JPH11145064A - Plasma chamber - Google Patents

Plasma chamber

Info

Publication number
JPH11145064A
JPH11145064A JP32236897A JP32236897A JPH11145064A JP H11145064 A JPH11145064 A JP H11145064A JP 32236897 A JP32236897 A JP 32236897A JP 32236897 A JP32236897 A JP 32236897A JP H11145064 A JPH11145064 A JP H11145064A
Authority
JP
Japan
Prior art keywords
gas
ozone
plasma
plasma chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32236897A
Other languages
Japanese (ja)
Other versions
JP3216013B2 (en
Inventor
Kunihiko Koike
国彦 小池
Goichi Inoue
吾一 井上
Tatsuo Fukuda
達生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18142873&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11145064(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP32236897A priority Critical patent/JP3216013B2/en
Publication of JPH11145064A publication Critical patent/JPH11145064A/en
Application granted granted Critical
Publication of JP3216013B2 publication Critical patent/JP3216013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To give plasma resistance to corrosive gas, without the inner face of a chamber being roughened, even if a worker performs plasma cleaning, using nitrogen trifluoride as cleaning gas, by applying immobilization treatment to the inner surface of a plasma chamber. SOLUTION: An immobilization film is made in the thickness of about 100 Åat the inner wall face of a plasma chamber by charging the plasma chamber made of SUS 316L arranged in a semiconductor manufacture device, and leaving it for about 48 hours. For ozone gas in high concentration, the one where the ozone gas is condensed to the concentration of about 60-100 vol.% by passing the oxygen gas lead out of an oxygen supply source 1 such a liquid oxygen gas, etc., through an ozone generator 2 thereby producing ozone gas of 5-10 vol.% and supplying ozone gas produced in an ozone condenser 3 using an absorbent such as silica gel or the like to it is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、半導体製造工程で薄膜
形成等に使用されるプラズマチャンバーに関する。
The present invention relates to a plasma chamber used for forming a thin film in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】半導体製造工程での薄膜形成等に使用さ
れるプラズマチャンバーでは、その製造過程でチャンバ
ー内表面にポリシリコンやアモルファスシリコンが付着
する。チャンバー内面に付着したポリシリコンやアモル
ファスシリコンは製品精度に影響を及ぼすため、三フッ
化窒素等のクリーニングガスで付着物を除去するように
している。
2. Description of the Related Art In a plasma chamber used for forming a thin film in a semiconductor manufacturing process, polysilicon or amorphous silicon adheres to the inner surface of the chamber during the manufacturing process. Polysilicon and amorphous silicon adhering to the inner surface of the chamber affect the accuracy of the product, so that the adhering matter is removed by a cleaning gas such as nitrogen trifluoride.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来のプラ
ズマチャンバーは、ステンレス鋼を鏡面仕上げしただけ
であることから、クリーニング時のクリーニングガスで
アタックされ、特に、三フッ化窒素を使用してプラズマ
を立ててのクリーニング時には、プラズマチャンバー内
面がフッ素によって腐食され、その表面が激しく荒れる
という問題があった。
However, since the conventional plasma chamber has only a mirror-finished stainless steel, it is attacked with a cleaning gas at the time of cleaning. In particular, the plasma is formed using nitrogen trifluoride. At the time of vertical cleaning, there is a problem that the inner surface of the plasma chamber is corroded by fluorine and the surface is severely roughened.

【0004】本発明は、このような点に着目し、腐食性
ガスに対して耐プラズマ性のあるプラズマチャンバーを
提供することを目的とする。
The present invention has been made in view of such a point, and an object of the present invention is to provide a plasma chamber having plasma resistance to corrosive gas.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに請求項1に記載の本発明は、プラズマチャンバーの
内面に不動態化処理が施してあることを特徴とし、請求
項2に記載の発明では、プラズマチャンバー内に高濃度
オゾンガスを封入することにより不動態化処理を施した
ことを特徴としている。
In order to achieve the above object, the present invention according to claim 1 is characterized in that the inner surface of the plasma chamber is subjected to a passivation treatment, and is described in claim 2. According to the invention, a passivation treatment is performed by enclosing a high-concentration ozone gas in a plasma chamber.

【0006】[0006]

【発明の作用】本発明では、プラズマチャンバーの内表
面を不動態化処理しているので、クリーニングガスに三
フッ化窒素を使用してプラズマクリーニングしても、チ
ャンバー内面が荒らされることがない。
According to the present invention, since the inner surface of the plasma chamber is passivated, the inner surface of the chamber is not roughened even if plasma cleaning is performed using nitrogen trifluoride as a cleaning gas.

【0007】[0007]

【発明の実施の形態】半導体製造装置に配置されている
SUS316L製のプラズマチャンバーに高濃度のオゾ
ンガス(60 VOL%)を室温で封入し、48時間放置する
ことにより、プラズマチャンバーの内壁面に不動態膜を
厚さ100Å程度に形成する。
BEST MODE FOR CARRYING OUT THE INVENTION A high concentration ozone gas (60 VOL%) is sealed at room temperature in a SUS316L plasma chamber arranged in a semiconductor manufacturing apparatus and left for 48 hours, so that the inner wall surface of the plasma chamber becomes improper. A dynamic film is formed to a thickness of about 100 °.

【0008】プラズマチャンバーに供給する高濃度オゾ
ンガスは、図1に示すように、液化酸素ガス等の酸素供
給源(1)から導出した酸素ガスをオゾン発生器(2)に通
して、5〜10 VOL%残り酸素程度のオゾンガスを発生
させ、シリカゲル等の吸着剤使用してなるオゾン濃縮器
(3)に前記発生オゾンガスを供給することにより、オゾ
ンガスを60〜100 VOL%程度の濃度に濃縮したもの
を使用する。
As shown in FIG. 1, the high-concentration ozone gas supplied to the plasma chamber is supplied with an oxygen gas derived from an oxygen supply source (1) such as liquefied oxygen gas through an ozone generator (2). Ozone concentrator that generates ozone gas of about VOL% remaining oxygen and uses an adsorbent such as silica gel
By supplying the generated ozone gas to (3), an ozone gas concentrated to a concentration of about 60 to 100 VOL% is used.

【0009】図2はオゾン処理前後でのSUS316L
表面のGDSプロフアイルであり、図2Aはオゾン処理
前のGDSプロフアイル、図2Bはオゾン処理後のGD
Sプロフアイルであり、この両者を見ると、オゾンガス
で処理することにより、チャンバー表面に不動態膜が形
成されていることがわかる。
FIG. 2 shows SUS316L before and after ozone treatment.
FIG. 2A shows a GDS profile before ozone treatment, and FIG. 2B shows a GD after ozone treatment.
It is an S profile, and it can be seen from these both that a passivation film was formed on the chamber surface by the treatment with ozone gas.

【0010】このようにしてオゾンガスにより内面を不
動態化処理したものと、不動態化処理を施さなかったプ
ラズマチャンバーに、それぞれアルゴンで37.5%に
希釈した三フッ化窒素ガスを導 入し、280℃、0.5
Torr、0.42w/cm2の条件で5分間プラズマを発生さ
せた後のプラズマチャンバー内面を目視及びSEM観察
したところ、次のようになった。
[0010] Nitrogen trifluoride gas diluted to 37.5% with argon was introduced into the plasma chamber whose inner surface was passivated by the ozone gas and the plasma chamber not subjected to the passivation process. 280 ° C, 0.5
The inner surface of the plasma chamber after generating plasma for 5 minutes under the conditions of Torr and 0.42 w / cm 2 was visually and SEM-observed.

【0011】オゾン不動態化処理を施していないチャン
バーでは、プラズマ照射により、全体的に黄茶色に変色
し、部分的に紫色を帯びていたのに対し、オゾン不動態
化処理を施したものでは、プラズマ照射の前後で目視に
より確認できる変化は見られなかった。
In the chamber not subjected to the ozone passivation treatment, the whole was changed to yellow-brown and partially purple by plasma irradiation, whereas the chamber not subjected to the ozone passivation treatment did not. There was no visible change before and after the plasma irradiation.

