JPH11121072A - Connecting member and its manufacture - Google Patents

Connecting member and its manufacture

Info

Publication number
JPH11121072A
JPH11121072A JP28100497A JP28100497A JPH11121072A JP H11121072 A JPH11121072 A JP H11121072A JP 28100497 A JP28100497 A JP 28100497A JP 28100497 A JP28100497 A JP 28100497A JP H11121072 A JPH11121072 A JP H11121072A
Authority
JP
Japan
Prior art keywords
resin layer
photo
conductive particles
conductive
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28100497A
Other languages
Japanese (ja)
Other versions
JP3562615B2 (en
Inventor
Isao Tsukagoshi
功 塚越
Junji Shirogane
淳司 白金
Hideji Kanota
秀司 叶多
Koji Kobayashi
宏治 小林
Yukihisa Hirozawa
幸寿 廣澤
Kazuya Matsuda
和也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP28100497A priority Critical patent/JP3562615B2/en
Publication of JPH11121072A publication Critical patent/JPH11121072A/en
Application granted granted Critical
Publication of JP3562615B2 publication Critical patent/JP3562615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PROBLEM TO BE SOLVED: To fix electronic components to a circuit board, or circuits boards to each other by adhesive and electrically connect both electrodes to each other by forming a single-layer conductive grain densely dispersed part arranged on a photo-curing resin layer formed on an exfoliative base material. SOLUTION: At first, a photo-curing resin layer is formed on an exfoliative base material 1. Secondly, a light 5 is irradiated on the photo-curing resin layer 2 via a mask 3 having a through hole 4 in its necessary part so that a hard adhesive part 6 and a weak adhesive part 7 are formed on the surface of the resin layer 2. Thirdly, conductive grains 8 are dispersed on the photo-curing resin so that a conductive grain densely dispersed part for sticking the conductive grains 8 on the hard adhesive part 6 is formed. Forthly, an adhesive film 9 is formed on, at least, the weak adhesive part 7 of the photo-curing resin layer 2 as a connecting member of the photo-curing resin layer 2 as necessary. Then, the densely dispersed region of the conductive grains 8 is pressurized between rolls or parallel plates while being heated as necessary so that its whole body or one part can be embedded in the hard adhesive part 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品と回路板
や、回路板同士を接着固定すると共に、両者の電極同士
を電気的に接続する接続部材とその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting member for fixing an electronic component to a circuit board, or for bonding and fixing the circuit boards to each other, and for electrically connecting both electrodes, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子部品の小型薄型化に伴い、こ
れらに用いる回路は高密度、高精細化しており、このよ
うな電子部品と微細電極の接続は、従来のハンダやゴム
コネクタなどでは対応が困難であることから、最近では
分解能に優れた異方導電性の接着剤や膜状物(以下接続
部材)が多用されている。この接続部材は、導電粒子を
所定量含有した接着剤からなるもので、この接続部材を
電子部品と電極や回路との間に設け、加圧または加熱加
圧手段を構じることによって、両者の電極同士が電気的
に接続されると共に、電極に隣接して形成されている電
極同士には絶縁性を付与して電子部品と回路とが接着固
定されるものである。上記接続部材を高分解能化するた
めの基本的な考えは、導電粒子の粒径を隣接電極間の絶
縁部分よりも小さくすることで隣接電極間における絶縁
性が確保され、併せて導電粒子の含有量をこの粒子同士
が接触しない程度とすることにより接続部分における導
通性が確実に得られるということである。しかしなが
ら、導電粒子の粒径を小さくすると、粒子表面積の著し
い増加により粒子が2次凝集を起こして隣接電極間の絶
縁性が保持できなくなり、また導電粒子の含有量を滅少
すると接続すべき回路上の導電粒子の数も減少すること
から接触点数が不足し接続電極閲での導通が得られなく
なるため、長期接続信頼性を保ちながら接続部材を高分
解能化することは極めて困難であった。このような微細
電極や回路の接続を可能とし、かつ接続信頼性に債れた
接続部材として、我々は先に特願平9−108471号
において、接着フィルムの表面に導電粒子を散布してな
る導電粒子が表面層に偏在した接続部材を提案した。こ
れによれば、導電粒子の2次凝集の防止や導電粒子含有
層の極限薄肉化および接着剤中の導電性異物の除去が可
能などにより、半導体チップのようなドット状の電極
や、TABやFPCなどの絶縁された多数の平行電極を
有するライン状の微細電極の接続が可能となる。
2. Description of the Related Art In recent years, as electronic components have become smaller and thinner, circuits used in these components have become higher in density and higher in definition. Since it is difficult to cope with the problem, recently, anisotropic conductive adhesives and film-like materials (hereinafter referred to as connection members) having excellent resolution have been frequently used. The connecting member is made of an adhesive containing a predetermined amount of conductive particles, and the connecting member is provided between the electronic component and the electrode or the circuit, and a pressurizing or heating pressurizing means is provided. The electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with insulating properties so that the electronic component and the circuit are bonded and fixed. The basic idea for increasing the resolution of the connection member is to make the particle size of the conductive particles smaller than the insulating portion between the adjacent electrodes, thereby ensuring insulation between adjacent electrodes, and at the same time, containing conductive particles. By setting the amount to such a degree that the particles do not come into contact with each other, the conductivity at the connection portion can be reliably obtained. However, if the particle size of the conductive particles is reduced, the particles will undergo secondary aggregation due to a remarkable increase in the surface area of the particles, making it impossible to maintain insulation between adjacent electrodes. Since the number of the above-mentioned conductive particles also decreases, the number of contact points becomes insufficient, and conduction at the connection electrode cannot be obtained. Therefore, it has been extremely difficult to increase the resolution of the connection member while maintaining long-term connection reliability. As a connecting member which enables connection of such fine electrodes and circuits and has high connection reliability, we previously disclosed in Japanese Patent Application No. Hei 9-108471 by spraying conductive particles on the surface of an adhesive film. A connecting member in which conductive particles are unevenly distributed on the surface layer was proposed. According to this, a dot-like electrode such as a semiconductor chip, a TAB or the like can be prevented by preventing the secondary aggregation of the conductive particles, making the conductive particle-containing layer extremely thin and removing the conductive foreign matter in the adhesive. It is possible to connect a line-shaped fine electrode having a large number of insulated parallel electrodes such as an FPC.

【0003】[0003]

【発明が解決しようとする課題】上記方法によれば、簡
単に高精度な接続部材を得る方法として優れているが、
導電粒子を散布して接着フィルムの全面にその表面粘着
性により粒子を固定する方式のために、微視的に見ると
導電粒子の散布分布にばらつきが見られ、工業的な大量
生産がおこない難い欠点があった。本発明は上記欠点に
鑑みなされたもので、要部に導電粒子の密集領域を有す
る接続部材とその工業的な製造法を提供せんとするもの
である。
The above method is excellent as a method for easily obtaining a high-precision connection member.
Due to the method of spraying conductive particles and fixing the particles on the entire surface of the adhesive film by the surface adhesiveness, the distribution of the conductive particles is uneven when viewed microscopically, making industrial mass production difficult. There were drawbacks. The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a connection member having a dense area of conductive particles in a main part and an industrial production method thereof.

【0004】[0004]

【課題を解決するための手段】本発明の1は、剥離可能
な基材上に形成された光硬化性樹脂層の表面に単層で配
置された導電粒子密集部が形成されてなる接続部材に関
する。本発明の2は、剥離可能な基材上に形成された光
硬化性樹脂層上の表面に単層で配置された導電粒子密集
部を有し、光硬化性樹脂層の少なくとも一部に接着フィ
ルムが形成されてなる接続部材に関する。本発明の3
は、下記工程よりなる接続部材の製造方法に関する。 (1)剥離可能な基材上に光硬化性樹脂層を形成する工
程 (2)必要部に貫通孔を有するマスクを介して光硬化性
樹脂層に光を照射し、樹脂層表面に粘着性の強弱部を形
成する工程 (3)導電粒子を樹脂層表面に散布し強粘着部に導電粒
子を貼り付ける導電粒子密集部の形成工程 本発明の4は、下記工程よりなる接続部材の製造方法に
関する。 (1)剥離可能な基材上に光硬化性樹脂層を形成する工
程 (2)必要部に貫通孔を有するマスクを介して光硬化性
樹脂層に光を照射し、樹脂層表面に粘着性の強弱部を形
成する工程 (3)導電粒子を樹脂層表面に散布し強粘着部に導電粒
子を貼り付ける導電粒子密集部の形成工程 (4)少なくとも光硬化性樹脂層の弱粘着部面に接着フ
ィルムを形成する工程
A first object of the present invention is to provide a connecting member in which a conductive particle dense portion arranged as a single layer is formed on the surface of a photocurable resin layer formed on a peelable substrate. About. A second aspect of the present invention has a conductive particle dense portion arranged in a single layer on a surface of a photocurable resin layer formed on a peelable substrate, and adheres to at least a part of the photocurable resin layer. The present invention relates to a connection member formed with a film. 3 of the present invention
Relates to a method for manufacturing a connection member comprising the following steps. (1) Step of forming a photo-curable resin layer on a peelable substrate (2) Irradiation of light to the photo-curable resin layer through a mask having a through hole in a necessary portion, and adhesion of the resin layer surface (3) Spreading conductive particles on the surface of the resin layer and attaching conductive particles to the strongly adhesive portion. Step of forming conductive particle dense portion (4) The method of manufacturing a connection member according to the present invention comprises: About. (1) Step of forming a photo-curable resin layer on a peelable substrate (2) Irradiation of light to the photo-curable resin layer through a mask having a through hole in a necessary portion, and adhesion of the resin layer surface (3) Step of forming conductive particle dense part where conductive particles are dispersed on the resin layer surface and conductive particles are adhered to the strong adhesive part (4) At least on the weak adhesive part surface of the photocurable resin layer Step of forming an adhesive film

【0005】[0005]

【発明の実施の形態】本発明を図面を参照しながら説明
する。図1は、本発明の一実施例を説明する断面模式図
であり接続部材の製造方法を示す。図1(a)は、剥離
可能な基材1上に光硬化性樹脂層2を形成する工程であ
る。ここに光硬化性樹脂層2が剥離可能な基材1として
は、ポリエチレンやポリテトラフルオロエチレン等の低
表面張力材料や、ポリエチレンテレフタレート等をシリ
コーン等で表面処理するなどしたものを例示できる。光
硬化性樹脂層2は、光硬化性と熱反応性の両特性を持っ
ものも適用できる。エネルギー線として最も一般的な光
硬化性の場合は熱反応性も合わせて有するが、その主な
構成材料は光硬化性樹脂、光開始剤、および樹脂類の混
合物やその他の添加剤よりなるものが代表的である。図
1(b)は、必要部に貫通孔4を有するマスク3を介し
て光硬化性樹脂層2に光5を照射し、樹脂層2の表面に
粘着性の強弱部を形成する工程である。マスク3は、プ
ラスチックフィルムや金属箔およびガラス、石英等が適
用でき、マスク3を剥離する際を考慮して剥離剤で表面
処理する事が好ましい。マスク3と光硬化性樹脂層2は
気泡が入らぬように密着させることで配置精度が向上す
る。図1(c)は、(b)により得られた強粘着部6と
弱部7を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view for explaining one embodiment of the present invention, and shows a method for manufacturing a connecting member. FIG. 1A shows a step of forming a photocurable resin layer 2 on a peelable substrate 1. Here, examples of the substrate 1 from which the photocurable resin layer 2 can be peeled include low surface tension materials such as polyethylene and polytetrafluoroethylene, and those obtained by subjecting polyethylene terephthalate or the like to a surface treatment with silicone or the like. As the photo-curable resin layer 2, one having both properties of photo-curability and thermal reactivity can be applied. The most common photocurable energy ray is that it also has thermal reactivity, but its main constituent material is a photocurable resin, a photoinitiator, and a mixture of resins and other additives. Is typical. FIG. 1B shows a step of irradiating the photocurable resin layer 2 with light 5 through a mask 3 having a through hole 4 in a necessary portion to form a strong and weak adhesive portion on the surface of the resin layer 2. . The mask 3 can be made of a plastic film, metal foil, glass, quartz, or the like, and is preferably surface-treated with a release agent in consideration of the time when the mask 3 is released. The mask 3 and the photocurable resin layer 2 are closely attached so that air bubbles do not enter, thereby improving the arrangement accuracy. FIG. 1C shows the strong adhesive part 6 and the weak part 7 obtained by (b).

【0006】図1(d)は、導電粒子8を光硬化性樹脂
層表面に散布し強粘着部6に導電粒子8を貼り付ける導
電粒子密集部の形成工程である。以上により光硬化性樹
脂層の表面に単層で配置された導電粒子密集部10(後
述)が形成されてなる接続部材がえられる。導電粒子8
は例えば噴霧ノズルからの散布などで可能であり、強粘
着部6に導電粒子8を好ましくは単層で固定できる。一
方、弱粘着部7は粘着性が低いので導電粒子8は付着し
難い。マスク3は、光硬化性樹脂層2がポジ、ネガ型の
場合図1(c)で取り除くことも可能であるが、ポジ型
の場合この工程まで残して置くと導電粒子8は弱粘着部
7に付着し難い。導電粒子8としては、Au,A9,N
i,Cu,W,Sb,Sn、はんだ等の金属粒子やカー
ボン等があり、これら及び非導電性のガラス、セラミッ
クス、プラスチック等の高分子核材等に、前記した導電
層を被覆などにより形成したものでもよい。さらに導電
粒子を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子
と絶縁粒子の併用なども適用可能である。これらの導電
粒子は複合して適用可能であり、また光硬化性樹脂層の
表面に単層で存在させ、合わせて良好な接続信頼性を得
るためには、粒子径分布が狭い物が好ましく平均粒子径
±50%程度以内がより好ましい。はんだ等の熱溶融金
属や、プラスチック等の高分子核材に導電層を形成した
ものは、加熱加圧もしくは加圧により変形性を有し、積
層時に回路との接触面積が増加し信頼性が向上するので
好ましい。特に高分子類を核とした場合、はんだのよう
に融点を示さないので軟化の状態を接続温度で広く制御
でき、電極の厚みや平坦性のばらつきに対応し易い接続
部材がえられるので好ましい。また例えばNiやW等の
硬質金属粒子の場合、導電粒子が電極や配線パターンに
突きささるので、酸化膜や汚染層の存在する場合にも低
い接続抵抗が得られ、加えて接続部の固定による膨脹収
縮の抑制にも有効で信頼性が陶上する。
FIG. 1D shows a process of forming a conductive particle dense portion where the conductive particles 8 are scattered on the surface of the photocurable resin layer and the conductive particles 8 are adhered to the strongly adhesive portion 6. As described above, a connection member having the conductive particle dense portions 10 (described later) arranged in a single layer on the surface of the photocurable resin layer is obtained. Conductive particles 8
Can be applied by spraying from a spray nozzle, for example, and the conductive particles 8 can be fixed to the strongly adhesive portion 6 preferably in a single layer. On the other hand, since the weak adhesive portion 7 has low adhesiveness, the conductive particles 8 hardly adhere. The mask 3 can be removed in FIG. 1C if the photo-curable resin layer 2 is a positive or negative type, but if the photo-curable resin layer 2 is left up to this step in the case of a positive type, the conductive particles 8 will become weak adhesive portions 7. Hard to adhere to Au, A9, N as the conductive particles 8
There are metal particles such as i, Cu, W, Sb, Sn, and solder, carbon, and the like, and the above-described conductive layer is formed on these and non-conductive polymer nucleus materials such as glass, ceramics, and plastics by coating. May be done. Further, insulating coated particles obtained by coating conductive particles with an insulating layer, and a combination use of conductive particles and insulating particles are also applicable. These conductive particles can be applied in a composite form, and in order to obtain a single layer on the surface of the photocurable resin layer and obtain good connection reliability, a material having a narrow particle size distribution is preferable. More preferably, the particle diameter is within ± 50%. A conductive layer formed on a hot-melt metal such as solder or a polymer nucleus material such as plastic is deformable by heating and pressing or pressurizing, increasing the contact area with the circuit during lamination and increasing reliability. It is preferable because it improves. In particular, when a polymer is used as a core, a softened state can be widely controlled by a connection temperature since a melting point is not exhibited unlike solder, and a connection member which can easily cope with variations in electrode thickness and flatness is obtained, which is preferable. In the case of hard metal particles such as Ni and W, for example, the conductive particles pierce the electrodes and wiring patterns, so that a low connection resistance can be obtained even in the presence of an oxide film or a contaminant layer. It is also effective in suppressing expansion and contraction due to heat and its reliability is improved.

【0007】図1(e)は光硬化性樹脂層の接続部材と
しての接着特性の低下に対し必要に応じて行う工程であ
り、少なくとも光硬化性樹脂層の弱粘着部7面に接着フ
ィルム9を形成(f)する。この時、導電粒子の密集領
域を保持するため、必要に応じて接着フィルム9により
両面からサンドイッチ状(9)にすることもできる。ま
た導電粒子の密集領域10は、ロール間や平行板間で必
要に応時加熱しながら加圧することで、図1(h)のよ
うに強粘着部6中に全体もしくはその一部を埋め込むこ
とができる。この場合、強粘着部6が硬化反応がほとん
ど進んでいないことから埋没が容易であり、弱粘着部7
は反応が進行しているので接続時の加熱加圧などによっ
ても密集領域10の外に導電粒子が移動しにくい特徴が
ある。さらにこの後で必要に応じて接着フィルム9を形
成出来る。接着フィルム9は、熱可塑性材料や熱や光に
より硬化性を示す材料が広く適用できる。接続後の耐熱
性や耐湿性に優れることから、硬化性材料の適用が好ま
しい。なかでもエポキシ系接着剤は、短時間硬化が可能
で接続作業性が良く、分子構造上接着性に優れる等の特
徴から好ましく適用できる。エポキシ系接着剤は、例え
ば高分子量エポキシ、固形エポキシと液状エポキシ、ウ
レタンやポリエステル、NBR等で変性したエポキシを
主成分とし、硬化剤や触媒、カップリング剤、充填剤な
どを添加してなるものが一般的である。 接着フィルム
9の厚みは、導電粒子の密集領域形成の精度向上の点か
ら接着性の得られる範囲で100μm以下程度と薄い方
が好ましく、50μm以下より好ましくは35μm以下
である。
FIG. 1 (e) shows a step performed as necessary to reduce the adhesive property of the photo-curable resin layer as a connecting member. Is formed (f). At this time, in order to maintain a dense area of the conductive particles, the adhesive film 9 may be used to form a sandwich (9) from both sides as needed. Also, the entire area or a part of the dense area 10 of the conductive particles can be buried in the strong adhesive portion 6 as shown in FIG. it can. In this case, since the hardening reaction has hardly progressed in the strong adhesive portion 6, the embedding is easy, and the weak adhesive portion 7
Since the reaction is in progress, the conductive particles are less likely to move out of the dense area 10 due to heating and pressurizing during connection. Thereafter, the adhesive film 9 can be formed as required. As the adhesive film 9, a thermoplastic material or a material showing curability by heat or light can be widely applied. The use of a curable material is preferred because of its excellent heat resistance and moisture resistance after connection. Among them, an epoxy adhesive is preferably applied because it can be cured in a short time, has good connection workability, and has excellent adhesiveness in terms of molecular structure. Epoxy-based adhesives are, for example, high-molecular-weight epoxies, solid epoxies and liquid epoxies, and epoxies modified with urethane, polyester, NBR, etc. as main components, and added with curing agents, catalysts, coupling agents, fillers, etc. Is common. The thickness of the adhesive film 9 is preferably as thin as about 100 μm or less, more preferably 50 μm or less, and more preferably 35 μm or less, from the viewpoint of improving the precision of forming a dense area of conductive particles, in a range where adhesiveness can be obtained.

【0008】図2及ぴ図3を用いて導電粒子の密集領域
10を説明する。導電粒子8の密集領域10は、図2の
ように隣接する平行電極11同士を導通させることなく
絶縁性を保ち、かつ接続する全ての平行電極間に少なく
とも密集領域10の一部が必ず挟まれる程度に配置す
る。図3のように半導体チップのようなドット状の電極
の場合、電極上に密集領域が必ず存在するように配置す
る。密集領域10中の導電粒子8の数は原則的には1個
あればよいが、2個以上より好ましくは5個以上とする
ことで接続信頼性が向上するので好ましい。なお密集領
域内の導電粒子8の数が少ない場合は、高分解能な接続
部材を得やすい。
The dense area 10 of the conductive particles will be described with reference to FIGS. As shown in FIG. 2, the dense region 10 of the conductive particles 8 maintains the insulation without conducting the adjacent parallel electrodes 11 and at least a part of the dense region 10 is always sandwiched between all the parallel electrodes to be connected. About to place. In the case of a dot-shaped electrode such as a semiconductor chip as shown in FIG. 3, the electrodes are arranged so that a dense area always exists on the electrode. In principle, the number of the conductive particles 8 in the dense region 10 may be one, but it is preferable that the number is two or more, more preferably five or more, because the connection reliability is improved. When the number of conductive particles 8 in the dense area is small, it is easy to obtain a high-resolution connection member.

【0009】本発明によれば、導電粒子8は例えば噴霧
ノズルからの散布などの比較的簡単な方法で可能であ
り、強粘着部6に導電粒子8を好ましくは単層で固定で
きる。一方、弱粘着部7は粘着性が低いので導電粒子8
は付着し難い。したがって導電粒子8の密集領域と導電
粒子のない部分が分離された接続部材が、比較的容易に
得られる。接続部材中に導電粒子8が単層で存在した場
合、接続時の導電粒子8の流れを少なくして、接続電極
上に残る導電粒子数の確保に有効である。接続時に強粘
着部6は、光硬化機能が残存しているために接続部材と
して電極の接着機能を有する。また、本発明によれば、
光硬化性樹脂層1の弱粘着部7面に接着フィルム9を形
成することで、光照射により低下した弱粘着部7の接着
機能を付加でき、加えて導電粒子の密集領域を保持し粒
子の脱落防止に有効である。導電粒子8の密集領域10
は、マスク3により自由に設定可能なため、進展の著し
い微細電極の接続に有効である。更に、本発明によれ
ば、光硬化材料を微細電極の接続に適用できるので、接
続温度の低温化や短時間化が可能となる。そのため電極
のずれがなく高精度の位置合わせが可能である。
According to the present invention, the conductive particles 8 can be fixed by a relatively simple method such as spraying from a spray nozzle, and the conductive particles 8 can be fixed to the strongly adhesive portion 6 preferably in a single layer. On the other hand, since the weakly adhesive portion 7 has low adhesiveness, the conductive particles 8
Is difficult to adhere. Therefore, a connection member in which the dense region of the conductive particles 8 and the portion without the conductive particles are separated can be obtained relatively easily. When the conductive particles 8 are present in a single layer in the connection member, the flow of the conductive particles 8 at the time of connection is reduced, which is effective in securing the number of conductive particles remaining on the connection electrode. At the time of connection, the strongly adhesive portion 6 has an electrode bonding function as a connection member because the photocuring function remains. According to the present invention,
By forming the adhesive film 9 on the surface of the weak adhesive portion 7 of the photocurable resin layer 1, the adhesive function of the weak adhesive portion 7 reduced by light irradiation can be added. It is effective in preventing falling off. Dense area 10 of conductive particles 8
Can be freely set by using the mask 3, which is effective for connection of a fine electrode which is remarkably developed. Further, according to the present invention, since the photocurable material can be applied to the connection of the fine electrodes, it is possible to lower the connection temperature and shorten the connection time. Therefore, high-accuracy positioning can be performed without electrode displacement.

【0010】[0010]

【実施例】以下実施例でさらに詳細に説明するが、本発
明はこれに限定されない。 実施例1 (1)光硬化性樹脂層 固形分重量比でフェノキシ樹脂(ユニオンカーバイド社
製、商品名PKHA)50、光硬化樹脂(エポキシアク
リルオリゴマおよびアクリレートモノマを3/1の重量
比)50、光開始剤(ベンゾフェノン)5、増感剤(ミ
ヒラーケトン)1、ビニルシランカップリング剤5の、
トルエン/酢酸エチルの70%溶液を得た。この溶液を
セパレータ(シリコーン処理ポリエチレンテレフタレー
トフィルム、厚み40μm)にロールコータで塗布し、
70℃20分乾燥し厚み20μmの光硬化性樹脂層を得
た。 (2)マスクと導電粒子の散布 正三角形を隙間無く並べその各頂点に中心を持つような
円形の貫通孔を有するステンレス製メタルマスク(厚み
10μm、サイズ100mm角、孔の直径20μm、ピ
ッチ50μm)の表面を剥離剤で処理し、前記光硬化性
樹脂層に密着させた。メタルマスクの上から、紫外線を
照射(1.0J/cm2)することで、マスク開孔部の
樹脂層の粘着性を低下させた。その後でマスクを除去
し、粒子の散布を行った。導電粒子は粒径4土0.2μ
mのポリスチレン系粒子にNi/Auの厚さ0.1/
0.02μmの金属被覆を形成した導電性粒子を、エア
エジェクタを通して流動化させ、噴霧ノズルから散布し
た。直径20μmの粒子密集領域において、それぞれ5
個以上の粒子が存在した。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. Example 1 (1) Photo-curable resin layer Phenoxy resin (manufactured by Union Carbide Co., Ltd., PKHA) 50, photo-curable resin (3/1 weight ratio of epoxy acrylic oligomer and acrylate monomer) 50 by solid content weight ratio, Photoinitiator (benzophenone) 5, sensitizer (Michler's ketone) 1, vinyl silane coupling agent 5,
A 70% solution of toluene / ethyl acetate was obtained. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater,
After drying at 70 ° C. for 20 minutes, a photocurable resin layer having a thickness of 20 μm was obtained. (2) Dispersion of mask and conductive particles A stainless steel metal mask having a circular through-hole with regular triangles arranged without gaps and having a center at each vertex (thickness: 10 μm, size: 100 mm square, hole diameter: 20 μm, pitch: 50 μm) Was treated with a release agent to adhere to the photocurable resin layer. By irradiating ultraviolet rays (1.0 J / cm 2 ) from above the metal mask, the adhesiveness of the resin layer at the mask opening was reduced. Thereafter, the mask was removed, and particles were scattered. Conductive particles have a particle size of 4 soil 0.2μ
m / polystyrene particles with a thickness of Ni / Au of 0.1 /
The conductive particles having a metal coating of 0.02 μm were fluidized through an air ejector and sprayed from a spray nozzle. In the densely packed region having a diameter of 20 μm, 5
There were more than one particle.

