. Capacity adjustment apparatus for battery pack and capacity adjustment method for battery pack
US7180266B2 (en) * 2004-03-23 2007-02-20 Nissan Motor Co., Ltd. Capacity adjustment apparatus for battery pack and capacity adjustment method for battery pack
US8115423B2 (en) 2005-03-18 2012-02-14 Toyota Jidosha Kabushiki Kaisha Motor driving system and controlling method of the same
CN103459189A (en) * 2011-03-31 2013-12-18 丰田自动车株式会社 Charging device for vehicle, vehicle equipped with charging device, and offset correction method for current sensor
JP2013230078A (en) * 2012-03-28 2013-11-07 Semiconductor Energy Lab Co Ltd Protection circuit, charging device and power storage device

Also Published As

Publication number Publication date
JP3363081B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US10690724B2 (en) Power supply protective device, power supply device and switch failure diagnosing method
EP2720309B1 (en) Electric storage apparatus
JP3997908B2 (en) Current sensor offset value calculating apparatus and method
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
EP2767841A1 (en) Secondary battery control device and method
JP2005114646A (en) Device for calculating remaining capacity of secondary battery and method therefor
JP2006060946A (en) On-vehicle power system
JP3363081B2 (en) Electric vehicle control device
JP2007078443A (en) Battery condition detector
EP1067651A2 (en) Control device for a battery
JP2017216879A (en) Power storage device
JPH09163510A (en) Charging controller of electric automobile
JP4776753B2 (en) Electric vehicle current detector
JP2005037286A (en) Battery charge/discharge current detection device
JPH10290534A (en) Battery charger
JP2001078365A (en) Battery capacity measuring apparatus
JP2004120966A (en) Method for detecting current of electric automobile
US11891001B2 (en) Vehicle power supply system
JP4039323B2 (en) In-vehicle battery status monitoring device
KR20160099355A (en) Battery pack and driving method thereof
JP2004015963A (en) Device for estimating charge state of battery for vehicle
JP3361045B2 (en) Electric vehicle control device
JP2005014707A (en) Device for monitoring state of on-vehicle battery
JP5411046B2 (en) Vehicle battery management apparatus and current sensor offset detection method
JP7295915B2 (en) vehicle power system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees