JPH11111322A - Fuel cell and operating method therefor - Google Patents

Fuel cell and operating method therefor

Info

Publication number
JPH11111322A
JPH11111322A JP9290371A JP29037197A JPH11111322A JP H11111322 A JPH11111322 A JP H11111322A JP 9290371 A JP9290371 A JP 9290371A JP 29037197 A JP29037197 A JP 29037197A JP H11111322 A JPH11111322 A JP H11111322A
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
storage alloy
hydrogen storage
thermoelectric module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9290371A
Other languages
Japanese (ja)
Inventor
Maki Ishizawa
真樹 石沢
Yukio Shitaya
幸夫 下谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9290371A priority Critical patent/JPH11111322A/en
Publication of JPH11111322A publication Critical patent/JPH11111322A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell which can be started and operated by low power consumption and with high efficiency and can easily store hydrogen in a hydrogen storage alloy tank with. SOLUTION: In a fuel cell 5 comprised of a fuel cell 1 which generates power and heat at the same time by using hydrogen as fuel, and a hydrogen storage alloy tank 3 where hydrogen is stored in a hydrogen storage alloy 2, a thermoelectric module 4, consisting of a thermoelectric semiconductor is disposed on a surface of the hydrogen storage alloy tank or in a part of the component of the hydrogen storage alloy tank, a storage battery 6 for supplying a direct current power to the thermoelectric module 4 is disposed, and a polarity selector switch 7 for supplying direct current power having a polarity opposite to that of thermoelectric module 4 is disposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、簡便かつ起動時間の短
縮化が可能な燃料電池及びその運転方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell which is simple and can shorten the start-up time, and a method of operating the fuel cell.

【0002】[0002]

【従来の技術】水素吸蔵合金を容器内に入れた水素吸蔵
合タンクは、大量の水素を吸収して貯蔵することが可能
であり、通常用いられている水素の高圧ガスボンベに比
較して、容積、重量とも半分以下の容器で、同量の水素
を貯蔵出来る。そのため、携帯用の燃料電池の燃料(水
素)容器として有望で、水素吸蔵合金タンクを用いた燃
料電池の開発が進められている。
2. Description of the Related Art A hydrogen storage tank in which a hydrogen storage alloy is placed in a container can absorb and store a large amount of hydrogen, and has a larger volume than a normal high-pressure gas cylinder of hydrogen. , The same amount of hydrogen can be stored in a container weighing less than half. Therefore, development of a fuel cell using a hydrogen storage alloy tank is promising as a promising fuel (hydrogen) container for a portable fuel cell.

【0003】図3に従来の燃料電池の構成を示す。従来
の燃料電池5は、水素を燃料として発電と同時に発熱す
る燃料電池セル1、前記水素がタンク内のLaNi、ミ
ッシュメタル等の水素吸蔵合金2に水素が吸蔵されてい
る水素吸蔵合金タンク3、水素吸蔵合金タンク3を加熱
するためのヒータ12、起動時に必要な電力を供給する
ための蓄電池6、スイッチA8、スイッチB9、燃料電
池セル1からの発電電力を外部負荷11に適合する出力
電圧に変換するための電力変換装置10から構成されて
いる。
FIG. 3 shows the configuration of a conventional fuel cell. A conventional fuel cell 5 includes a fuel cell 1 that generates heat simultaneously with power generation using hydrogen as a fuel, a hydrogen storage alloy tank 3 in which the hydrogen is stored in a hydrogen storage alloy 2 such as LaNi or misch metal in the tank, The heater 12 for heating the hydrogen storage alloy tank 3, the storage battery 6 for supplying necessary power at the time of starting, the switch A8, the switch B9, and the power generated from the fuel cell 1 are converted into an output voltage suitable for the external load 11. It comprises a power conversion device 10 for conversion.

【0004】この燃料電池5を起動するには、まず燃料
供給バルブ14を開とするとともに、水素吸蔵合金2か
ら水素を放出させ、水素吸蔵合金タンク3から水素を燃
料電池セル1内の燃料極に供給させる必要がある。一般
に水素吸蔵合金2からの水素の放出は、吸熱反応である
ことから、水素吸蔵合金タンク3の表面またはその近傍
にヒータ12を配置し、スイッチA8によりヒータ12
と蓄電池6を接続し、水素吸蔵合金タンク3を加熱し、
水素を水素吸蔵合金から放出させ、燃料電池セル1に供
給していた。また、定常運転時は、スイッチB9を接続
し、燃料電池セルからの発電電力の一部をヒータに供給
し、水素吸蔵合金タンク3を加熱し燃料電池セル1へ水
素供給していた。また、発電終了後、空になった水素吸
蔵合金タンク3へ水素を充填する際には、水素吸蔵合金
2への水素の吸蔵が発熱反応であることから、冷却させ
る必要があり、ヒータ12を水素吸蔵合金タンク3から
取り外すとともに、燃料電池5の外部へ取り出し、専用
の冷却装置を用いて、水素吸蔵合金タンクを冷却しなが
ら水素吸蔵合金タンク3へ水素を充填させる必要があっ
た。従来、このような燃料電池においては、水素を燃料
電池に供給するため、起動時においては蓄電池、定常運
転時においては燃料電池セルからの電力供給を必要とし
ていた。また、水素吸蔵合金タンクへ水素を充填するた
めに、専用の冷却装置が必要であった。
In order to start the fuel cell 5, first, the fuel supply valve 14 is opened, hydrogen is released from the hydrogen storage alloy 2, and hydrogen is supplied from the hydrogen storage alloy tank 3 to the fuel electrode in the fuel cell 1. Need to be supplied. Generally, since the release of hydrogen from the hydrogen storage alloy 2 is an endothermic reaction, the heater 12 is arranged on the surface of the hydrogen storage alloy tank 3 or in the vicinity thereof, and the heater 12 is switched by the switch A8.
And the storage battery 6 are connected, and the hydrogen storage alloy tank 3 is heated,
Hydrogen was released from the hydrogen storage alloy and supplied to the fuel cell 1. Also, during the steady operation, the switch B9 was connected, a part of the power generated from the fuel cell was supplied to the heater, the hydrogen storage alloy tank 3 was heated, and hydrogen was supplied to the fuel cell 1. When filling the empty hydrogen storage alloy tank 3 with hydrogen after the end of power generation, it is necessary to cool the heater 12 because the storage of hydrogen in the hydrogen storage alloy 2 is an exothermic reaction. It was necessary to remove the hydrogen storage alloy tank 3 and take it out of the fuel cell 5 and fill the hydrogen storage alloy tank 3 with hydrogen while cooling the hydrogen storage alloy tank using a dedicated cooling device. Conventionally, in such a fuel cell, in order to supply hydrogen to the fuel cell, it has been necessary to supply power from a storage battery at the time of startup and from a fuel cell during normal operation. In addition, a dedicated cooling device was required to fill the hydrogen storage alloy tank with hydrogen.

【0005】[0005]

【発明が解決しようとする課題】このように、従来の燃
料電池においては、起動時においては水素吸蔵合金タン
クをヒータで加熱するための電力供給量を確保するた
め、容量の大きな蓄電池が必要であり、小型化、低コス
ト化を阻害していた。また、定常運転時においては燃料
電池セルからの発電電力の一部を水素吸蔵合金タンクを
加熱するために使われており、そのための電力が大き
く、実効的な発電効率を大きく低下させているという課
題を有していた。さらに、水素吸蔵合金タンクに水素を
充填させるためには、ヒータを水素吸蔵合金タンクから
取り外すとともに、燃料電池の外部へ取り出し、専用の
冷却装置を用いて、水素吸蔵合金タンクへ水素を充填さ
せる等、作業性、経済性を著しく阻害していた。
As described above, the conventional fuel cell requires a large-capacity storage battery at the time of start-up in order to secure an electric power supply for heating the hydrogen storage alloy tank with the heater. And hindered miniaturization and cost reduction. In addition, during normal operation, part of the power generated from the fuel cell is used to heat the hydrogen storage alloy tank, and the power for that is large, which significantly reduces the effective power generation efficiency. Had issues. Further, in order to fill the hydrogen storage alloy tank with hydrogen, the heater is removed from the hydrogen storage alloy tank, taken out of the fuel cell, and filled with hydrogen using a dedicated cooling device. , Workability and economic efficiency were significantly impaired.

【0006】本発明の目的は上記欠点を解決するため
に、燃料電池内の水素吸蔵合金タンクの容器表面または
容器構成要素の一部に熱電半導体より構成される熱電モ
ジュールを配置させ、起動時または定常運転時には、容
器内側表面が冷却されるよう熱電モジュールに通電し、
水素吸蔵合金から水素を放出させ、速やかに、しかも低
電力で燃料電池セルヘ水素を燃料電池セルヘ供給し、ま
た水素吸蔵合金タンク内へ水素を充填させる際には、容
器内側表面が冷却されるよう水素を放出させるのとは極
性が逆向きとなるよう通電することにより水素を充填で
き、水素吸蔵合金タンクを燃料電池の外部へ取り出すこ
となく、また専用の冷却装置を用いる必要もない、作業
性、経済性に優れた燃料電池を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks by disposing a thermoelectric module composed of a thermoelectric semiconductor on the surface of a container or a part of a container component of a hydrogen storage alloy tank in a fuel cell, and During normal operation, energize the thermoelectric module so that the inner surface of the container is cooled,
When hydrogen is released from the hydrogen storage alloy, hydrogen is quickly supplied to the fuel cell with low power, and the hydrogen is stored in the hydrogen storage alloy tank, the inside surface of the container is cooled. Hydrogen can be filled by supplying electricity so that the polarity is opposite to that of releasing hydrogen, and there is no need to take out the hydrogen storage alloy tank out of the fuel cell and to use a dedicated cooling device, workability Another object of the present invention is to provide a fuel cell which is excellent in economic efficiency.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、水素を燃料として発電と同時に発熱する燃
料電池セル、前記水素がタンク内の水素吸蔵合金に吸蔵
されている水素吸蔵合金タンクからなる燃料電池におい
て、水素吸蔵合金タンク表面または水素吸蔵合金タンク
構成要素の一部に熱電半導体より構成される熱電モジュ
ール、熱電モジュールに直流電力を供給するための蓄電
池、熱電モジュールヘ極性が逆向きの直流電力を供給す
るための切り替えスイッチが配置されており、前記燃料
電池セルから排出される高温排ガスが、前記水素吸蔵合
金タンクに直接または間接的に接触されるよう配置され
ており、前記熱電モジュールが、複数のp型及びn型の
熱電半導体と前記熱電半導体を交互かつ連続的に接続す
る電極と、前記熱電半導体及び電極を挟む二枚の絶縁体
より構成されており、前記燃料電池を起動する際は、前
記蓄電池より熱電モジュールに直流電力を供給し、水素
吸蔵合金タンクを加熱することによって、水素吸蔵合金
から水素を放出させ、水素吸蔵合金タンクから燃料電池
セルに供給されることにより、発電が開始され、前記燃
料電池の起動後は、燃料電池セルからの発電電力により
熱電モジュールを動作させるか、または発電とともに発
生する燃料電池セルからの高温の排ガスにより、前記水
素吸蔵合金タンクが加熱され、前記燃料電池停止時、水
素吸蔵合金タンク内に水素を吸蔵させる際には、水素吸
蔵合金タンク表面が冷却されるよう、極性切替えスイッ
チにより、水素を放出させる時とは極性が逆向きとなる
ようにし、蓄電池から直流電力を熱電モジュールに供給
することを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a fuel cell unit that generates heat simultaneously with power generation using hydrogen as a fuel, and a hydrogen storage alloy in which the hydrogen is stored in a hydrogen storage alloy in a tank. In a fuel cell comprising a tank, a thermoelectric module composed of a thermoelectric semiconductor on the surface of the hydrogen storage alloy tank or a part of the components of the hydrogen storage alloy tank, a storage battery for supplying DC power to the thermoelectric module, and a reverse polarity to the thermoelectric module A changeover switch for supplying direct-current power in the direction is disposed, and the high-temperature exhaust gas discharged from the fuel cell unit is disposed so as to directly or indirectly contact the hydrogen storage alloy tank, A thermoelectric module comprising: a plurality of p-type and n-type thermoelectric semiconductors; electrodes for connecting the thermoelectric semiconductors alternately and continuously; When starting the fuel cell, the storage battery supplies DC power to the thermoelectric module and heats the hydrogen storage alloy tank to start the hydrogen storage alloy. By releasing hydrogen from the hydrogen storage alloy tank and supplying it to the fuel cell, power generation is started.After the fuel cell is started, the thermoelectric module is operated by the generated power from the fuel cell, or The hydrogen storage alloy tank is heated by high-temperature exhaust gas from the fuel cell generated with power generation, and when the fuel cell is stopped, when hydrogen is stored in the hydrogen storage alloy tank, the surface of the hydrogen storage alloy tank is cooled. The polarity change switch is used to reverse the polarity of hydrogen when releasing hydrogen, and heats DC power from the storage battery. And supplying the module.

【0008】[0008]

【作用】本発明は、燃料電池において、その水素吸蔵合
金タンク表面または構成要素の一部に熱電モジュールを
配置し、起動及び運転時、水素を燃料電池セルに供給さ
せる際には容器表面が加熱されるよう熱電モジュールに
通電し、水素吸蔵合金タンク内に水素を充填させる際に
は極性が逆向きとなるよう、すなわち容器表面が冷却さ
れるよう熱電モジュールに通電することを最も主要な特
徴とする。従来の技術とは、ヒータの代わりに熱電モジ
ュールをに配置した点が異なる。
According to the present invention, in a fuel cell, a thermoelectric module is arranged on the surface of a hydrogen storage alloy tank or a part of a component, and when starting and operating, when supplying hydrogen to the fuel cell, the surface of the container is heated. The most important feature is that the thermoelectric module is energized so that the polarity is reversed when filling the hydrogen storage alloy tank with hydrogen, that is, the thermoelectric module is cooled so that the container surface is cooled. I do. The difference from the prior art is that a thermoelectric module is arranged instead of a heater.

【0009】[0009]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。図1は本発明の一実施例を示す図であり、図
1を用いて本発明の一実施例について説明する。本発明
においては、水素を燃料として発電と同時に発熱する燃
料電池セル1、前記水素がタンク内のLaNi、ミッシ
ュメタル等の水素吸蔵合金2に水素が吸蔵されている水
素吸蔵合金タンク3、水素吸蔵合金夕ンク3を加熱、冷
却するための熱電モジュール4、水素を燃料電池セルに
供給させる際には容器表面が加熱されるよう熱電モジュ
ール4に通電し、水素吸蔵合金タンク内に水素を充填さ
せる際には極性が逆向きとなるよう、すなわち容器表面
が冷却されるよう熱電モジュールに通電するための極性
切替えスイッチ7、起動時に必要な電力を供給するため
の蓄電池6、スイッチA8、スイッチB9、燃料電池セ
ル1からの発電電力を外部負荷11に適合する出力電圧
に変換するための電力変換装置10から構成されてい
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the present invention, and an embodiment of the present invention will be described with reference to FIG. In the present invention, a fuel cell 1 that generates heat simultaneously with power generation using hydrogen as a fuel, a hydrogen storage alloy tank 3 in which the hydrogen is stored in a hydrogen storage alloy 2 such as LaNi or misch metal in the tank, A thermoelectric module 4 for heating and cooling the alloy nozzle 3, and when supplying hydrogen to the fuel cell, electricity is supplied to the thermoelectric module 4 so that the surface of the container is heated, and hydrogen is filled in the hydrogen storage alloy tank. In this case, the polarity is reversed, that is, the polarity changeover switch 7 for supplying electricity to the thermoelectric module so that the surface of the container is cooled, the storage battery 6 for supplying power required at the time of starting, the switch A8, the switch B9, The power converter 10 is configured to convert the power generated from the fuel cell 1 into an output voltage suitable for the external load 11.

【0010】次に、本発明に用いる熱電モジュール4を
さらに詳しく、図2をもって説明する。熱電モジュール
4は、複数のp型熱電半導体41及びn型熱電半導体4
2とこれら熱電半導体を交互かつ連続的に接続する電極
43と、前記熱電半導体及び電極を挟む二枚の絶縁体4
4、n側端子45、p側端子46より構成される。図に
示すようにそのn側端子45に直流電源のプラス、p側
端子46にマイナスとなるよう電圧をかけると、電流が
各熱電半導体のn型からP型へ流れ、上部各接合電極で
吸収された熱量は、ペルチェ効果により各素子を通って
下方に輸送される。すなわち、熱電モジュール4の上部
では冷却、下部では発熱が起こる。ここで、下部の発熱
量は、熱電モジュール4の消費電力量に上部の吸熱量が
加算された量となるため、単にヒータへ同じ電力を供給
した時よりも、原理的に多くなる。また、端子電圧の極
性を逆にすると、熱電モジュール4の上下面の吸熱と発
熱の現象が逆転する。ここで、このような、特性を有す
る熱電モジュール4を水素吸蔵合金タンク3の表面に配
置し、起動時、水素放出させる際には,容器が加熱され
るよう熱電モジュール4に蓄電池6よりスイッチA8を
接続し、直流電力を供給すればよく、水素放出に伴う吸
熱量を熱電モジュール4より供給することにより速やか
に、水素吸蔵合金タンク3から燃料電池1に供給させる
ことができる。このときの加熱量は、熱電モジュールの
消費電力量に、ペルチェ効果により外界から熱を奪って
水素吸蔵合金タンク3に供給される熱量の和であること
から、従来例のヒータ加熱に比べ少ない消費電力で同等
の加熱を行うことができ、したがって蓄電池の容量を低
減させることができる。
Next, the thermoelectric module 4 used in the present invention will be described in more detail with reference to FIG. The thermoelectric module 4 includes a plurality of p-type thermoelectric semiconductors 41 and n-type thermoelectric semiconductors 4.
2, an electrode 43 for connecting these thermoelectric semiconductors alternately and continuously, and two insulators 4 sandwiching the thermoelectric semiconductor and the electrodes.
4, an n-side terminal 45 and a p-side terminal 46. As shown in the figure, when a voltage is applied to the n-side terminal 45 so that the DC power supply is positive and the p-side terminal 46 is negative, a current flows from the n-type to the p-type of each thermoelectric semiconductor and is absorbed by each upper junction electrode. The generated heat is transported downward through each element by the Peltier effect. That is, cooling occurs at the upper part of the thermoelectric module 4 and heat generation occurs at the lower part. Here, the heat generation amount of the lower portion is an amount obtained by adding the heat absorption amount of the upper portion to the power consumption amount of the thermoelectric module 4, and thus becomes larger in principle than when the same electric power is simply supplied to the heater. When the polarity of the terminal voltage is reversed, the phenomenon of heat absorption and heat generation on the upper and lower surfaces of the thermoelectric module 4 is reversed. Here, the thermoelectric module 4 having such characteristics is arranged on the surface of the hydrogen storage alloy tank 3, and when starting and releasing hydrogen, the thermoelectric module 4 is switched by the storage battery 6 from the storage battery 6 so that the container is heated when hydrogen is released. , And direct current power may be supplied. By supplying the heat absorption accompanying the hydrogen release from the thermoelectric module 4, the hydrogen storage alloy tank 3 can be promptly supplied to the fuel cell 1 from the hydrogen storage alloy tank 3. The amount of heating at this time is the sum of the amount of power consumed by the thermoelectric module and the amount of heat supplied to the hydrogen storage alloy tank 3 by removing heat from the outside world by the Peltier effect. Equivalent heating can be performed with electric power, and thus the capacity of the storage battery can be reduced.

【0011】起動後の定常運転時では、燃料電池セル1
からの発電電力の一部を熱電モジュール4に供給すれば
よい。この場合においても、前述と同様の理由でヒータ
による加熱よりも少ない消費電力で、同等の加熱効果を
付与することができる。また、燃料電池セル1の発電に
伴う発熱により、高温の水蒸気成分を含む高温排ガス1
3を水素吸蔵合金タンク3に接触させることにより、水
素吸蔵合金タンク3を加熱させることができるので、さ
らに熱電モジュール4への供給電力を削減させることが
できる。
At the time of steady operation after startup, the fuel cell 1
A part of the power generated from the power supply may be supplied to the thermoelectric module 4. Also in this case, for the same reason as described above, the same heating effect can be provided with less power consumption than heating by the heater. In addition, due to the heat generated by the power generation of the fuel cell 1, the high-temperature exhaust gas 1 containing a high-temperature steam component is generated.
Since the hydrogen storage alloy tank 3 can be heated by bringing the hydrogen storage alloy tank 3 into contact with the hydrogen storage alloy tank 3, the power supply to the thermoelectric module 4 can be further reduced.

【0012】運転終了後、空になった水素吸蔵合金タン
ク3へ水素を充填するには、水素吸蔵合金タンク3が冷
却されるよう蓄電池6より熱電モジュール4に、極性切
替えスイッチ7により水素放出とは極性が逆の直流電力
を供給すると同時に燃料供給口15より水素を水素吸蔵
合金タンク3に供給すればよく、これにより水素吸蔵に
ともなう発熱量を熱電モジュール4を介して外部へ放出
することができ、電圧印加とともに速やかに水素を吸蔵
することが可能となる。したがって、水素吸蔵合金タン
ク3を燃料電池5から取り外すこともなく、また専用の
冷却装置も不要であることがわかる。なお、蓄電池容量
が不足している場合は、外部の直流電源より電力供給し
てもよい。
After completion of the operation, in order to fill the empty hydrogen storage alloy tank 3 with hydrogen, hydrogen is released from the storage battery 6 to the thermoelectric module 4 by the polarity switch 7 so that the hydrogen storage alloy tank 3 is cooled. It is only necessary to supply hydrogen to the hydrogen storage alloy tank 3 from the fuel supply port 15 at the same time as supplying DC power having the opposite polarity, whereby the calorific value accompanying the hydrogen storage can be released to the outside via the thermoelectric module 4. It is possible to absorb hydrogen quickly with the application of voltage. Therefore, it is understood that the hydrogen storage alloy tank 3 is not removed from the fuel cell 5 and that a dedicated cooling device is not required. When the storage battery capacity is insufficient, power may be supplied from an external DC power supply.

【0013】[0013]

【発明の効果】以上述べたように本発明によれば、従来
の燃料電池に比べ、低消費電力で起動、運転でき高効率
な燃料電池を提供でき、しかも水素を水素吸蔵合金タン
ク内に簡便に吸蔵できる燃料電池を提供することができ
る。
As described above, according to the present invention, it is possible to provide a highly efficient fuel cell which can be started and operated with lower power consumption as compared with the conventional fuel cell, and which can easily store hydrogen in the hydrogen storage alloy tank. A fuel cell that can be stored in the fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成説明図である。FIG. 1 is a configuration explanatory view showing one embodiment of the present invention.

【図2】本発明に用いる熱電モジュールの一実施例を示
す構成説明図である。
FIG. 2 is a configuration explanatory view showing one embodiment of a thermoelectric module used in the present invention.

【図3】従来の燃料電池の構成説明図である。FIG. 3 is a diagram illustrating the configuration of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料電池セル 2 水素吸蔵合金 3 水素吸蔵合金タンク 4 熱電モジュール 5 燃料電池 6 蓄電池 7 極性切替スイッチ 8 スイッチA 9 スイッチB 10 電力変換装置 11 外部負荷 12 ヒータ 13 高温排ガス 14 燃料供給バルブ、燃料供給口 41 p型熱電半導体 42 n型熱電半導体 43 電極 44 絶縁体 45 n側端子 46 p側端子 DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hydrogen storage alloy 3 Hydrogen storage alloy tank 4 Thermoelectric module 5 Fuel cell 6 Storage battery 7 Polarity change switch 8 Switch A 9 Switch B 10 Power conversion device 11 External load 12 Heater 13 High temperature exhaust gas 14 Fuel supply valve, fuel supply Port 41 p-type thermoelectric semiconductor 42 n-type thermoelectric semiconductor 43 electrode 44 insulator 45 n-side terminal 46 p-side terminal