【0012】また、図3の電子顕微鏡写真によると、不
動態化処理を施していないチャンバーの内表面(3A)は
三フッ化窒素プラズマによって激しく荒れていることが
確認できるが、不動態化処理を施したもの(3B)では、
三フッ化窒素プラズマ照射後ももとの内表面(3C)とほ
とんど変わらないことが確認できる。
According to the electron micrograph of FIG. 3, it can be confirmed that the inner surface (3A) of the chamber not subjected to the passivation treatment is severely roughened by the nitrogen trifluoride plasma. (3B)
It can be confirmed that there is almost no difference from the original inner surface (3C) even after the irradiation with the nitrogen trifluoride plasma.

【0013】さらに、チャンバー内表面での数百オング
ストロームの深さについてX線光電子分光分析でフッ素
濃度を分析したところ、不動態化処理をしていない表面
からは不動態化処理をした表面に比べて約5倍の多量の
フッ素が検出された。
Further, when the fluorine concentration was analyzed by X-ray photoelectron spectroscopy at a depth of several hundred angstroms on the inner surface of the chamber, the surface without passivation was compared with the surface without passivation. About 5 times as much fluorine was detected.

【0014】[0014]

【発明の効果】本発明は、プラズマチャンバーの内表面
を不動態化処理しているので、クリーニングガスとして
三フッ化窒素を使用してプラズマクリーニングしても、
チャンバー内面が荒らされることがなく、腐食性ガスに
対して耐プラズマ性のあるプラズマチャンバーを提供す
ることができる。
According to the present invention, since the inner surface of the plasma chamber is passivated, plasma cleaning using nitrogen trifluoride as a cleaning gas can be performed.
A plasma chamber having plasma resistance to corrosive gas without roughening the inner surface of the chamber can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高濃度オゾン発生装置の一例を示す概略構成図
である。
FIG. 1 is a schematic configuration diagram showing an example of a high-concentration ozone generator.

【図2】オゾン処理前後でのGDSプロフアイルであ
り、図2Aはオゾン処理前のプロフアイル、図2Bはオ
ゾン処理後のプロフアイルである。
2A and 2B show GDS profiles before and after ozone treatment, FIG. 2A shows a profile before ozone treatment, and FIG. 2B shows a profile after ozone treatment.

【図3】三フッ化窒素を使用してプラズマ照射した場合
の電子顕微鏡写真であり、図3Aは不動態化処理をして
いない場合の電子顕微鏡写真、図3Bは不動態化処理し
た場合電子顕微鏡写真、図3Cはプラズマ照射前の電子
顕微鏡写真である。
3 is an electron micrograph when plasma irradiation is performed using nitrogen trifluoride. FIG. 3A is an electron micrograph without passivation, and FIG. 3B is an electron when passivation. A micrograph, FIG. 3C is an electron micrograph before plasma irradiation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/31 H01L 21/31 C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/31 H01L 21/31 C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造に使用されているプラズマチ
ャンバーにおいて、チャンバーの内面に不動態化処理を
施したことを特徴とするプラズマチャンバー。
1. A plasma chamber used in semiconductor manufacturing, wherein a passivation treatment is applied to an inner surface of the chamber.
【請求項2】 半導体製造に使用されているプラズマチ
ャンバーにおいて、プラズマチャンバー内に高濃度オゾ
ンガスを封入することによりプラズマチャンバー内面に
不動態化処理を施したことを特徴とするプラズマチャン
バー。
2. A plasma chamber used in semiconductor manufacturing, wherein a high-concentration ozone gas is sealed in the plasma chamber to passivate the inner surface of the plasma chamber.
JP32236897A 1997-11-07 1997-11-07 Plasma chamber Expired - Lifetime JP3216013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32236897A JP3216013B2 (en) 1997-11-07 1997-11-07 Plasma chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32236897A JP3216013B2 (en) 1997-11-07 1997-11-07 Plasma chamber

Publications (2)

Publication Number Publication Date
JPH11145064A true JPH11145064A (en) 1999-05-28
JP3216013B2 JP3216013B2 (en) 2001-10-09

Family

ID=18142873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32236897A Expired - Lifetime JP3216013B2 (en) 1997-11-07 1997-11-07 Plasma chamber

Country Status (1)