【0011】(3)接続回路 ポリイミドフィルム上に高さ18μmの鋼の回路を有す
る2層FPC回路板(回路ピッチは70μm、電極幅3
0μmの平行回路の電極)と、ガラス1.1mm上に酸
化インジウム厚み0.2μm(1T0、表面抵抗20Ω
/□)の薄膜回路を有する平面電極との接続を行った。
まずIT0電極側に前記接続部材を1.5mm幅で裁置
し、セパレータを剥離した後貼り付けた。この後セパレ
ータを剥離し、FPCと上下回路を位置合わせし接続部
材の有する粘着性により仮接続した。接続回路に比べ接
続部材の粒子密集領域のピッチが細かいので、両者の位
置合わせは不要であり、従来の接続部材と同様な仮接続
が可鮨であった。 (4)接続 ガラス製受け台と押し型よりなる接続装置(加熱ヘッド
幅1.0mm)により、70℃、20kgf/mm2
20秒で加圧しながら、光照射装置(超高圧水銀型ラン
ブ)でガラス製受け台に近接して照射(2.0J/cm
2)した。接続部の温度は100℃以下であった。光硬
化性樹脂層の厚みが厚くマスク照射の影響が少なく、導
電粒子の存在しない弱粘着部も接着可能であった。 (5)評価 両電極を顕微鏡下で透視し、電極間の最大ずれ量を測定
したところ5μm以下であり、ほとんどずれがなかっ
た。相対崎する電極間を接続抵抗、隣接する電極間を絶
縁抵抗として評価したところ、接続抵抗は2Ω以下、絶
縁抵抗は108Ω以上であり。これらは85℃、85%
RH1000時間処理後の耐湿信頼性も変化がほとんど
なく良好な長期接続信頼性を示した。
(3) Connection circuit A two-layer FPC circuit board having a 18 μm-high steel circuit on a polyimide film (circuit pitch: 70 μm, electrode width: 3 μm)
0 μm parallel circuit electrode) and 0.2 μm indium oxide thickness (1T0, surface resistance 20Ω) on 1.1 mm glass
/ □) was connected to a flat electrode having a thin film circuit.
First, the connection member was placed on the IT0 electrode side with a width of 1.5 mm, and the separator was peeled off and attached. Thereafter, the separator was peeled off, the FPC and the upper and lower circuits were aligned, and temporarily connected by the adhesiveness of the connecting member. Since the pitch of the particle dense region of the connecting member is finer than that of the connecting circuit, it is not necessary to align the two, and temporary connection similar to the conventional connecting member was possible. (4) Connection 70 ° C, 20 kgf / mm 2 ,
Irradiation (2.0 J / cm) in close proximity to a glass pedestal using a light irradiation device (ultra high pressure mercury lamp) while applying pressure for 20 seconds.
2 ) I did. The temperature of the connection was 100 ° C. or less. The thickness of the photocurable resin layer was large, the influence of the mask irradiation was small, and a weakly adhesive portion without conductive particles could be bonded. (5) Evaluation Both electrodes were viewed under a microscope and the maximum deviation between the electrodes was measured. The maximum deviation was 5 μm or less, and there was almost no deviation. When the connection resistance was evaluated as the connection resistance between the electrodes which were relatively different from each other and the insulation resistance was determined between the adjacent electrodes, the connection resistance was 2Ω or less and the insulation resistance was 10 8 Ω or more. These are 85 ° C, 85%
The moisture resistance reliability after the RH treatment for 1000 hours showed almost no change, indicating good long-term connection reliability.

【0012】実施例2 突施例1と同様であるが、光硬化惟樹脂層の厚みを10
μmとし、その上にさらに接着フィルムを形成した。接
着フィルムは、ポリエステルフィルムを剥離剤処理した
セバレータよりなる基材上に、高分子量エポキシを主成
分とする厚み10μmの室温で粘着生を有する熱硬化系
接着剤を用い、ロールラミネータにより貼り合わせた。
接続は熱圧着装置(160℃、20kgf/mm2,2
0秒)により行ったが、良好な初期および長期接続信頼
性が得られた。光硬化性樹脂層は熱硬化性も有している
ために熱圧着時に硬化反応が促進されたと考えられる。
Example 2 Same as Example 1 except that the thickness of the photocurable resin layer was 10
μm, and an adhesive film was further formed thereon. The adhesive film was bonded to a substrate made of a severator obtained by treating a polyester film with a release agent, using a thermosetting adhesive having a tackiness at room temperature and a thickness of 10 μm containing a high-molecular-weight epoxy as a main component, using a roll laminator. .
The connection is made by a thermocompression bonding device (160 ° C, 20 kgf / mm 2 , 2
0 seconds), good initial and long-term connection reliability was obtained. It is considered that the curing reaction was promoted during thermocompression bonding because the photocurable resin layer also has thermosetting properties.

【0013】比較例 実施例2の接着フィルム中に導電粒子を5体積%均一分
散し、厚みを20μmとした。この接続部材を画像解析
し直径20μmの面積における粒子密集度を20か所測
定し、同様に測定した実施例1〜2の粒子密集領域と比
較し、表1の結果を得た。均一分散の比較例に比べて、
実施例1〜2共にばらつきが少なく最小部でも粒子数ゼ
ロの部分は存在しなかった。
Comparative Example 5% by volume of conductive particles were uniformly dispersed in the adhesive film of Example 2 to have a thickness of 20 μm. The connection member was image-analyzed, and the particle density in an area having a diameter of 20 μm was measured at 20 places. The results were compared with the particle density regions of Examples 1 and 2 measured in the same manner. Compared to the comparative example of uniform dispersion,
In each of Examples 1 and 2, there was little variation, and there was no portion where the number of particles was zero even in the minimum portion.

【0014】実施例3 実施例2と同様であるが、導電粒子の密集頒域を図3の
ような配置に変更した。そのためメタルマスクを、テス
ト用ICチップの電極配置(電極数250個、突起電極
の高さ20μm)と同じ配列に直径50μmの貫通孔を
有するメタルマスク(厚み25μm)を用いた。接続は
熱圧着装置により行ったが、電極上の粒子数は5個以上
であり、接続信頼性も良好であった。
Example 3 The same as Example 2, except that the dense distribution of the conductive particles was changed to an arrangement as shown in FIG. For this purpose, a metal mask (thickness: 25 μm) having through holes with a diameter of 50 μm in the same arrangement as the electrode arrangement of the test IC chip (250 electrodes, height of the protruding electrode: 20 μm) was used. The connection was performed by a thermocompression bonding apparatus. The number of particles on the electrode was 5 or more, and the connection reliability was good.

