JPH11145413A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH11145413A
JPH11145413A JP9312210A JP31221097A JPH11145413A JP H11145413 A JPH11145413 A JP H11145413A JP 9312210 A JP9312210 A JP 9312210A JP 31221097 A JP31221097 A JP 31221097A JP H11145413 A JPH11145413 A JP H11145413A
Authority
JP
Japan
Prior art keywords
voltage
power supply
internal
down circuit
internal voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9312210A
Other languages
Japanese (ja)
Inventor
Koichi Kuroki
孝一 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9312210A priority Critical patent/JPH11145413A/en
Publication of JPH11145413A publication Critical patent/JPH11145413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Dram (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent inversion between values of internal voltage to be outputted to each step-down circuit due to noise by a method, wherein a second internal power source is generated by stepping down a first internal power source using a second step-down circuit. SOLUTION: An external power source VCC controlled by the reference voltage VR1 is dropped, it is applied to a step-down circuit 1 which creates a prescribed internal voltage V11, an internal power source V11 controlled by the reference voltage VR2 is dropped, and a step-down circuit 2 which creates a prescribed voltage V12 is provided. The step-down circuits 1 and 2 output internal voltages V11 and V12 of normal value, respectively. Then, when the step-down circuits 1 and 2 malfunctions due to noise, etc., and the internal voltage V11 and V12 are changed, the internal voltage V11 is dropped by the step-down circuit 2. As a result, the internal voltage V12 does not exceed the internal voltage V11. That is, the internal voltages are V11=V12 even in the worst case, and the inversion between the internal voltages can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体集積回路装置
に関し、特に外部電源電圧から低電圧動作用の複数の内
部電圧を発生する内部降圧回路を有する半導体集積回路
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device having an internal step-down circuit for generating a plurality of internal voltages for low-voltage operation from an external power supply voltage.

【0002】[0002]

【従来の技術】近年、半導体集積回路装置、特に大容量
の半導体記憶装置では、スケーリング則に従うトランジ
スタ素子の微細化に伴い、これらトランジスタのゲート
酸化膜の薄膜化が進んでいる。一方で、ゲート酸化膜の
耐圧の問題から供給電源電圧の低電圧化も進んでいる。
しかし、この種の半導体記憶装置を搭載する半導体集積
回路装置の電源電圧の低電圧化の現状は、他の論理回路
等が必ずしも記憶装置同様に素子の微細化が進んでいる
とは言えず従来と同等の電源電圧の供給を要するものも
多く混在するため、その変化は緩やかである。この結
果、外部電源を直接この種の半導体集積回路装置内部で
使用することは微細化素子からなる記憶回路等を構成す
るトランジスタ素子のゲート酸化膜を破壊し動作不良を
引き起こしてしまう可能性がある。
2. Description of the Related Art In recent years, in a semiconductor integrated circuit device, especially a large capacity semiconductor memory device, the gate oxide films of these transistors have been made thinner with the miniaturization of transistor elements according to the scaling rule. On the other hand, the supply power supply voltage has been reduced due to the problem of the withstand voltage of the gate oxide film.
However, at present, the power supply voltage of a semiconductor integrated circuit device equipped with this type of semiconductor storage device has been reduced, and it cannot be said that other logic circuits and the like are not necessarily miniaturized as in the case of the storage device. Since there are many devices that need to be supplied with the same power supply voltage, the change is gradual. As a result, if an external power supply is used directly in this type of semiconductor integrated circuit device, there is a possibility that the gate oxide film of a transistor element constituting a storage circuit or the like composed of miniaturized elements is destroyed and an operation failure is caused. .

【0003】したがって、最近の大容量の半導体記憶装
置を含む半導体集積回路装置においては、これらの間題
を解決するために半導体チップ上に外部電源電圧を降圧
する降圧回路を設け、この降圧回路の出力である内部電
圧を内部回路の電源電圧とすることが行われている。
Therefore, in recent semiconductor integrated circuit devices including large-capacity semiconductor memory devices, a step-down circuit for stepping down an external power supply voltage is provided on a semiconductor chip in order to solve these problems, and the step-down circuit of the step-down circuit is provided. An internal voltage that is an output is used as a power supply voltage of an internal circuit.

【0004】さらに、半導体集積回路装置の消費電流を
抑えるために高速動作を必要とする部分と必要としない
部分で電源電圧を変えて使用する場合やオーバードライ
ブ形式で駆動するセンスアンプを有する場合などには複
数の降圧内部電圧を必要とする。このように降圧内部電
圧を複数化することは回路設計上の白由度を向上させる
点で大いに役立っている。その一方で、ノイズなどによ
る影響を考慮した降圧回路の設計がより重要になってく
る。
Further, in order to reduce the current consumption of the semiconductor integrated circuit device, a portion requiring high-speed operation and a portion not requiring high-speed operation are used by changing the power supply voltage, or a case having a sense amplifier driven in an overdrive mode is used. Requires multiple step-down internal voltages. The use of a plurality of step-down internal voltages in this manner is very useful in improving the degree of circuit design. On the other hand, it is more important to design a step-down circuit in consideration of the influence of noise and the like.

