JPH11138612A - Extrusion molding method of vinyl chloride-based resin - Google Patents

Extrusion molding method of vinyl chloride-based resin

Info

Publication number
JPH11138612A
JPH11138612A JP9307235A JP30723597A JPH11138612A JP H11138612 A JPH11138612 A JP H11138612A JP 9307235 A JP9307235 A JP 9307235A JP 30723597 A JP30723597 A JP 30723597A JP H11138612 A JPH11138612 A JP H11138612A
Authority
JP
Japan
Prior art keywords
resin
vibration
melt
vinyl chloride
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9307235A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kurio
浩行 栗尾
Takamasa Fukuoka
孝政 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9307235A priority Critical patent/JPH11138612A/en
Publication of JPH11138612A publication Critical patent/JPH11138612A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a product excellent in quality by attaining the degree of gelling, at which the characteristics of a vinyl chloride-based resin are demonstrated at their maximum by a method wherein the vibration having a specified frequency is applied from a specified angle to a melt flowing through a resin flow passage having a specified gap. SOLUTION: A resin composition as raw materials is fed through a hopper 1 to an extruder 2 so as to be melted and kneaded. The obtained resin melt is fed from an adapter 3 to a resin flow passage 4 in a pipe forming die 15 so as to apply a vibration from a mandrel 8, which vibrates to the extruding direction at the predetermined frequency and amplitude to the resin melt flowing in the resin flow passages with the predetermined shearing viscosity. The resin melt is extruded through a resin discharge orifice 6, resulting in obtaining a resin pipe 7 having a desired dimensions. The resin flow passage 4 has the predetermined gap, while a mandrel 8 has a taper part 16 having the predetermined gradient. The vibration developed with a vibrator 11 by means of high frequency current supplied from as oscillator 12 is amplified with a cone 10 and finally transmitted to the mandrel 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械強度等の品質
の優れた塩化ビニル系樹脂製品を押出成形する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extruding a vinyl chloride resin product having excellent quality such as mechanical strength.

【0002】[0002]

【従来の技術】一般に、プラスチック製品を押出成形に
より製造するには、熱可塑性樹脂組成物を押出機で溶融
混練後、ダイから押し出して所望の形状に賦形し、適切
なサイジング装置で冷却固化させる。このとき、得られ
る製品の特性は押出機での樹脂組成物の混練具合で左右
されることが多い。例えば塩化ビニル樹脂製の管など
は、樹脂の混練度と管の機械的強度との相関が顕著であ
る。
2. Description of the Related Art Generally, in order to produce a plastic product by extrusion molding, a thermoplastic resin composition is melt-kneaded by an extruder, extruded from a die, shaped into a desired shape, and cooled and solidified by an appropriate sizing device. Let it. At this time, the characteristics of the obtained product often depend on the kneading condition of the resin composition in the extruder. For example, a pipe made of a vinyl chloride resin has a remarkable correlation between the kneading degree of the resin and the mechanical strength of the pipe.

【0003】通常、塩化ビニル系樹脂は水懸濁重合法に
より製造されるが、この方法で製造した樹脂粒子は、重
合時に分散剤として用いられるポリビニルアルコール、
セルロースなどを主成分とするスキン層で表面が覆われ
た粒径50μm〜150μmのグレインと呼ばれる粒子
からなる。このグレインはさらに粒径0.5μm〜2.
0μmの一次粒子と呼ばれる粒子の集合体で構成されて
いる。
[0003] Usually, a vinyl chloride resin is produced by a water suspension polymerization method. Resin particles produced by this method contain polyvinyl alcohol used as a dispersant during polymerization,
It is composed of particles called grains having a particle size of 50 μm to 150 μm whose surface is covered with a skin layer mainly composed of cellulose or the like. This grain further has a particle size of 0.5 μm to 2.
It is composed of an aggregate of particles called primary particles of 0 μm.

【0004】塩化ビニル系樹脂を押出成形して機械的強
度の優れた管を製造するには、押出機内で樹脂組成物を
充分に混練し、グレイン粒子の崩壊および一次粒子同士
の融着(以下、グレイン粒子の崩壊及び一次粒子の融着
をまとめて「ゲル化」、またその度合いを「ゲル化度」
と呼ぶ。)を高度に行う必要がある。
In order to produce a tube having excellent mechanical strength by extruding a vinyl chloride resin, the resin composition is sufficiently kneaded in an extruder to disintegrate the grain particles and fuse the primary particles (hereinafter referred to as fusion). , "Gelling" and the degree of gelation as a whole
Call. ) Needs to be advanced.

【0005】通常、塩化ビニル系樹脂のゲル化は、2軸
スクリュー押出機を用いて、主にスクリュー噛み合い部
での剪断により成される。ところが、塩化ビニル系樹脂
が過剰な熱により脱塩素化して分解する性質を有するた
めに、スクリュー噛み合い部における剪断のような局所
的な発熱が伴う場合、高度にゲル化する前に部分的に樹
脂の分解が起こるという問題が発生することがある。
[0005] Usually, gelation of a vinyl chloride resin is carried out mainly by shearing at a screw engagement portion using a twin screw extruder. However, since the vinyl chloride resin has the property of dechlorinating and decomposing due to excessive heat, when local heat such as shearing at the screw engagement portion accompanies, the resin partially becomes highly gelled before it gels. In some cases, a problem of decomposition of the polymer may occur.