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】水素を燃料として発電と同時に発熱する燃
料電池セル、前記水素がタンク内の水素吸蔵合金に吸蔵
されている水素吸蔵合金タンクからなる燃料電池におい
て、水素吸蔵合金タンク表面または水素吸蔵合金タンク
構成要素の一部に熱電半導体より構成される熱電モジュ
ール、熱電モジュールに直流電力を供給するための蓄電
池、熱電モジュールヘ極性が逆向きの直流電力を供給す
るための極性切替えスイッチが配置されていることを特
徴とする燃料電池。
1. A fuel cell comprising a fuel cell which generates heat simultaneously with power generation using hydrogen as a fuel, and a hydrogen storage alloy tank in which the hydrogen is stored in a hydrogen storage alloy in a tank. A thermoelectric module composed of a thermoelectric semiconductor in a part of the alloy tank component, a storage battery for supplying DC power to the thermoelectric module, and a polarity switch for supplying DC power with reverse polarity to the thermoelectric module are arranged. A fuel cell comprising:
【請求項2】請求項1に示す燃料電池において、前記燃
料電池セルから排出される高温排ガスが、前記水素吸蔵
合金タンクに直接または間接的に接触されるよう配置さ
れていることを特徴とする燃料電池。
2. The fuel cell according to claim 1, wherein the high-temperature exhaust gas discharged from the fuel cell is arranged so as to directly or indirectly contact the hydrogen storage alloy tank. Fuel cell.
【請求項3】請求項1または2に示す燃料電池におい
て、前記熱電モジュールが、複数のp型及びn型の熱電
半導体と前記熱電半導体を交互かつ連続的に接続する電
極と、前記熱電半導体及び電極を挟む二枚の絶縁体より
構成されることを特徴とする燃料電池。
3. The fuel cell according to claim 1, wherein the thermoelectric module comprises a plurality of p-type and n-type thermoelectric semiconductors and electrodes for connecting the thermoelectric semiconductors alternately and continuously; A fuel cell comprising two insulators sandwiching an electrode.
【請求項4】水素を燃料として発電と同時に発熱する燃
料電池セル、前記水素がタンク内の水素吸蔵合金に吸蔵
されている水素吸蔵合金タンクからなり、水素吸蔵合金
タンク表面または水素吸蔵合金タンク構成要素の一部に
熱電半導体より構成される熱電モジュールと、前記熱電
モジュールに直流電力を供給するための蓄電池と、熱電
モジュールヘ極性が逆向きの直流電力を供給するための
極性切替えスイッチが設けられている燃料電池を起動す
る際は、前記蓄電池より熱電モジュールに直流電力を供
給し、水素吸蔵合金タンクを加熱することによって、水
素吸蔵合金から水素を放出させることを特徴とする燃料
電池の運転方法。
4. A fuel cell which generates heat simultaneously with power generation using hydrogen as a fuel, a hydrogen storage alloy tank in which the hydrogen is stored in a hydrogen storage alloy in a tank, and a hydrogen storage alloy tank surface or a hydrogen storage alloy tank structure. A thermoelectric module composed of a thermoelectric semiconductor in a part of the elements, a storage battery for supplying DC power to the thermoelectric module, and a polarity switch for supplying DC power having the opposite polarity to the thermoelectric module are provided. When starting the fuel cell, a direct current power is supplied to the thermoelectric module from the storage battery, and the hydrogen storage alloy tank is heated to release hydrogen from the hydrogen storage alloy. .
【請求項5】前記熱電モジュールが、複数のp型及びn
型の熱電半導体と前記熱電半導体を交互かつ連続的に接
続する電極と、前記熱電半導体及び電極を挟む二枚の絶
縁体より構成されることを特徴とする燃料電池の運転方
法。
5. A thermoelectric module comprising a plurality of p-type and n-type thermoelectric modules.
A method for operating a fuel cell, comprising: a thermoelectric semiconductor of a mold type; electrodes for connecting the thermoelectric semiconductors alternately and continuously; and two insulators sandwiching the thermoelectric semiconductor and the electrodes.
【請求項6】請求項4または5に示す燃料電池の運転方
法において、前記燃料電池の起動後は、燃料電池セルか
らの発電電力により熱電モジュールを動作させることを
特徴とする燃料電池の運転方法。
6. A method for operating a fuel cell according to claim 4, wherein after starting the fuel cell, the thermoelectric module is operated by electric power generated from a fuel cell. .
【請求項7】請求項4から6に示すいずれかの燃料電池
の運転方法において、前記燃料電池の起動後は、燃料電
池セルからの発電電力により熱電モジュールを動作させ
るとともに、発電とともに発生する燃料電池セルからの
高温の排ガスにより、前記水素吸蔵合金タンクが加熱さ
れることを特徴とする燃料電池の運転方法。
7. The method for operating a fuel cell according to claim 4, wherein after starting the fuel cell, the thermoelectric module is operated by the power generated from the fuel cell and the fuel generated together with the power generation. A method for operating a fuel cell, wherein the hydrogen storage alloy tank is heated by high-temperature exhaust gas from a battery cell.
【請求項8】請求項4〜7に示すいずれかの燃料電池の
運転方法において、前記燃料電池停止時、水素吸蔵合金
タンク内に水素を吸蔵させる際には、水素吸蔵合金タン
ク表面が冷却されるよう、極性反転スイッチにより、水
素を放出させる時とは極性が逆向きとなるようにし、蓄
電池から直流電力を熱電モジュールに供給することを特
徴とする燃料電池の運転方法。
8. The method for operating a fuel cell according to any one of claims 4 to 7, wherein when the fuel cell is stopped, when hydrogen is stored in the hydrogen storage alloy tank, the surface of the hydrogen storage alloy tank is cooled. A method for operating a fuel cell, comprising: using a polarity reversing switch so that the polarity is reversed when hydrogen is released, and supplying DC power from the storage battery to the thermoelectric module.
JP9290371A 1997-10-07 1997-10-07 Fuel cell and operating method therefor Pending JPH11111322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9290371A JPH11111322A (en) 1997-10-07 1997-10-07 Fuel cell and operating method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9290371A JPH11111322A (en) 1997-10-07 1997-10-07 Fuel cell and operating method therefor

Publications (1)

Publication Number Publication Date
JPH11111322A true JPH11111322A (en) 1999-04-23

Family

ID=17755168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9290371A Pending JPH11111322A (en) 1997-10-07 1997-10-07 Fuel cell and operating method therefor

Country Status (1)