【0005】例えば、公知の縦続接続インバータを用い
る遅延回路の例を回路図で示す図6(A),(B)を参
照して、内部電圧の複数化の効果について説明すると、
図6(A)に示すような単一の内部電圧VI1を電源と
して用いる第1の遅延回路は、ゲートを入力にソースを
内部電圧VI1にそれぞれ接続しドレインを出力とする
P型MOSトランジスタP71と、ゲートを入力にソー
スを接地にドレインをトランジスタP71のドレインに
それぞれ接続したN型MOSトランジスタN71から成
るインバータを複数段縦続接続し、各段の出力と接地間
に挿入したコンデンサC71を有する。
For example, referring to FIGS. 6A and 6B showing circuit diagrams of an example of a delay circuit using a known cascade-connected inverter, the effect of a plurality of internal voltages will be described.
A first delay circuit using a single internal voltage VI1 as a power supply as shown in FIG. 6A includes a P-type MOS transistor P71 having a gate as an input, a source connected to the internal voltage VI1, and a drain as an output. A plurality of inverters each comprising an N-type MOS transistor N71 having a gate input, a source connected to the ground, and a drain connected to the drain of the transistor P71 are connected in cascade in a plurality of stages, and have a capacitor C71 inserted between the output of each stage and the ground.

【0006】また、図6(B)に示すような2つの内部
電圧VI1,VI2(VIl>VI2)を用いる第2の
遅延回路は、ソースのP+拡散層とN型のウェル領域間
に逆バイアス用の内部電圧VI1を接続しゲートを入力
にソースを内部電圧VI2にそれぞれ接続しドレインを
出力とするP型MOSトランジスタP72と、ゲートを
入力にソースを接地にドレインをトランジスタP72の
ドレインにそれぞれ接続したN型MOSトランジスタN
71から成るインバータを複数段縦続接続し、各段の出
力と接地間に挿入したコンデンサC71を有する。
A second delay circuit using two internal voltages VI1 and VI2 (VIl> VI2) as shown in FIG. 6B provides a reverse bias between a source P + diffusion layer and an N-type well region. P-type MOS transistor P72 having a gate connected to the input, a source connected to the internal voltage VI2, and a drain connected to the input, a gate connected to the input, the source connected to the ground, and a drain connected to the drain of the transistor P72. N-type MOS transistor N
A plurality of inverters 71 are connected in cascade, and a capacitor C71 is inserted between the output of each stage and ground.

【0007】単一の内部電圧VI1を電源として用いる
第1の遅延回路に比べ、2つの内部電圧VI1,VI2
(VIl>VI2)を用いる第2の遅延回路の方がP型
M0SトランジスタP72のソースのP+拡散層とN型
のウェル領域間に逆バイアスが印加されることによりし
きい値電圧|VT|が高くなり、同一ゲート電圧でもト
ランジスタP72の電流供給能力を低下させることが出
来る。
As compared with the first delay circuit using a single internal voltage VI1 as a power supply, two internal voltages VI1 and VI2 are used.
In the second delay circuit using (Vl> VI2), the threshold voltage | VT | is increased by applying a reverse bias between the P + diffusion layer of the source of the P-type MOS transistor P72 and the N-type well region. As a result, the current supply capability of the transistor P72 can be reduced even with the same gate voltage.

【0008】したがって、同一遅延時間を実現するため
の遅延回路の半導体チップ上での占有面積で比較する
と、2つの内部電圧を用いる第2の遅延回路の方がトラ
ンジスタ数を少なくすることができるので、単一の内部
電圧の第1の遅延回路よりも小さくできる。
Therefore, when comparing the delay circuit for realizing the same delay time with the area occupied on the semiconductor chip, the second delay circuit using two internal voltages can reduce the number of transistors. , Can be made smaller than the single internal voltage first delay circuit.

【0009】複数の内部電圧発生用の複数の内部降圧回
路を備える従来の半導体集積回路装置のをブロックで示
す図7を参照すると、この従来の半導体集積回路装置
は、基準電圧VR1により制御され外部電源Vccを降
圧して所定の内部電圧VI1を生成する降圧回路1と、
基準電圧VR2により制御され外部電源Vccを降圧し
て所定の内部電圧VI2を生成する降圧回路2とを備え
る。
Referring to FIG. 7, which is a block diagram of a conventional semiconductor integrated circuit device having a plurality of internal voltage down converters for generating a plurality of internal voltages, the conventional semiconductor integrated circuit device is controlled by a reference voltage VR1 and externally controlled. A step-down circuit 1 that steps down the power supply Vcc to generate a predetermined internal voltage VI1;
A step-down circuit 2 controlled by a reference voltage VR2 to step down an external power supply Vcc to generate a predetermined internal voltage VI2.

【0010】降圧回路1は、ソースを電源Vccに接続
しドレインから内部電圧VI1を出力するP型MOSト
ランジスタP11と、反転入力端に基準電圧VR1の供
給を正入力端に内部電圧VI1の供給をそれぞれ受け基
準電圧VR1と内部電圧VI1との差電圧信号D1をト
ランジスタP11のゲートに供給する演算増幅器(オペ
アンプ)11とを備える。
The step-down circuit 1 has a P-type MOS transistor P11 having a source connected to a power supply Vcc and outputting an internal voltage VI1 from a drain, a reference voltage VR1 supplied to an inverting input terminal, and an internal voltage VI1 supplied to a positive input terminal. An operational amplifier (op-amp) 11 that supplies a difference voltage signal D1 between the receiving reference voltage VR1 and the internal voltage VI1 to the gate of the transistor P11.