【0015】[0015]

【発明の効果】以上詳述したように本発明によれば、要
部に導電粒子の精度の高い密集領域を有する接続部材と
その工業的な製造法を提供出来る。
As described above in detail, according to the present invention, it is possible to provide a connecting member having a dense region of conductive particles with high precision in a main part, and an industrial production method thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す接続部材およびそのの
製造方法の断面模式図である。
FIG. 1 is a schematic cross-sectional view of a connecting member and a method of manufacturing the connecting member according to an embodiment of the present invention.

【図2】本発明の一実施例を示す導電粒子の密集領域の
平面模式図である。
FIG. 2 is a schematic plan view of a dense region of conductive particles according to an embodiment of the present invention.

【図3】本発明の一実施例を示す導電粒子の密集領域の
平面模式図である。
FIG. 3 is a schematic plan view of a dense region of conductive particles according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1基材 2光硬化性樹脂層 3マスク 4貫通孔 5光 6強粘着部 7弱粘着部 8導電粒子 9接着フィルム 10粒子密集領域 11平行電極 12スペース部 1 base material 2 photocurable resin layer 3 mask 4 through hole 5 light 6 strong adhesive part 7 weak adhesive part 8 conductive particles 9 adhesive film 10 particle dense area 11 parallel electrode 12 space part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/36 H05K 3/36 A (72)発明者 小林 宏治 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 (72)発明者 廣澤 幸寿 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 (72)発明者 松田 和也 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H05K 3/36 H05K 3/36 A (72) Inventor Koji Kobayashi 1150 Goshomiya, Oji, Shimodate-shi, Ibaraki Prefecture Gosho, Hitachi Chemical Co., Ltd. Inside the Miya Factory (72) Inventor Yukihisa Hirosawa 1150 Goshomiya, Oji, Shimodate City, Ibaraki Pref.Hitachi Kasei Kogyo Co., Ltd. (72) Kazuya Matsuda 1150 Gozamiya, Shimodate, Ibaraki Hitachi, Hitachi Chemical Goshonomiya Factory Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】剥離可能な基材上に形成された光硬化性樹
脂層の表面に単層で配置された導電粒子密集部が形成さ
れてなる接続部材。
1. A connection member comprising a photo-curable resin layer formed on a peelable substrate and a conductive particle dense portion disposed in a single layer formed on a surface of the photo-curable resin layer.
【請求項2】剥離可能な基材上に形成された光硬化性樹
脂層上の表面に単層で配置された導電粒子密集部を有
し、光硬化性樹脂層の少なくとも一部に接着フィルムが
形成されてなる接続部材。
2. A photo-curable resin layer formed on a peelable substrate, comprising a conductive layer dense portion disposed on a single layer on a surface of the photo-curable resin layer, and an adhesive film on at least a part of the photo-curable resin layer. A connection member formed with.
【請求項3】下記工程よりなる接続部材の製造方法。 (1)剥離可能な基材上に光硬化性樹脂層を形成する工
程 (2)必要部に貫通孔を有するマスクを介して光硬化性
樹脂層に光を照射し、樹脂層表面に粘着性の強弱部を形
成する工程 (3)導電粒子を樹脂層表面に散布し強粘着部に導電粒
子を貼り付ける導電粒子密集部の形成工程
3. A method for manufacturing a connecting member comprising the following steps. (1) Step of forming a photo-curable resin layer on a peelable substrate (2) Irradiation of light to the photo-curable resin layer through a mask having a through hole in a necessary portion, and adhesion of the resin layer surface (3) Step of dispersing conductive particles on the resin layer surface and attaching conductive particles to the strongly adhesive portion
【請求項4】下記工程よりなる接続部材の製造方法。 (1)剥離可能な基材上に光硬化性樹脂層を形成する工
程 (2)必要部に貫通孔を有するマスクを介して光硬化性
樹脂層に光を照射し、樹脂層表面に粘着性の強弱部を形
成する工程 (3)導電粒子を樹脂層表面に散布し強粘着部に導電粒
子を貼り付ける導電粒子密集部の形成工程 (4)少なくとも光硬化性樹脂層の弱粘着部面に接着フ
ィルムを形成する工程
4. A method for manufacturing a connecting member comprising the following steps. (1) Step of forming a photo-curable resin layer on a peelable substrate (2) Irradiation of light to the photo-curable resin layer through a mask having a through hole in a necessary portion, and adhesion of the resin layer surface (3) Step of forming conductive particle dense part where conductive particles are dispersed on the resin layer surface and conductive particles are adhered to the strong adhesive part (4) At least on the weak adhesive part surface of the photocurable resin layer Step of forming an adhesive film
JP28100497A 1997-10-15 1997-10-15 Anisotropic conductive film-like connecting member and method of manufacturing the same Expired - Fee Related JP3562615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28100497A JP3562615B2 (en) 1997-10-15 1997-10-15 Anisotropic conductive film-like connecting member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28100497A JP3562615B2 (en) 1997-10-15 1997-10-15 Anisotropic conductive film-like connecting member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11121072A true JPH11121072A (en) 1999-04-30
JP3562615B2 JP3562615B2 (en) 2004-09-08