【0006】特公平3−48842号公報には、押出機
の可塑化混練ゾーンにおいてスクリュー溝深さが変化す
る圧縮部のスクリューフライトに切欠を設け、混練効果
を向上させる方法が開示されている。
Japanese Patent Publication No. 3-48842 discloses a method of improving the kneading effect by providing a cutout in a screw flight of a compression section in which a screw groove depth changes in a plasticizing kneading zone of an extruder.

【0007】[0007]

【発明が解決しようとする課題】しかし、特公平3−4
8842号公報に開示されている方法では、混練効果は
向上するが、基本的に局所的な剪断発熱は避けられず、
塩化ビニル系樹脂のような熱分解性のある樹脂に対して
は、その特性を充分に引き出すことは困難である。
[Problems to be solved by the invention]
In the method disclosed in Japanese Patent No. 8842, the kneading effect is improved, but local shear heat generation is basically unavoidable,
It is difficult to sufficiently bring out the properties of a thermally decomposable resin such as a vinyl chloride resin.

【0008】そこで本発明の目的は、上記の課題を解決
し、塩化ビニル系樹脂の特性を最大限に発揮するゲル化
度を達成して、品質の優れた製品を製造する方法を提供
することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for producing a product of excellent quality by achieving a gelling degree that maximizes the properties of a vinyl chloride resin. It is in.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために検討した結果、塩化ビニル系樹脂組成
物を押出成形する際に、特定の間隙を有する樹脂流路を
流動する溶融物に、特定の周波数をもつ振動を特定の角
度から印加させることにより、その振動を溶融物の内部
まで伝搬させることができ、その結果、肉厚方向全体に
わたってゲル化度が向上し、樹脂の特性を効果的に引き
出せることを見出し、本発明に至った。
Means for Solving the Problems As a result of investigations to solve the above problems, the present inventors have found that when extruding a vinyl chloride resin composition, the resin flows through a resin flow path having a specific gap. By applying a vibration having a specific frequency to the melt from a specific angle, the vibration can be propagated to the inside of the melt, and as a result, the degree of gelation is improved over the entire thickness direction, and Have been found to be able to effectively bring out the characteristics of the present invention, leading to the present invention.

【0010】まず、振動が溶融樹脂の内部に伝搬する機
構を説明する。溶融樹脂が流れる流路の壁面(又はその
一部)を特定の周波数で振動させると、その振動の一部
は流路壁面と溶融樹脂との界面で屈折して樹脂に透過す
る。流路壁面を構成する金属材料中の音速をc1、溶融
樹脂中の音速をc2、また流路壁面から溶融樹脂に振動
が伝わるときの入射角をθi、屈折角をθt(θi及びθt
はともに界面の法線に対する角度である。ただし、0°
<θi<90°)とすると、これらの関係は式(1)で
示されるスネルの法則に従う。 sinθi/sinθt=c1/c2 …(1) 一般にc1>c2であるから、θi>θtとなる。また、界
面において振動速度の法線成分および音圧が連続である
と仮定すると、金属材料の密度をρ1、溶解樹脂の密度
をρ2としたとき、振動エネルギーの透過率Tiは式
(2)で表すことができる。 Ti=4ρ11ρ22cos2θi/(ρ22cosθi+ρ11cosθt2 …(2) 式(1)、(2)より、入射角θiが小さい方が、振動
の透過率Tiが大きくなることがわかる。
First, the mechanism by which vibration propagates inside the molten resin will be described. When the wall surface (or a part thereof) of the flow path through which the molten resin flows is vibrated at a specific frequency, a part of the vibration is refracted at the interface between the flow path wall surface and the molten resin and permeates the resin. The sound velocity in the metal material constituting the flow path wall surface is c 1 , the sound velocity in the molten resin is c 2 , the incident angle when vibration is transmitted from the flow path wall surface to the molten resin is θ i , and the refraction angle is θ ti and θ t
Are the angles with respect to the normal line of the interface. However, 0 °
If <θ i <90 °), these relationships follow Snell's law shown in equation (1). sin θ i / sin θ t = c 1 / c 2 (1) Generally, c 1 > c 2 , so that θ i > θ t . Also, assuming that the normal component of the vibration velocity and the sound pressure are continuous at the interface, when the density of the metal material is ρ 1 and the density of the molten resin is ρ 2 , the transmittance T i of the vibration energy is expressed by the following equation ( It can be represented by 2). T i = 4ρ 1 c 1 ρ 2 c 2 cos 2 θ i / (ρ 2 c 2 cos θ i + ρ 1 c 1 cos θ t ) 2 (2) From the equations (1) and (2), the incident angle θ i is smaller it can be seen that the transmittance T i of the vibration increases.