【0011】降圧回路2は、ソースを電源Vccに接続
しドレインから内部電圧VI2を出力するP型MOSト
ランジスタP21と、反転入力端に基準電圧VR2の供
給を正入力端に内部電圧VI2の供給をそれぞれ受け基
準電圧VR2と内部電圧VI2との差電圧信号D2をト
ランジスタP21のゲートに供給するオペアンプ21と
を備える。
The step-down circuit 2 has a P-type MOS transistor P21 having a source connected to a power supply Vcc and outputting an internal voltage VI2 from a drain, a reference voltage VR2 supplied to an inverting input terminal, and an internal voltage VI2 supplied to a positive input terminal. An operational amplifier 21 is provided for supplying a difference voltage signal D2 between the receiving reference voltage VR2 and the internal voltage VI2 to the gate of the transistor P21.

【0012】ここで、基準電圧VR1<VR2とし、差
電圧信号D1 D2とすると、得られる内部電圧VI1
<VI2となる。
Here, assuming that the reference voltage VR1 <VR2 and the difference voltage signal D1 D2, the obtained internal voltage VI1
<VI2.

【0013】しかし、このような複数の降圧した内部電
圧を有する半導体集積回路装置では、内部降圧回路内で
のノイズの影響が深刻な間題となる。すなわち、降圧回
路内のノイズはオペアンプ11,21等の正常動作を妨
げ、出力の差電圧D1,D2を異常値とすることにより
所望の内部電圧VI1,VI2も異常な値に変えてしま
う。
However, in such a semiconductor integrated circuit device having a plurality of stepped-down internal voltages, the influence of noise in the internal step-down circuit is a serious problem. That is, the noise in the step-down circuit prevents the normal operation of the operational amplifiers 11 and 21 and the like, and the desired internal voltages VI1 and VI2 are also changed to abnormal values by setting the output difference voltages D1 and D2 to abnormal values.

【0014】さらに、これら降圧回路1,2は互いに共
通の外部電源Vccを用いているため、最悪の場合、降
圧回路内のノイズによる差電圧D1,D2の異常により
出力内部電圧VI1がVI2より大きくなるという電圧
レベルの逆転が生じる。これにより、回路動作不良を起
こしてしまう。
Furthermore, since these step-down circuits 1 and 2 use a common external power supply Vcc, in the worst case, the output internal voltage VI1 becomes larger than VI2 due to the abnormalities of the difference voltages D1 and D2 due to noise in the step-down circuit. Inversion of the voltage level occurs. As a result, a circuit operation failure occurs.

【0015】その理由の一つとしては、回路の構成上P
型MOSトランジスタP11,P12のゲート制御信号
すなわち差電圧信号D1、D2次第で、内部電圧VI
1,VI2は、Vcc≧VI1≧VR1及びVcc≧V
I2≧VR2とその変動範囲が重なった電圧値を取り得
るからである。
One of the reasons is that P
The internal voltage VI depends on the gate control signals of the MOS transistors P11 and P12, that is, the difference voltage signals D1 and D2.
1, VI2 are Vcc ≧ VI1 ≧ VR1 and Vcc ≧ V
This is because a voltage value in which I2 ≧ VR2 and its variation range overlap can be obtained.

【0016】また上記回路動作不良の一例としては、以
下に説明する寄生バイポーラ素子によるラッチアップ現
象がある。
An example of the above-mentioned circuit operation failure is a latch-up phenomenon due to a parasitic bipolar element described below.

【0017】前述の図6(B)に示した第2の遅延回路
を構成するMOSトランジスタの中でP型MOSトラン
ジスタP72のゲートの垂直方向の断面構造の一例を断
面図で示す図8を参照すると、このP型MOSトランジ
スタのソース部のP+拡散層91とこのP型MOSトラ
ンジスタの基板を構成するN型ウェル領域93及び、バ
イアスVBBが印加されバルク基板となるP型基板94
により寄生PNPバイボーラ素子96が構成される。ゲ
ート電極90には入力信号Vinを、N+拡散層92を
介して内部電圧VI1を、P+拡散層91を介して内部
電圧VI2をそれぞれ供給する。P+拡散層95はドレ
インを構成し次段ゲートに出力信号を出力する。
FIG. 8 is a sectional view showing an example of a vertical sectional structure of the gate of the P-type MOS transistor P72 among the MOS transistors constituting the second delay circuit shown in FIG. 6B. Then, the P + diffusion layer 91 at the source portion of the P-type MOS transistor, the N-type well region 93 forming the substrate of the P-type MOS transistor, and the P-type substrate 94 serving as a bulk substrate to which the bias VBB is applied
Thereby, the parasitic PNP biboler element 96 is configured. The gate electrode 90 is supplied with an input signal Vin, an internal voltage VI1 via an N + diffusion layer 92, and an internal voltage VI2 via a P + diffusion layer 91, respectively. The P + diffusion layer 95 constitutes a drain and outputs an output signal to the next stage gate.