Country Link
JP (1) JP3216013B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308019A (en) * 2000-01-31 2001-11-02 Applied Materials Inc Method and apparatus for enhanced chamber cleaning
JP2002025910A (en) * 2000-07-03 2002-01-25 Tokyo Electron Ltd Heat treatment device and surface treatment method
KR20020040702A (en) * 2002-03-05 2002-05-30 김경수 Jig Material for Hot-dip Galranized Metal Plate
JP2009079667A (en) * 2007-09-26 2009-04-16 Tokyo Electron Ltd Gas feeding device and semiconductor manufacturing device
CN103352205A (en) * 2013-05-31 2013-10-16 上海华力微电子有限公司 Cleaning method of chemical vapor deposition chamber
CN108588667A (en) * 2017-12-27 2018-09-28 深圳市华星光电技术有限公司 A kind of air charging system and inflation method, vacuum sputtering equipment of vacuum atm conversion chamber
WO2021081289A1 (en) * 2019-10-25 2021-04-29 Applied Materials, Inc. Extreme ultraviolet mask blank defect reduction methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308019A (en) * 2000-01-31 2001-11-02 Applied Materials Inc Method and apparatus for enhanced chamber cleaning
JP2010242224A (en) * 2000-01-31 2010-10-28 Applied Materials Inc Improved chamber cleaning method and apparatus
JP2013175730A (en) * 2000-01-31 2013-09-05 Applied Materials Inc Improved chamber cleaning method and apparatus
JP2002025910A (en) * 2000-07-03 2002-01-25 Tokyo Electron Ltd Heat treatment device and surface treatment method
KR20020040702A (en) * 2002-03-05 2002-05-30 김경수 Jig Material for Hot-dip Galranized Metal Plate
JP2009079667A (en) * 2007-09-26 2009-04-16 Tokyo Electron Ltd Gas feeding device and semiconductor manufacturing device
CN103352205A (en) * 2013-05-31 2013-10-16 上海华力微电子有限公司 Cleaning method of chemical vapor deposition chamber
CN108588667A (en) * 2017-12-27 2018-09-28 深圳市华星光电技术有限公司 A kind of air charging system and inflation method, vacuum sputtering equipment of vacuum atm conversion chamber
CN108588667B (en) * 2017-12-27 2020-10-02 深圳市华星光电技术有限公司 Air charging device and air charging method for vacuum atmosphere conversion cavity and vacuum sputtering equipment
WO2021081289A1 (en) * 2019-10-25 2021-04-29 Applied Materials, Inc. Extreme ultraviolet mask blank defect reduction methods

Also Published As

Publication number Publication date
JP3216013B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
Hanson et al. The reaction probabilities of ClONO2 and N2O5 on polar stratospheric cloud materials
EP1722403A3 (en) Fabrication method for a thin film smiconductor device
JP3175924B2 (en) Thermal cleaning method with nitrogen trifluoride and oxygen
JP3216013B2 (en) Plasma chamber
TW371775B (en) Method for the selective removal of silicon dioxide
JPS5753939A (en) Dry etching method for thin film
JPS5587438A (en) Manufacture of semiconductor device
JPH0945623A (en) Cleaning method of plasma cvd system and plasma cvd system
TW368491B (en) Ozone generating apparatus
JPH03147322A (en) Manufacture of semiconductor device
Tatenuma et al. Acquisition of clean ultrahigh vacuum using chemical treatment
Longeway et al. Infrared multiphoton decomposition of monosilane sensitized by silicon tetrafluoride
JPH08337867A (en) Surface treatment of stainless steel member
JPH03215656A (en) Metallic material with passivating fluoride film and its production and equipment using same
Schwarzenbach et al. Treatment of organic polymer surfaces by CF 4 plasmas: Etching by fluorine atoms and influence of vacuum ultraviolet radiation
JPH06333917A (en) Preprocessing method for semiconductor wafer before oxidization
Lee et al. Surface treatment of a titanium implant using a low temperature atmospheric pressure plasma jet
JPS5477573A (en) Operating method of plasma treating apparatus
JP4505097B2 (en) Metal surface passivation treatment method
JPS62237733A (en) Oxidation and apparatus therefor
JPH04247862A (en) Production of colored metallic sheet
JP3134116B2 (en) Corrosion reduction method in corrosive gas supply system
US6396215B1 (en) Ion-implantation apparatus and method of ion-implantation by use of this apparatus
JPS5887276A (en) Treatment after dry etching
MAEKAWA et al. RF Plasma nitriding of titanium