【0011】一方、媒体中を伝搬する振動は、媒体の粘
性による力学的損失や熱伝導等により減衰していく。特
に媒体が溶解樹脂のような粘性の寄与の大きいもので
は、粘性の増加に従い減衰の程度が大きくなる。言い換
えれば、粘度の増加に伴って振動の伝搬距離は短くな
る。また、周波数が大きくなるに従って減衰度が大きく
なることが知られている。本発明は、これらの振動の伝
搬特性をふまえ、見出したものである。
On the other hand, the vibration propagating in the medium is attenuated by mechanical loss due to the viscosity of the medium, heat conduction, and the like. In particular, if the medium has a large contribution of viscosity, such as a molten resin, the degree of attenuation increases as the viscosity increases. In other words, the propagation distance of the vibration decreases as the viscosity increases. It is also known that the degree of attenuation increases as the frequency increases. The present invention has been found based on the propagation characteristics of these vibrations.

【0012】そこで本発明は、塩化ビニル系樹脂組成物
を押出成形する際に、間隙が1mm〜10mmの流路を
流動する溶融物に、周波数10kHz〜50kHzの振
動を振動方向と溶融物の流動方向の成す角度が20°〜
90°の範囲になるように印加することを特徴とする塩
化ビニル系樹脂の押出成形方法を提供する。
Accordingly, the present invention provides a method of extruding a vinyl chloride resin composition by applying a vibration having a frequency of 10 kHz to 50 kHz to a melt flowing in a flow path having a gap of 1 mm to 10 mm in the vibration direction and the flow of the melt. Angle between directions is 20 ° ~
A method for extruding a vinyl chloride resin, characterized in that the voltage is applied so as to fall within a range of 90 °.

【0013】本発明において、振動の周波数は、大きく
なると振動の減衰が大きく、樹脂内部まで振動が伝搬せ
ず、一方小さくなると騒音の問題が生じる恐れがあるた
め、10kHz〜50kHzの範囲に限定され、好まし
くは15kHz〜22kHzである。
In the present invention, the frequency of vibration is limited to the range of 10 kHz to 50 kHz because the larger the frequency, the larger the attenuation of the vibration, and the lower the vibration, the lower the possibility of the noise. , Preferably 15 kHz to 22 kHz.

【0014】振動を印加する方向は、振動方向と溶融物
の流れとの成す角度が小さくなると、上記の式(2)が
示すように振動の透過率が小さくなり、樹脂の内部まで
伝搬しなくなるため、20°〜90°の範囲に限定さ
れ、好ましくは30°〜90°である。
When the angle between the direction of vibration and the flow of the melt becomes small, the transmittance of the vibration decreases as shown by the above equation (2), and the vibration does not propagate to the inside of the resin. Therefore, it is limited to the range of 20 ° to 90 °, preferably 30 ° to 90 °.

【0015】溶融物に振動を与える樹脂流路の厚みは、
大きいと厚み方向全部に振動が伝搬せず不均一な状態に
なり、小さいと樹脂流の圧損が大きくなりすぎ生産性を
落とさなければならなくなるので、1mm〜10mmの
範囲に限定され、好ましくは2mm〜5mmである。
The thickness of the resin flow path that gives vibration to the melt is as follows:
If it is large, the vibration does not propagate in the entire thickness direction, resulting in a non-uniform state. If it is small, the pressure loss of the resin flow becomes too large, and the productivity must be reduced. Therefore, it is limited to the range of 1 mm to 10 mm, preferably 2 mm. 55 mm.

【0016】また、溶融物に振動を与える時の溶融物の
剪断粘度は、大きすぎると振動の減衰が大きくなるため
溶融樹脂の内部にまで伝搬せず、小さすぎると賦形性が
悪くなるため、1.0×103〜1.0×106(poi
se)の範囲が好ましく、さらに好ましくは1.0×1
4〜1.0×105(poise)である。
On the other hand, if the shear viscosity of the melt when imparting vibration to the melt is too large, the vibration will be greatly attenuated, and will not propagate into the molten resin. , 1.0 × 10 3 to 1.0 × 10 6 (poi
se) is preferable, and more preferably 1.0 × 1
0 4 to 1.0 × 10 5 (poise).

【0017】樹脂に与える振動の平均振幅は、小さすぎ
ると効果が出ないし、大きすぎると振動子の発熱が多く
なり連続運転が困難になるため、5μm〜50μmの範
囲が好ましく、さらに好ましくは10μm〜30μmで
ある。
If the average amplitude of the vibration applied to the resin is too small, no effect is obtained. If the average amplitude is too large, heat generation of the vibrator increases and continuous operation becomes difficult. Therefore, the average amplitude is preferably in the range of 5 μm to 50 μm, more preferably 10 μm. 3030 μm.