【0018】通常動作時、すなわちVI1>VI2>V
BBの場合には、P+拡散層91とN型ウェル領域93
間及び、N型ウェル領域93とP型基板94間には逆バ
イアスが印加され寄生PNPバイポーラ素子96はオフ
状態にある。しかし、ノイズにより内部電圧VI1,V
I2に電圧レベルの逆転が生じ、VI2>VI1>VB
Bとなった場合には、P+拡散層91とN型ウェル領域
93間のバイアスが順方向になり、N型ウェル領域93
にP+拡散層91から電流が流れ込み寄生PNPバイボ
ーラ素子96をオン状態にする。すなわち、内部電圧V
I2とバイアス電圧VBBの間に貫通電流が流れラッチ
アップ状態になり、回路動作不良を起こす。
During normal operation, that is, VI1>VI2> V
In the case of BB, the P + diffusion layer 91 and the N-type well region 93
A reverse bias is applied between the N-type well region 93 and the P-type substrate 94, and the parasitic PNP bipolar element 96 is in an off state. However, the internal voltages VI1, V1
Inversion of the voltage level occurs in I2, and VI2>VI1> VB
When it becomes B, the bias between the P + diffusion layer 91 and the N-type well region 93 becomes forward, and the N-type well region 93
Current flows from the P + diffusion layer 91 to turn on the parasitic PNP bipolar transistor 96. That is, the internal voltage V
A through current flows between I2 and the bias voltage VBB, and a latch-up state occurs, causing a circuit operation failure.

【0019】[0019]

【発明が解決しようとする課題】上述した従来の半導体
集積回路装置は、単一の外部電源電圧をそれぞれ独立の
降圧回路で降圧して所望内部電圧を生成するよう構成し
ているので、ノイズ等により各降圧回路の動作が異常に
なるとその出力内部電圧が異常値範囲として相互に重な
る電圧値を取り得ることにより、最悪の場合には電圧値
の逆転が生じ、負荷の各回路の動作不良要因となるとい
う欠点があった。
The above-mentioned conventional semiconductor integrated circuit device is configured so that a single external power supply voltage is stepped down by an independent step-down circuit to generate a desired internal voltage. If the operation of each step-down circuit becomes abnormal, the output internal voltage can take a voltage value that overlaps each other as an abnormal value range, and in the worst case, the voltage value reverses, and the cause of the malfunction of each circuit of the load There was a disadvantage that it becomes.

【0020】本発明の目的は、ノイズ等による各降圧回
路の出力する内部電圧の電圧値相互間の逆転を防止しよ
り信頼性の高い半導体集積回路装置を提供することにあ
る。
An object of the present invention is to provide a highly reliable semiconductor integrated circuit device which prevents inversion between internal voltage values of internal voltages output from respective step-down circuits due to noise or the like.

【0021】[0021]

【課題を解決するための手段】本発明の半導体集積回路
装置は、電源電圧を降圧してこの電源電圧より低い第1
の電圧の第1の内部電源及び前記第1の電圧より低い第
2の電圧の第2の内部電源をそれぞれ発生する第1及び
第2の降圧回路を半導体チップ上に備え、前記第1及び
第2の電源をそれぞれ対応の内部回路に供給する半導体
集積回路装置において、前記第2の降圧回路が、前記第
1の内部電源を降圧して前記第2の内部電源を発生する
ことを特徴とするものである。
According to the semiconductor integrated circuit device of the present invention, the power supply voltage is stepped down to a first voltage lower than the power supply voltage.
First and second step-down circuits for respectively generating a first internal power supply of a first voltage and a second internal power supply of a second voltage lower than the first voltage are provided on a semiconductor chip; In the semiconductor integrated circuit device supplying the two power supplies to the corresponding internal circuits, the second step-down circuit steps down the first internal power supply to generate the second internal power supply. Things.

【0022】[0022]

【発明の実施の形態】次に、本発明の第1の実施の形態
を図7と共通の構成要素には共通の参照文字/数字を付
して同様にブロックで示す図1を参照すると、この図に
示す本実施の形態の半導体集積回路装置は、従来と共通
の基準電圧VR1により制御され外部電源Vccを降圧
して所定の内部電圧VI1を生成する降圧回路1に加え
て、降圧回路2の代わりに基準電圧VR2により制御さ
れ内部電源VI1を降圧して所定の内部電圧VI2を生
成する降圧回路2Aとを備える。
FIG. 1 is a block diagram showing a first embodiment of the present invention, in which constituent elements common to those in FIG. The semiconductor integrated circuit device according to the present embodiment shown in this figure includes a step-down circuit 2 controlled by a common reference voltage VR1 and a step-down circuit 2 which steps down an external power supply Vcc to generate a predetermined internal voltage VI1. And a step-down circuit 2A controlled by the reference voltage VR2 to step down the internal power supply VI1 to generate a predetermined internal voltage VI2.

【0023】降圧回路1は、従来と共通のソースを電源
Vccに接続しドレインから内部電圧VI1を出力する
P型MOSトランジスタP11と、反転入力端に基準電
圧VR1の供給を正入力端に内部電圧VI1の供給をそ
れぞれ受け基準電圧VR1と内部電圧VI1との差電圧
信号D1をトランジスタP11のゲートに供給するオペ
アンプ11とを備える。
The step-down circuit 1 comprises a P-type MOS transistor P11 having a common source connected to a power supply Vcc and outputting an internal voltage VI1 from a drain, and a reference voltage VR1 supplied to an inverting input terminal and an internal voltage supplied to a positive input terminal. An operational amplifier 11 that receives the supply of VI1 and supplies a difference voltage signal D1 between the reference voltage VR1 and the internal voltage VI1 to the gate of the transistor P11.