Family

ID=17632942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28100497A Expired - Fee Related JP3562615B2 (en) 1997-10-15 1997-10-15 Anisotropic conductive film-like connecting member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3562615B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014010A1 (en) * 2001-08-08 2003-02-20 Jsr Corporation Three-dimensional opto-electronic micro-system
WO2005054388A1 (en) * 2003-12-04 2005-06-16 Asahi Kasei Emd Corporation Anisotropic conductive adhesive sheet and coupling structure
JP2006335910A (en) * 2005-06-03 2006-12-14 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connecting structure
JP2007131791A (en) * 2005-11-11 2007-05-31 Shin Etsu Polymer Co Ltd Adhesive sheet and holding tool
JP2008210585A (en) * 2007-02-23 2008-09-11 Sekisui Chem Co Ltd Manufacturing method of connecting member, and connecting member
JP2009029861A (en) * 2007-07-25 2009-02-12 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
WO2012137796A1 (en) * 2011-04-06 2012-10-11 日東電工株式会社 Process for producing polymer member, and polymer member
WO2015133221A1 (en) * 2014-03-07 2015-09-11 デクセリアルズ株式会社 Anisotropic conductive film and method for producing same
CN109790425A (en) * 2016-10-03 2019-05-21 日立化成株式会社 Conductive film, coiling body, connection structural bodies and connection structural bodies manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387913B2 (en) 2001-08-08 2008-06-17 Jsr Corporation 3D optoelectronic micro system
WO2003014010A1 (en) * 2001-08-08 2003-02-20 Jsr Corporation Three-dimensional opto-electronic micro-system
US8084083B2 (en) 2003-12-04 2011-12-27 Asahi Kasei Emd Corporation Method for manufacturing an anisotropic conductive adhesive sheet
KR100709640B1 (en) * 2003-12-04 2007-04-24 아사히 가세이 일렉트로닉스 가부시끼가이샤 Anisotropic conductive adhesive sheet and connecting structure
JP2011236427A (en) * 2003-12-04 2011-11-24 Asahi Kasei E-Materials Corp Anisotropic electroconductive adhesive sheet and coupling structure
JP4822322B2 (en) * 2003-12-04 2011-11-24 旭化成イーマテリアルズ株式会社 Method for producing anisotropic conductive adhesive sheet
WO2005054388A1 (en) * 2003-12-04 2005-06-16 Asahi Kasei Emd Corporation Anisotropic conductive adhesive sheet and coupling structure
JP2006335910A (en) * 2005-06-03 2006-12-14 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connecting structure
JP2007131791A (en) * 2005-11-11 2007-05-31 Shin Etsu Polymer Co Ltd Adhesive sheet and holding tool
JP2008210585A (en) * 2007-02-23 2008-09-11 Sekisui Chem Co Ltd Manufacturing method of connecting member, and connecting member
JP2009029861A (en) * 2007-07-25 2009-02-12 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
WO2012137796A1 (en) * 2011-04-06 2012-10-11 日東電工株式会社 Process for producing polymer member, and polymer member
JP2015170529A (en) * 2014-03-07 2015-09-28 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method of the same
WO2015133221A1 (en) * 2014-03-07 2015-09-11 デクセリアルズ株式会社 Anisotropic conductive film and method for producing same
CN106063043A (en) * 2014-03-07 2016-10-26 迪睿合株式会社 Anisotropic conductive film and method for producing same
KR20160130768A (en) * 2014-03-07 2016-11-14 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
US20170079141A1 (en) * 2014-03-07 2017-03-16 Dexerials Corporation Anisotropic conductive film and production method of the same
TWI671953B (en) * 2014-03-07 2019-09-11 日商迪睿合股份有限公司 Anisotropic conductive film and method of manufacturing same
CN106063043B (en) * 2014-03-07 2019-12-13 迪睿合株式会社 Anisotropic conductive film and method for producing same
CN109790425A (en) * 2016-10-03 2019-05-21 日立化成株式会社 Conductive film, coiling body, connection structural bodies and connection structural bodies manufacturing method
TWI761376B (en) * 2016-10-03 2022-04-21 日商昭和電工材料股份有限公司 Conductive film, wound body, connection structure, and method for producing connection structure
US11667817B2 (en) 2016-10-03 2023-06-06 Showa Denko Materials Co., Ltd. Electroconductive film, roll, connected structure, and process for producing connected structure
TWI830173B (en) * 2016-10-03 2024-01-21 日商力森諾科股份有限公司 Conductive film, rolled body, connected structure, and method for manufacturing the connected structure

Also Published As

Publication number Publication date
JP3562615B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
EP0691660B1 (en) Anisotropically electroconductive resin film
JP3678547B2 (en) Multilayer anisotropic conductive adhesive and method for producing the same
JP2001052778A (en) Anisotropic conductive adhesive film and its manufacture
JP3801666B2 (en) Electrode connection method and connection member used therefor
JP6983123B2 (en) Adhesive substrate, transfer device having adhesive substrate, and method for manufacturing the adhesive substrate
JP3995942B2 (en) Method for producing conductive adhesive sheet having anisotropy
JPH0773739A (en) Flexible circuit board and its manufacture
JPH0740496B2 (en) Method of placing conductive particles on electrode
JP3562615B2 (en) Anisotropic conductive film-like connecting member and method of manufacturing the same
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP2000151084A (en) Anisotropic conductive adhesive film
JP3856233B2 (en) Electrode connection method
JPH07302668A (en) Manufacture of anisotropic conductive resin film mould
JP4936775B2 (en) Conductive particle connection structure
JP4820014B2 (en) Method for producing conductive adhesive sheet having anisotropy
JPH02306558A (en) Arrangement of conductive particles on electrode
JPH11121073A (en) Connecting member and its manufacture
JPH04301382A (en) Connecting member
JP2004335663A (en) Method for manufacturing different direction electric conduction film
JP2002075488A (en) Anisotropic electroconductive film and its manufacturing method
JP4032320B2 (en) Electrode connection method
JPH07302667A (en) Manufacture of anisotropic conductive resin film of bond and connection method between fine circuits
JPH09147928A (en) Connecting member
JP3578223B2 (en) Manufacturing method of anisotropic conductive sheet
JP2006233200A (en) Anisotropically electroconductive adhesive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040127

A131 Notification of reasons for refusal

Effective date: 20040129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040513

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120611

LAPS Cancellation because of no payment of annual fees