【0018】本発明に用いられる塩化ビニル系樹脂は、
塩化ビニル樹脂、塩素化塩化ビニル樹脂等を含み、本発
明の目的を阻害しない範囲で必要に応じ、安定剤、滑
剤、加工助剤、衝撃改良剤、顔料等の各種添加剤の1種
もしくは2種以上が含有されていても良い。
The vinyl chloride resin used in the present invention comprises:
One or two of various additives such as stabilizers, lubricants, processing aids, impact modifiers, pigments, etc., including vinyl chloride resins, chlorinated vinyl chloride resins, etc. More than one species may be contained.

【0019】本発明で用いられるダイは、特に限定され
ず、パイプ成型用、シート成型用、フィルム成型用、異
形成型用などいずれのダイも適用できる。
The die used in the present invention is not particularly limited, and any die such as a pipe molding, a sheet molding, a film molding, and a hetero-forming die can be applied.

【0020】ダイ又はその一部を特定の周波数で振動さ
せる方法としては、高周波電力を機械振動パワーに変換
する振動子(電気音響変換器)を振動させたい部分にネ
ジ等で接合し、振動子に高周波電力を供給する方法が挙
げられる。振動子としては、一般に、電圧を加えると変
位や力が発生する圧電体(チタン酸バリウム系またはチ
タン酸ジルコン酸鉛系)と金属とをボルトで締め付けて
一体化したボルト締めランジュバン型振動子が好適に用
いられる。振動子を駆動する高周波電源は、発振回路、
電圧増幅器、電力増幅器、インピーダンス整合回路等よ
りなる発振器が通常使用される。
As a method of vibrating the die or a part thereof at a specific frequency, a vibrator (electroacoustic transducer) for converting high-frequency power into mechanical vibration power is joined to a portion to be vibrated with a screw or the like, and the vibrator is vibrated. For supplying high-frequency power to the power supply. As a vibrator, a bolted Langevin type vibrator is generally used in which a piezoelectric material (barium titanate or lead zirconate titanate), which generates a displacement or a force when a voltage is applied thereto, and a metal are tightened with a bolt and integrated. It is preferably used. The high-frequency power supply that drives the vibrator includes an oscillation circuit,
An oscillator composed of a voltage amplifier, a power amplifier, an impedance matching circuit and the like is usually used.

【0021】またダイの振動部は、特定の周波数で共振
するように設計する必要がある。共振条件が満たされな
い場合、10kHz以上の周波数で金属体を振動させる
のは原理的に難しい。
The vibrating part of the die needs to be designed to resonate at a specific frequency. If the resonance condition is not satisfied, it is difficult in principle to vibrate the metal body at a frequency of 10 kHz or more.

【0022】本発明に用いられる押出機としては、プラ
スチックの成型加工で一般的に用いられるスクリュー押
出機であり、特に限定されるものではないが、1軸スク
リュー押出機、2軸スクリュー押出機、3本以上のスク
リューを備えた多軸スクリュー押出機が挙げられ、いず
れも好適に用いられる。中でも混練効果の優れた2軸異
方向回転スクリュー押出機がより好適に用いられる。
The extruder used in the present invention is a screw extruder generally used in plastic molding, and is not particularly limited, but is a single screw extruder, a twin screw extruder, or the like. A multi-screw extruder equipped with three or more screws is mentioned, and any of them is suitably used. Among them, a biaxially different-direction rotary screw extruder having an excellent kneading effect is more preferably used.

【0023】本発明においては、樹脂を冷却、賦形する
にあたり、必要に応じてフォーミングダイ、冷却水槽等
の賦形装置を設置すればよい。
In the present invention, when cooling and shaping the resin, a shaping device such as a forming die and a cooling water tank may be provided as necessary.

【0024】本発明によれば、塩化ビニル系樹脂組成物
を押出成形する際、厚みが1mm〜10mmの流路を流
動する溶融物に、周波数10kHz〜50kHzの振動
を振動方向と溶融物の流動方向の成す角度が20°〜9
0°の範囲になるように印加することで、その振動が溶
融物の内部まで伝搬し、成形体の肉厚方向全体にゲル化
度が向上し、樹脂の特性を効果的に引き出すことができ
る。
According to the present invention, when extruding a vinyl chloride resin composition, a vibration having a frequency of 10 kHz to 50 kHz is applied to the melt flowing through the flow path having a thickness of 1 mm to 10 mm in the vibration direction and the flow of the melt. Angle between directions is 20 ° -9
By applying the vibration so as to be in the range of 0 °, the vibration propagates to the inside of the melt, the degree of gelation is improved in the entire thickness direction of the molded body, and the characteristics of the resin can be effectively extracted. .

【0025】[0025]

【発明の実施の形態】図1は、本発明の実施の一形態で
用いる樹脂管製造装置の一例を示す概略構成図であり、
図2は図1中の樹脂流路4近傍の拡大図である。図1に
おいて、原料である樹脂組成物はホッパー1を介して押
出機2に供給され、ここで溶融混練される。押出機2
は、複数のスクリューフライト13を有する2本のスク
リュー19が異なる方向に回転する2軸異方向回転スク
リュー押出機である。ここで得られた樹脂溶融物はアダ
プター3からパイプ成型用ダイ15内の樹脂流路4に送
られ、樹脂流路4を所定の剪断粘度で流動する樹脂溶融
物に、所定の周波数及び振幅で押出方向に振動するマン
ドレル8より振動が印加される。該樹脂溶融物は、次い
で樹脂吐出口6より押し出され、所望寸法の樹脂管7が
得られる。
FIG. 1 is a schematic diagram showing an example of a resin pipe manufacturing apparatus used in one embodiment of the present invention.
FIG. 2 is an enlarged view of the vicinity of the resin flow path 4 in FIG. In FIG. 1, a resin composition as a raw material is supplied to an extruder 2 via a hopper 1, where it is melt-kneaded. Extruder 2
Is a two-axis counter-rotating screw extruder in which two screws 19 having a plurality of screw flights 13 rotate in different directions. The resin melt obtained here is sent from the adapter 3 to the resin flow path 4 in the pipe molding die 15 and flows through the resin flow path 4 at a predetermined frequency and amplitude into a resin melt flowing at a predetermined shear viscosity. Vibration is applied from the mandrel 8 which vibrates in the extrusion direction. The resin melt is then extruded from a resin discharge port 6 to obtain a resin tube 7 having a desired size.

【0026】図2に示すように、樹脂流路4は所定の間
隙dを有し、またマンドレル8は所定の勾配αを持つテ
ーパー部16を有する。マンドレル8は、振動子11に
よりコーン10を介して押出方向に振動する。すなわ
ち、発振器12(周波数20kHz、最大出力3.6k
W)から供給された高周波電流により振動子11で発生
した振動が、コーン10で拡幅されてマンドレル8に伝
送される。コーン10のノード部にはフランジ18が設
けられ、ダイ15のキャビティ5と連結することにより
振動子を支持している。また、マンドレル8の外周に、
外面にマニホールド17を有する補助マンドレル9が取
り付けられ、ダイ15内における溶融樹脂の滞留時間分
布の均一化が図られている。
As shown in FIG. 2, the resin flow path 4 has a predetermined gap d, and the mandrel 8 has a tapered portion 16 having a predetermined gradient α. The mandrel 8 is vibrated by the vibrator 11 through the cone 10 in the pushing direction. That is, the oscillator 12 (frequency 20 kHz, maximum output 3.6 k
The vibration generated in the vibrator 11 by the high-frequency current supplied from W) is widened by the cone 10 and transmitted to the mandrel 8. A flange 18 is provided at a node portion of the cone 10 and supports the vibrator by being connected to the cavity 5 of the die 15. Also, on the outer periphery of the mandrel 8,
An auxiliary mandrel 9 having a manifold 17 is attached to the outer surface, so that the distribution of the residence time of the molten resin in the die 15 is made uniform.

【0027】図3は、本発明の他の実施の形態において
用いられる樹脂シート製造装置の一例を示す概略構成図
であり、図4は図3中の樹脂流路4近傍の拡大図であ
る。図3において、押出機2は図1中のものと同一のも
ので、ここで得られた樹脂溶融物は、アダプター3から
シート成型用ダイ20内の所定の間隙dを有する樹脂流
路4に送られ、樹脂流路4を所定の剪断粘度で流動する
樹脂溶融物に、所定の周波数及び振幅で振動するホーン
21より振動が印加される。該樹脂溶融物は、次いで樹
脂吐出口6より押し出され、所望寸法の樹脂シート22
が得られる。
FIG. 3 is a schematic configuration diagram showing an example of a resin sheet manufacturing apparatus used in another embodiment of the present invention, and FIG. 4 is an enlarged view near the resin flow path 4 in FIG. In FIG. 3, an extruder 2 is the same as that in FIG. 1, and a resin melt obtained here is transferred from an adapter 3 to a resin flow path 4 having a predetermined gap d in a sheet forming die 20. Vibration is applied from a horn 21 that vibrates at a predetermined frequency and amplitude to the resin melt that is sent and flows through the resin flow path 4 at a predetermined shear viscosity. The resin melt is then extruded from the resin discharge port 6 and a resin sheet 22 having a desired size is formed.
Is obtained.

【0028】ホーン21は振動子11によりコーン10
を介して振動するが、ホーン21の振動方向と溶融樹脂
の流動方向が90°になるように、コーン10のノード
部に設けたフランジ18とダイ20のキャビティ5が連
結されている。
The horn 21 is driven by the vibrator 11 to make the cone 10
The flange 18 provided at the node of the cone 10 and the cavity 5 of the die 20 are connected so that the vibration direction of the horn 21 and the flow direction of the molten resin are 90 °.

【0029】[0029]

【実施例】本発明をさらに詳しく説明するために、以下
に実施例を挙げる。
The present invention will be described in more detail with reference to the following examples.