【0024】降圧回路2Aは、ソースに降圧回路1の出
力の内部電圧VI1の供給を受けドレインから内部電圧
VI2を出力するP型MOSトランジスタP21と、反
転入力端に基準電圧VR1より低い基準電圧VR2の供
給を正入力端に内部電圧VI2の供給をそれぞれ受け基
準電圧VR2と内部電圧VI2との差電圧信号D2をト
ランジスタP21のゲートに供給するオペアンプ21と
を備える。
The step-down circuit 2A receives a supply of the internal voltage VI1 of the output of the step-down circuit 1 at the source and outputs the internal voltage VI2 from the drain, and a reference voltage VR2 lower than the reference voltage VR1 at the inverting input terminal. And an operational amplifier 21 receiving the supply of the internal voltage VI2 at the positive input terminal thereof and supplying a difference voltage signal D2 between the reference voltage VR2 and the internal voltage VI2 to the gate of the transistor P21.

【0025】次に、図1を参照して本実施の形態の動作
について説明すると、まず、正常時には従来の回路と同
様の動作を行い降圧回路1,2Aの各々はそれぞれ正常
値の内部電圧VI1,VI2を出力する。次に、ノイズ
等により降圧回路1,2Aが異常動作し内部電圧VI
1,VI2が変動した場合は、降圧回路2Aが内部電圧
VI1を降圧するよう構成されているので、内部電圧V
I2が内部電圧VI1を超えることはあり得ない。すな
わち、最悪の場合VI2=VI1であり、内部電圧相互
間の逆転は生じない。
Next, the operation of the present embodiment will be described with reference to FIG. 1. First, in a normal state, the same operation as that of the conventional circuit is performed, and each of the step-down circuits 1 and 2A has a normal internal voltage VI1. , VI2. Next, the step-down circuits 1 and 2A operate abnormally due to noise or the like, and the internal voltage VI
1 and VI2 fluctuate, the step-down circuit 2A is configured to step down the internal voltage VI1.
I2 cannot exceed internal voltage VI1. That is, in the worst case, VI2 = VI1, and no reversal occurs between the internal voltages.

【0026】次に、本発明の第2の実施の形態を図1と
共通の構成要素には共通の参照文字/数字を付して同様
にブロックで示す図2を参照すると、この図に示す本実
施の形態の前述の第1の実施の形態との相違点は、降圧
回路2Aの代わりに降圧回路2Aと共通のP型MOSト
ランジスタP21と、オペアンプ21とに加えて、制御
信号φの供給に応答して選択的に動作用電源である内部
電圧VI1を直接内部電圧VI2及びトランジスタP2
1のソースのいずれか一方にに供給するよう切り替える
スイッチ回路22を有する降圧回路2Bを備えることで
ある。
Next, referring to FIG. 2, which shows a second embodiment of the present invention, in which constituent elements common to FIG. The present embodiment is different from the above-described first embodiment in that, instead of the step-down circuit 2A, a P-type MOS transistor P21 common to the step-down circuit 2A and an operational amplifier 21 and the supply of a control signal φ In response to the internal voltage VI1 as the operating power supply, the internal voltage VI2 and the transistor P2
A step-down circuit 2B having a switch circuit 22 for switching the supply to one of the sources.

【0027】スイッチ回路22は、内部電圧VI1とト
ランジスタP21のソースとの間に挿入され制御信号φ
の供給に応答して内部電圧VI1を導通させトランジス
タP21のソースに供給するスイッチング用のトランジ
スタM22と、制御信号φを反転し反転制御信号φBを
出力するインバータI21と、一端が内部電圧VI1に
他端が内部電圧VI2にそれぞれ接続され反転制御信号
φBの供給に応答して導通するスイッチング用のトラン
ジスタM23とを備える。
The switch circuit 22 is connected between the internal voltage VI1 and the source of the transistor P21 and receives a control signal φ
In response to the supply of the internal voltage VI1, the switching transistor M22 for supplying the internal voltage VI1 to the source of the transistor P21, the inverter I21 for inverting the control signal φ and outputting the inverted control signal φB, and one end connected to the internal voltage VI1 A switching transistor M23 having an end connected to the internal voltage VI2 and conducting in response to the supply of the inversion control signal φB.

【0028】次に、図2を参照して本実施の形態の動作
について説明すると、前述の第1の実施の形態において
は、降圧回路2Aの出力内部電圧VI2の負荷容量はこ
の降圧回路2Aの動作電源である内部電圧VI1により
充電されるため、従来のように外部電源Vccを用いる
場合に比べその充電時間は長くなる。本実施の形態を特
徴付ける降圧回路2Bは、出力内部電圧VI2の負荷容
量への充電時間の短縮を実現する。
Next, the operation of the present embodiment will be described with reference to FIG. 2. In the first embodiment, the load capacity of the output internal voltage VI2 of the step-down circuit 2A is equal to that of the step-down circuit 2A. Since the battery is charged by the internal voltage VI1, which is the operating power supply, the charging time is longer than in the conventional case where the external power supply Vcc is used. The step-down circuit 2B characterizing the present embodiment realizes a reduction in charging time of the output internal voltage VI2 to the load capacitance.