Country Link
JP (1) JPH11111322A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163025A (en) * 2001-11-28 2003-06-06 Tokyo Gas Co Ltd Hydrogen production and storage system
JP2008166248A (en) * 2006-12-26 2008-07-17 Samsung Electro-Mechanics Co Ltd Fuel cell having hydrogen storage tank
US7405013B2 (en) * 2004-06-07 2008-07-29 Gm Global Technology Operations, Inc. Thermoelectric conversion of heat released during use of a power-plant or hydrogen storage material
EP2463945A1 (en) * 2010-12-09 2012-06-13 Research In Motion Limited Fuel cell electrical power source for portable electronic device with thermoelectric module
JP2014007084A (en) * 2012-06-26 2014-01-16 Global Link Co Ltd Electric power selling system
US8822096B2 (en) 2010-12-09 2014-09-02 Blackberry Limited Fuel cell electrical power source for a portable electronic device with thermoelectric module
WO2016028731A1 (en) * 2014-08-18 2016-02-25 BlackPak, Inc. Sorption pumps and storage for gases
EP2391846A4 (en) * 2009-01-30 2017-01-04 Institutt For Energiteknikk Continuously-operated metal hydride hydrogen compressor, and method of operating the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163025A (en) * 2001-11-28 2003-06-06 Tokyo Gas Co Ltd Hydrogen production and storage system
US7405013B2 (en) * 2004-06-07 2008-07-29 Gm Global Technology Operations, Inc. Thermoelectric conversion of heat released during use of a power-plant or hydrogen storage material
JP2008166248A (en) * 2006-12-26 2008-07-17 Samsung Electro-Mechanics Co Ltd Fuel cell having hydrogen storage tank
US8080343B2 (en) 2006-12-26 2011-12-20 Samsung Electro-Mechanics Co., Ltd. Fuel cell having hydrogen storage tank and hydrogen generator with alkaline solution
EP2391846A4 (en) * 2009-01-30 2017-01-04 Institutt For Energiteknikk Continuously-operated metal hydride hydrogen compressor, and method of operating the same
EP2463945A1 (en) * 2010-12-09 2012-06-13 Research In Motion Limited Fuel cell electrical power source for portable electronic device with thermoelectric module
EP2463947A1 (en) * 2010-12-09 2012-06-13 Research In Motion Limited Fuel cell electrical power source for portable electronic device with thermoelectric module
CN102569849A (en) * 2010-12-09 2012-07-11 捷讯研究有限公司 Fuel cell electrical power source for portable electronic device with thermoelectric module
US8822096B2 (en) 2010-12-09 2014-09-02 Blackberry Limited Fuel cell electrical power source for a portable electronic device with thermoelectric module
JP2014007084A (en) * 2012-06-26 2014-01-16 Global Link Co Ltd Electric power selling system
WO2016028731A1 (en) * 2014-08-18 2016-02-25 BlackPak, Inc. Sorption pumps and storage for gases
US9415996B2 (en) 2014-08-18 2016-08-16 BlackPak, Inc. Sorption pumps and storage for gases

Similar Documents

Publication Publication Date Title
Wu et al. Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator
US11201365B2 (en) Thermo-electrochemical convertor with integrated energy storage
JP3850752B2 (en) Supply device for hydrogen source
CN110474070A (en) A kind of solid-state hydrogen storage is for hydrogen fuel cell system
JPS5939637B2 (en) Method for increasing storage time of liquid hydrogen tank and apparatus for carrying out this method
JP2007507063A (en) Storage of fuel cell energy during startup and shutdown
CN100459268C (en) Hydrogen storage-based rechargeable fuel cell system
Kumar et al. Operational characteristics of metal hydride energy storage system in microgrid
JPH11111322A (en) Fuel cell and operating method therefor
JPH0622572A (en) Thermoelectric generation type charger
JP2006024418A (en) Fuel cell system
KR102169149B1 (en) Low pressure metal hybrid type hydrogen storage and emitting system for fuel cell
JPH0828230B2 (en) Fuel cell operating method and power generation system thereof
JP2002190313A (en) Polymer electrolyte fuel cell
JPH05231242A (en) Hydrogen storage alloy having compound thermoelectric element
JPH0760691B2 (en) Fuel cell power generation system
US20020081467A1 (en) Method for operating a liquid-cooled fuel cell battery, and associated fuel cell battery
JPH05251105A (en) Solar electric power system
JP2001135339A (en) Hybrid generator
JP2000012061A (en) Fuel cell power generating system
JP2004220942A (en) Solid oxide fuel cell system and fuel cell combined cycle power generation plant
JP2007080587A (en) Fuel cell and electric apparatus
JP2004247084A (en) Fuel cell power generation system
JP4704733B2 (en) Fuel cell system
JPH02132771A (en) Fuel cell system