【0030】 (実施例1) [原料配合] 塩化ビニル樹脂(重合度1000) 100部 有機錫系安定剤 1.5部 ステアリン酸カルシウム 1部 ステアリン酸 1部 ポリエチレンワックス 0.5部 図1に示した装置を用い、上記原料配合をホッパー1よ
り供給し、バレル温度が前部より175℃、190℃、
190℃に設定された押出機(φ=50mm、L/D=
30)2で樹脂組成物を溶融混練した。該溶融物をアダ
プター3から厚み3mmの樹脂流路4に送り、周波数2
0kHz、最大振幅30μmで押出方向に振動するマン
ドレル8より該溶融物に振動を印加した。次いで樹脂吐
出口6より100kg/hの吐出量で押し出し、外径3
2mm、内径25mmの塩化ビニル樹脂管7を得た。
(Example 1) [Blend of raw materials] 100 parts of vinyl chloride resin (degree of polymerization: 1000) Organotin stabilizer 1.5 parts Calcium stearate 1 part Stearic acid 1 part Polyethylene wax 0.5 part As shown in FIG. Using the apparatus, the above raw material mixture is supplied from the hopper 1, and the barrel temperature is 175 ° C, 190 ° C,
Extruder set at 190 ° C. (φ = 50 mm, L / D =
30) In 2, the resin composition was melt-kneaded. The melt is sent from the adapter 3 to the resin flow path 4 having a thickness of 3 mm.
Vibration was applied to the melt from a mandrel 8 vibrating in the extrusion direction at 0 kHz and a maximum amplitude of 30 μm. Next, the resin was extruded from the resin discharge port 6 at a discharge rate of 100 kg / h,
A vinyl chloride resin tube 7 having a diameter of 2 mm and an inner diameter of 25 mm was obtained.

【0031】なお、本実施例で用いたマンドレル8のテ
ーパー部16の勾配は45°であり、テーパー部16に
おける押出方向の平均振幅は20μmである。また、樹
脂流路4における溶融樹脂の剪断粘度は3.0×104
poiseである。
The gradient of the tapered portion 16 of the mandrel 8 used in this embodiment is 45 °, and the average amplitude of the tapered portion 16 in the extrusion direction is 20 μm. The shear viscosity of the molten resin in the resin flow path 4 is 3.0 × 10 4
Poise.

【0032】得られた樹脂管については、シャルピー衝
撃試験機を用い、JIS K 7111に準拠してシャ
ルピー衝撃強度を測定した。その結果を表1に示す。
The obtained resin pipe was measured for Charpy impact strength using a Charpy impact tester in accordance with JIS K 7111. Table 1 shows the results.

【0033】 (実施例2) [原料配合] 塩化ビニル樹脂(重合度1000) 100部 有機錫系安定剤 1.5部 ステアリン酸カルシウム 1部 ステアリン酸 1部 ポリエチレンワックス 0.5部 図3に示した装置を用い、上記原料配合をホッパー1よ
り供給し、バレル温度が前部より175℃、190℃、
190℃に設定された押出機(φ=50mm、L/D=
30)2で樹脂組成物を溶融混練した。該溶融物をアダ
プター3から厚み2mmの樹脂流路4に送り、周波数2
0kHz、最大振幅30μmで溶融物の流動方向に対し
垂直方向に振動するホーン21より該溶融物に振動を印
加した。次いで樹脂吐出口6より100kg/hの吐出
量で押し出し、厚み4mm、幅300mmの塩化ビニル
樹脂製シート22を得た。
(Example 2) [Raw material blend] 100 parts of vinyl chloride resin (degree of polymerization: 1000) Organotin stabilizer 1.5 parts Calcium stearate 1 part Stearic acid 1 part Polyethylene wax 0.5 part As shown in FIG. Using the apparatus, the above raw material mixture is supplied from the hopper 1, and the barrel temperature is 175 ° C, 190 ° C,
Extruder set at 190 ° C. (φ = 50 mm, L / D =
30) In 2, the resin composition was melt-kneaded. The melt is sent from the adapter 3 to the resin flow path 4 having a thickness of 2 mm,
Vibration was applied to the melt from a horn 21 having a frequency of 0 kHz and a maximum amplitude of 30 μm and vibrating in a direction perpendicular to the flow direction of the melt. Subsequently, it was extruded from the resin discharge port 6 at a discharge rate of 100 kg / h to obtain a vinyl chloride resin sheet 22 having a thickness of 4 mm and a width of 300 mm.

【0034】なお、樹脂流路4における溶融樹脂の剪断
粘度は3.0×104poiseである。得られた樹脂
シートについては、シャルピー衝撃強度を測定した。そ
の結果を表1に示す。
The shear viscosity of the molten resin in the resin flow path 4 is 3.0 × 10 4 poise. The Charpy impact strength of the obtained resin sheet was measured. Table 1 shows the results.

【0035】(比較例1)樹脂流路4の厚みが15mm
であること以外は、実施例1と同様にして行い、外径3
2mm、内径25mmの塩化ビニル樹脂管7を得た。得
られた管については、実施例1と同様の測定を行った。
その結果を表1に示す。
(Comparative Example 1) The thickness of the resin flow path 4 is 15 mm
The procedure was performed in the same manner as in Example 1 except that
A vinyl chloride resin tube 7 having a diameter of 2 mm and an inner diameter of 25 mm was obtained. About the obtained pipe | tube, the same measurement as Example 1 was performed.
Table 1 shows the results.