【0029】まず、電源Vccの供給に応答して、降圧
回路1が動作開始すると同時に、制御信号φがHレベル
となり、この制御信号φのHレベルに応答して降圧回路
2Bのスイッチ回路22のトランジスタM22がオフ
し、反転制御信号φBのLレベルに応答してトランジス
タM23がオンする。したがって、この期間は、降圧回
路1の出力内部電圧VI1により降圧回路1及び2Bの
各負荷容量を充電する。
First, in response to the supply of the power supply Vcc, the step-down circuit 1 starts operating, and at the same time, the control signal φ goes to the H level. In response to the H level of the control signal φ, the switch circuit 22 of the step-down circuit 2B The transistor M22 turns off, and the transistor M23 turns on in response to the L level of the inversion control signal φB. Therefore, during this period, each load capacitance of the step-down circuits 1 and 2B is charged by the output internal voltage VI1 of the step-down circuit 1.

【0030】次に、内部電圧VI2の電圧値が基準電圧
VR2以下という条件で所定の時間経過した後、制御信
号φがHレベルからLレベルに遷移しこのの制御信号φ
のLレベルに応答してトランジスタM22がオンし、反
転制御信号φBのHレベルに応答してトランジスタM2
3がオフする。したがって、この期間は、第1の実施の
形態と同様の動作を行い、内部電圧VI1により降圧回
路1の負荷容量を充電し、内部電圧VI2により降圧回
路2Bの負荷容量を充電する。
Next, after a predetermined time has elapsed under the condition that the voltage value of the internal voltage VI2 is equal to or lower than the reference voltage VR2, the control signal φ changes from the H level to the L level, and this control signal φ
Turns on in response to the L level of the transistor M2, and the transistor M2 responds to the H level of the inversion control signal φB.
3 turns off. Therefore, during this period, the same operation as in the first embodiment is performed, and the load capacity of the step-down circuit 1 is charged by the internal voltage VI1, and the load capacity of the step-down circuit 2B is charged by the internal voltage VI2.

【0031】このように、降圧回路の初期動作時に外部
電源Vccを動作電源とする降圧回路1を用いて降圧回
路2Bの負荷容量を充電することで、第1の実施の形態
と比べて内部電圧VI2の負荷容量への充電時間の短縮
が実現出来る。
As described above, when the step-down circuit is initially operated, the load capacitance of the step-down circuit 2B is charged by using the step-down circuit 1 using the external power supply Vcc as an operation power supply, thereby making it possible to reduce the internal voltage as compared with the first embodiment. The charging time to the load capacity of VI2 can be shortened.

【0032】次に、本発明の第3の実施の形態を図1と
共通の構成要素には共通の参照文字/数字を付して同様
にブロックで示す図3を参照すると、この図に示す本実
施の形態の前述の第1の実施の形態との相違点は、降圧
回路2Aに加えて基準電圧VR3により制御され内部電
源VI1を降圧して所定の内部電圧VI3を生成する降
圧回路3をさらに備えることである。
Next, a third embodiment of the present invention will be described with reference to FIG. 3 in which constituent elements common to those in FIG. The difference of the present embodiment from the first embodiment is that the step-down circuit 3 which generates the predetermined internal voltage VI3 by stepping down the internal power supply VI1 controlled by the reference voltage VR3 in addition to the step-down circuit 2A is provided. It is to prepare further.

【0033】降圧回路1と降圧回路2A,3の関係は、
第1の実施の形態と同様であり、降圧回路1の出力内部
電圧VI1をそれぞれ動作電源として用いる。
The relationship between the step-down circuit 1 and the step-down circuits 2A and 3 is as follows.
This is the same as the first embodiment, and uses the output internal voltage VI1 of the step-down circuit 1 as an operation power supply.

【0034】次に、本発明の第4の実施の形態を図1と
共通の構成要素には共通の参照文字/数字を付して同様
にブロックで示す図4を参照すると、この図に示す本実
施の形態の前述の第1の実施の形態との相違点は、降圧
回路2Aに加えてこの降圧回路2Aと共通の基準電圧V
R2により制御され内部電源VI1を降圧して所定の内
部電圧VI2を生成する降圧回路3Aをさらに備えるこ
とである。
Next, a fourth embodiment of the present invention will be described with reference to FIG. 4, in which constituent elements common to those in FIG. This embodiment is different from the above-described first embodiment in that a reference voltage V common to the step-down circuit 2A is added to the step-down circuit 2A.
The circuit further includes a step-down circuit 3A controlled by R2 to step down internal power supply VI1 to generate a predetermined internal voltage VI2.

【0035】本実施の形態は、同一の内部電圧VI2を
2系統の負荷に独立に供給できこれら各負荷回路間の相
互ノイズ干渉を抑圧できる。
According to the present embodiment, the same internal voltage VI2 can be supplied independently to two loads, and the mutual noise interference between these load circuits can be suppressed.

【0036】次に、本発明の第5の実施の形態を図3と
共通の構成要素には共通の参照文字/数字を付して同様
にブロックで示す図5を参照すると、この図に示す本実
施の形態の前述の第3の実施の形態との相違点は、降圧
回路3の代わりに基準電圧VR3により制御され内部電
源VI2を降圧してて所定の内部電圧VI3を生成する
降圧回路3Bを備えることである。
Next, referring to FIG. 5, which shows a fifth embodiment of the present invention in which components common to those in FIG. This embodiment is different from the above-described third embodiment in that a step-down circuit 3B controlled by a reference voltage VR3 instead of the step-down circuit 3 to step down an internal power supply VI2 to generate a predetermined internal voltage VI3. It is to have.

【0037】本実施の形態では、内部電圧VI1から内
部電圧VI2を生成し、この内部電圧VI2から内部電
圧VI3を生成する。
In the present embodiment, the internal voltage VI2 is generated from the internal voltage VI1, and the internal voltage VI3 is generated from the internal voltage VI2.

【0038】[0038]

【発明の効果】以上説明したように、本発明の半導体集
積回路装置は、高電位の内部電圧を降圧して低電位の内
部電位を生成することにより高低各内部電圧の電位の逆
転要因を本質的に除去できるという効果がある。
As described above, the semiconductor integrated circuit device of the present invention reduces the high potential internal voltage to generate the low potential internal potential, thereby essentially inverting the potential of the high and low internal voltages. This has the effect of being able to be removed altogether.

【0039】また、外部電源の低電圧化により複数の内
部電圧の電圧値相互間のマージンが小さくなるような場
合も、これら複数の内部電圧の高低の順序付けができて
いるため、各々の内部電圧値の分離が容易にできるとい
う効果がある。
In the case where the margin between the voltage values of the plurality of internal voltages is reduced by lowering the voltage of the external power supply, the order of the plurality of internal voltages can be determined. There is an effect that values can be easily separated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体集積回路装置の第1の実施の形
態を示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a semiconductor integrated circuit device of the present invention.

【図2】本発明の半導体集積回路装置の第2の実施の形
態を示すブロック図である。
FIG. 2 is a block diagram showing a second embodiment of the semiconductor integrated circuit device of the present invention.

【図3】本発明の半導体集積回路装置の第3の実施の形
態を示すブロック図である。
FIG. 3 is a block diagram showing a third embodiment of the semiconductor integrated circuit device of the present invention.

【図4】本発明の半導体集積回路装置の第4の実施の形
態を示すブロック図である。
FIG. 4 is a block diagram showing a fourth embodiment of the semiconductor integrated circuit device of the present invention.

【図5】本発明の半導体集積回路装置の第5の実施の形
態を示すブロック図である。
FIG. 5 is a block diagram showing a fifth embodiment of the semiconductor integrated circuit device of the present invention.

【図6】単一電源及び2電源の遅延回路の一例をそれぞ
れ示す回路図である。
FIG. 6 is a circuit diagram showing an example of a single power supply and two power supply delay circuits, respectively.

【図7】従来の半導体集積回路装置の一例を示すブロッ
ク図である。
FIG. 7 is a block diagram illustrating an example of a conventional semiconductor integrated circuit device.

【図8】図6Bの遅延回路を構成するP型MOSトラン
ジスタの構造を模式的に示す断面図である。
FIG. 8 is a cross-sectional view schematically showing a structure of a P-type MOS transistor constituting the delay circuit of FIG. 6B.

【符号の説明】[Explanation of symbols]

1,2,2A,2B,3,3A 降圧回路 11,21 オペアンプ 22 スイッチ回路 91,95 P+拡散層 92 N+拡散層 93 N型ウェル領域 94 P型基板 96 寄生PNPバイポーラ素子 C71 コンデンサ M22,M23,N71,P11,P21,P71,P
72 トランジスタ
1, 2, 2A, 2B, 3, 3A Step-down circuit 11, 21 Operational amplifier 22 Switch circuit 91, 95 P + diffusion layer 92 N + diffusion layer 93 N-type well region 94 P-type substrate 96 Parasitic PNP bipolar element C71 Capacitor M22, M23, N71, P11, P21, P71, P
72 transistors