【0036】(比較例2)マンドレルが図3に示すよう
な勾配5°のテーパー部を有するものであること以外
は、実施例1と同様にして行い、外径32mm、内径2
5mmの塩化ビニル樹脂管7を得た。得られた管につい
ては、実施例1と同様の測定を行った。その結果を表1
に示す。
Comparative Example 2 The procedure was the same as in Example 1 except that the mandrel had a tapered portion having a gradient of 5 ° as shown in FIG.
A 5 mm vinyl chloride resin tube 7 was obtained. About the obtained pipe | tube, the same measurement as Example 1 was performed. Table 1 shows the results.
Shown in

【0037】(比較例3)周波数を60kHzとしたこ
と以外は、実施例1と同様にして行い、外径32mm、
内径25mmの塩化ビニル樹脂管7を得た。得られた管
については、実施例1と同様の測定を行った。その結果
を表1に示す。
(Comparative Example 3) The same procedure as in Example 1 was carried out except that the frequency was set to 60 kHz.
A vinyl chloride resin tube 7 having an inner diameter of 25 mm was obtained. About the obtained pipe | tube, the same measurement as Example 1 was performed. Table 1 shows the results.

【0038】(比較例4)マンドレル8を振動させなか
ったこと以外は、実施例1と同様にして行い、外径32
mm、内径25mmの塩化ビニル樹脂管7を得た。得ら
れた管については、実施例1と同様の測定を行った。そ
の結果を表1に示す。
(Comparative Example 4) The same procedure as in Example 1 was carried out except that the mandrel 8 was not vibrated.
Thus, a vinyl chloride resin tube 7 having an inner diameter of 25 mm and an inner diameter of 25 mm was obtained. About the obtained pipe | tube, the same measurement as Example 1 was performed. Table 1 shows the results.

【0039】(比較例5)ホーン21を振動させなかっ
たこと以外は、実施例2と同様にして行い、厚み4m
m、幅300mmの塩化ビニル樹脂シート22を得た。
得られた樹脂シートについては、実施例2と同様の測定
を行った。その結果を表1に示す。
(Comparative Example 5) The same procedure as in Example 2 was carried out except that the horn 21 was not vibrated, and the thickness was 4 m.
m, a vinyl chloride resin sheet 22 having a width of 300 mm was obtained.
About the obtained resin sheet, the same measurement as Example 2 was performed. Table 1 shows the results.

【0040】(比較例6)図5及び図6に示すように、
押出機2のスクリュー19の可塑化混練ゾーンのスクリ
ューフライト13に切欠14を設けたこと、及びマンド
レル8を振動させないこと以外は基本的に実施例1と同
様にして行った。ただし、押出機2の負荷が限界値を越
えてしまったため、吐出量を70kg/hに落として行
い、外径32mm、内径25mmの塩化ビニル樹脂管7
を得た。得られた管については、実施例1と同様の測定
を行った。その結果を表1に示す。
Comparative Example 6 As shown in FIGS. 5 and 6,
The procedure was basically the same as that of Example 1 except that the notch 14 was provided in the screw flight 13 of the plasticizing kneading zone of the screw 19 of the extruder 2 and that the mandrel 8 was not vibrated. However, since the load of the extruder 2 exceeded the limit value, the discharge rate was reduced to 70 kg / h, and the extruder 2 was used.
I got About the obtained pipe | tube, the same measurement as Example 1 was performed. Table 1 shows the results.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】以上説明した通り本発明によれば、塩化
ビニル系樹脂組成物を押出成形する際、厚みが1mm〜
10mmの流路を流動する溶融物に、周波数10kHz
〜50kHzの振動を振動方向と溶融物の流動方向の成
す角度が20°〜90°の範囲になるように印加するこ
とで、その振動が溶融物の内部まで伝搬し、成形体の肉
厚方向全体にゲル化度が向上し、樹脂の特性を効果的に
引き出すことができる。
As described above, according to the present invention, when a vinyl chloride resin composition is extruded, the thickness is from 1 mm to 1 mm.
The frequency of 10 kHz is applied to the melt flowing through the 10 mm flow path.
By applying a vibration of ~ 50 kHz so that the angle between the vibration direction and the flow direction of the melt is in the range of 20 ° to 90 °, the vibration propagates to the inside of the melt and the thickness direction of the molded body The degree of gelation is improved as a whole, and the properties of the resin can be effectively brought out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に用いる樹脂管製造装置
の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an example of a resin pipe manufacturing apparatus used in an embodiment of the present invention.

【図2】図1中の樹脂流路4近傍の拡大図である。FIG. 2 is an enlarged view of the vicinity of a resin flow path 4 in FIG.

【図3】本発明の他の実施の形態に用いる樹脂シート製
造装置の一例を示す概略構成図である。
FIG. 3 is a schematic configuration diagram illustrating an example of a resin sheet manufacturing apparatus used in another embodiment of the present invention.