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電源電圧を降圧してこの電源電圧より低
い第1の電圧の第1の内部電源及び前記第1の電圧より
低い第2の電圧の第2の内部電源をそれぞれ発生する第
1及び第2の降圧回路を半導体チップ上に備え、前記第
1及び第2の電源をそれぞれ対応の内部回路に供給する
半導体集積回路装置において、 前記第2の降圧回路が、前記第1の内部電源を降圧して
前記第2の内部電源を発生することを特徴とする半導体
集積回路装置。
A first internal power supply having a first voltage lower than the power supply voltage and a second internal power supply having a second voltage lower than the first voltage. And a second step-down circuit provided on a semiconductor chip and supplying the first and second power supplies to corresponding internal circuits, respectively, wherein the second step-down circuit includes the first internal power supply. Wherein the second internal power supply is generated by stepping down the voltage.
【請求項2】 前記電源電圧が、外部から供給を受ける
外部電源電圧であることを特徴とする請求項1記載の半
導体集積回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein said power supply voltage is an external power supply voltage supplied from outside.
【請求項3】 前記第2の内部電源を降圧して前記第2
の電圧より低い第3の電圧を発生する第3の内部電源を
さらに備えることを特徴とする請求項1記載の半導体集
積回路装置。
3. The second internal power supply is stepped down to generate the second internal power supply.
2. The semiconductor integrated circuit device according to claim 1, further comprising a third internal power supply for generating a third voltage lower than the third voltage.
【請求項4】 前記第1の降圧回路が、第1の入力端に
第1の基準電圧の供給を受け第2の入力端に前記第1の
内部電圧を帰還して第1の差電圧信号を出力する第1の
演算増幅器と、ソースに前記電源電圧の供給を受けゲー
トへの前記第1の差電圧信号の供給に応答してドレイン
から前記第1の内部電源を出力する第1のトランジスタ
を備え、 前記第2の降圧回路が、第1の入力端に第2の基準電圧
の供給を受け第2の入力端に前記第2の内部電圧を帰還
して第2の差電圧信号を出力する第2の演算増幅器と、
ソースに前記第1の内部電源の供給を受けゲートへの前
記第2の差電圧信号の供給に応答してドレインから前記
第2の内部電源を出力する第2のトランジスタを備える
ことを特徴とする請求項1記載の半導体集積回路装置。
4. The first voltage step-down circuit receives a first reference voltage supplied to a first input terminal and feeds back the first internal voltage to a second input terminal to produce a first differential voltage signal. And a first transistor for receiving the supply of the power supply voltage at the source and outputting the first internal power supply from the drain in response to the supply of the first differential voltage signal to the gate The second step-down circuit receives a supply of a second reference voltage at a first input terminal, feeds back the second internal voltage to a second input terminal, and outputs a second differential voltage signal A second operational amplifier,
A second transistor that receives the supply of the first internal power supply to a source and outputs the second internal power supply from a drain in response to the supply of the second differential voltage signal to a gate. The semiconductor integrated circuit device according to claim 1.
【請求項5】 前記第2の降圧回路が、制御信号の供給
に応答して前記第1の内部電源を選択的に前記第2の電
源及び前記第2のトランジスタのソースとのいずれか一
方に供給するスイッチ手段を備えることを特徴とする請
求項4記載の半導体集積回路装置。
5. The second step-down circuit selectively connects the first internal power supply to one of the second power supply and the source of the second transistor in response to supply of a control signal. 5. The semiconductor integrated circuit device according to claim 4, further comprising switch means for supplying.
JP9312210A 1997-11-13 1997-11-13 Semiconductor integrated circuit Pending JPH11145413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312210A JPH11145413A (en) 1997-11-13 1997-11-13 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312210A JPH11145413A (en) 1997-11-13 1997-11-13 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH11145413A true JPH11145413A (en) 1999-05-28

Family

ID=18026531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312210A Pending JPH11145413A (en) 1997-11-13 1997-11-13 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH11145413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001167A3 (en) * 2001-06-21 2003-03-06 Glucon Inc Permittivity based temperature measurement and related methods
JP2008140531A (en) * 2006-11-07 2008-06-19 Nec Electronics Corp Semiconductor device and memory
JP2011134059A (en) * 2009-12-24 2011-07-07 Samsung Electronics Co Ltd Voltage stabilization device, semiconductor device using the same, and voltage stabilization method
US8493795B2 (en) 2009-12-24 2013-07-23 Samsung Electronics Co., Ltd. Voltage stabilization device and semiconductor device including the same, and voltage generation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001167A3 (en) * 2001-06-21 2003-03-06 Glucon Inc Permittivity based temperature measurement and related methods
JP2008140531A (en) * 2006-11-07 2008-06-19 Nec Electronics Corp Semiconductor device and memory
JP2011134059A (en) * 2009-12-24 2011-07-07 Samsung Electronics Co Ltd Voltage stabilization device, semiconductor device using the same, and voltage stabilization method
US8493795B2 (en) 2009-12-24 2013-07-23 Samsung Electronics Co., Ltd. Voltage stabilization device and semiconductor device including the same, and voltage generation method
KR101415227B1 (en) * 2009-12-24 2014-07-04 삼성전자주식회사 Voltage stabilization device and semiconductor device comprising the same, and voltage generation method

Similar Documents

Publication Publication Date Title
JP3223504B2 (en) Boost circuit
US6249169B1 (en) Transistor output circuit
US5874851A (en) Semiconductor integrated circuit having controllable threshold level
US7304458B2 (en) Regulator circuit
US7586361B2 (en) Semiconductor device comprising a charge pump operated by clock signals
KR20040098566A (en) Level shift circuit
US6850090B2 (en) Level shifter
KR100405647B1 (en) Level shift circuit and image display device
JP3035188B2 (en) Semiconductor device
JPH0865149A (en) Ouasi-static no-loss gate
JPH11145413A (en) Semiconductor integrated circuit
JP3601901B2 (en) Boost circuit
KR970001697B1 (en) Level shifting circuit
JP2769653B2 (en) Inverting circuit
US20070035181A1 (en) Voltage selective circuit of power source
US20020140455A1 (en) Level shift circuit for stepping up logic signal amplitude with improved operating speed
JPH0543212B2 (en)
JP3180608B2 (en) Power supply selection circuit
JP2011004313A (en) Semiconductor integrated circuit device
US7570106B2 (en) Substrate voltage generating circuit with improved level shift circuit
JP2946547B2 (en) MOS type semiconductor integrated circuit
JPH1127137A (en) Semiconductor integrated circuit
JPH1127114A (en) High hysteresis width input circuit
JP3586985B2 (en) Output circuit of semiconductor device
JP3012558B2 (en) Power supply circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010424