【図4】図3中の樹脂流路4近傍の拡大図である。FIG. 4 is an enlarged view of the vicinity of a resin flow path 4 in FIG.

【図5】従来の押出装置の可塑化混練ゾーンの一例を示
す概略図である。
FIG. 5 is a schematic view showing an example of a plasticizing kneading zone of a conventional extruder.

【図6】図5に示したスクリューの断面図である。FIG. 6 is a sectional view of the screw shown in FIG. 5;

【符号の説明】[Explanation of symbols]

1:ホッパー 2:押出機 3:アダプター 4:ダイの樹脂流路 5:ダイのキャビティ 6:樹脂吐出口 7:樹脂管 8:マンドレル 9:補助マンドレル 10:コーン 11:振動子 12:発振器 13:スクリューフライト 14:切欠 15:ダイ 16:テーパー部 17:マニホールド 18:フランジ 19:スクリュー 20:ダイ 21:ホーン 22:樹脂シート 1: Hopper 2: Extruder 3: Adapter 4: Die resin flow path 5: Die cavity 6: Resin discharge port 7: Resin tube 8: Mandrel 9: Auxiliary mandrel 10: Cone 11: Vibrator 12: Oscillator 13: Screw flight 14: Notch 15: Die 16: Taper 17: Manifold 18: Flange 19: Screw 20: Die 21: Horn 22: Resin sheet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂を押出成形する際に、
間隙が1mm〜10mmの流路を流動する溶融物に、周
波数10kHz〜50kHzの振動を、振動方向と溶融
物の成す角度が20°〜90°の範囲になるように印加
することを特徴とする塩化ビニル系樹脂の押出成形方
法。
1. When extruding a vinyl chloride resin,
A gap having a frequency of 10 kHz to 50 kHz is applied to a melt flowing in a flow path having a gap of 1 mm to 10 mm so that an angle between the vibration direction and the melt is in a range of 20 ° to 90 °. Extrusion molding method for vinyl chloride resin.
JP9307235A 1997-11-10 1997-11-10 Extrusion molding method of vinyl chloride-based resin Pending JPH11138612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9307235A JPH11138612A (en) 1997-11-10 1997-11-10 Extrusion molding method of vinyl chloride-based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9307235A JPH11138612A (en) 1997-11-10 1997-11-10 Extrusion molding method of vinyl chloride-based resin

Publications (1)

Publication Number Publication Date
JPH11138612A true JPH11138612A (en) 1999-05-25

Family

ID=17966671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9307235A Pending JPH11138612A (en) 1997-11-10 1997-11-10 Extrusion molding method of vinyl chloride-based resin

Country Status (1)

Country Link
JP (1) JPH11138612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437938A (en) * 2006-05-13 2007-11-14 Chesney Orme Making extruded profiles using a mould with oscillating moulding surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437938A (en) * 2006-05-13 2007-11-14 Chesney Orme Making extruded profiles using a mould with oscillating moulding surface
GB2437938B (en) * 2006-05-13 2010-06-30 Chesney Orme Moulding of plastics to form continous extruded profiles

Similar Documents

Publication Publication Date Title
Isayev et al. Effect of oscillations during extrusion on rheology and mechanical properties of polymers
JPH01139233A (en) Thermoplastic resin product
US5863480A (en) Process for making a filler reinforced thermoplastic composites having biaxially oriented components
EP1645381A1 (en) Device for imparting ultrasonic vibration to resin material, method of melt-molding resin material using the device, and resin composition
CA2003457A1 (en) Method and apparatus for extrusion
US20170190865A1 (en) Single and twin screw extruders with ultrasound horns for decrosslinking and devulcanization
KR20080072902A (en) Method for applying ultrasonic oscillation, and resin composition
JPH03215016A (en) Extruding method and device thereof
JPH11138612A (en) Extrusion molding method of vinyl chloride-based resin
JP2939284B2 (en) Plasticizing method and its device for molding material
TW498021B (en) Methods process for resin composition pellets
JPH10315299A (en) Manufacture of resin pipe and device therefor
JP3582606B2 (en) Extrusion molding equipment
KR20080090810A (en) Microwave applying extruder for manufacturing honeycomb structural body
EP0394958A2 (en) Method of plasticizing molding material and apparatus therefor
Maidin et al. Investigation of Mechanical Properties of Recycled ABS Printed with Open Source FDM Printer Integrated with Ultrasound Vibration
JPH10109348A (en) Hard vinyl chloride pipe and its production
Amoroso et al. Novel Nanocomposite Materials for Improving Passive Layers in Air-coupled Ultrasonic Transducer Applications
CA2633175A1 (en) Method for making a composite product, and a composite product
JP2589606Y2 (en) Extrusion foaming equipment
JP2002240124A (en) Method for producing three-layered resin pipe
JP2018199230A (en) Method and apparatus for recycling and producing pellet including carbon fiber
JPH11277664A (en) Thermoplastic resin foamed body containing wood powder and its manufacture
JPH054269A (en) Production equipment of crosslinked foamed polyolefin-based resin sheet
JPH03215017A (en) Blow molding