JPH1096055A - Rolled or normalize high strength steels excellent in hot dip galvanizing cracking resistance - Google Patents

Rolled or normalize high strength steels excellent in hot dip galvanizing cracking resistance

Info

Publication number
JPH1096055A
JPH1096055A JP25060096A JP25060096A JPH1096055A JP H1096055 A JPH1096055 A JP H1096055A JP 25060096 A JP25060096 A JP 25060096A JP 25060096 A JP25060096 A JP 25060096A JP H1096055 A JPH1096055 A JP H1096055A
Authority
JP
Japan
Prior art keywords
steel
less
dip galvanizing
strength
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25060096A
Other languages
Japanese (ja)
Inventor
Sadahiro Yamamoto
定弘 山本
Hiroyasu Yokoyama
泰康 横山
Noriki Wada
典己 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25060096A priority Critical patent/JPH1096055A/en
Publication of JPH1096055A publication Critical patent/JPH1096055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of crackings from the opening part of a bolt hole for joining sections at the time of plating, at the time of producing rolled or normalized high strength sections used for an iron tower for power transmission, by specifying its compsn. and adding Ti, Nb and V thereto. SOLUTION: The steel contains, by weight, 0.08 to 0.20% C, <=0.6% Si, 1.0 to 2.0% Mn, <=2.0% Cu, <=2.0% Ni, <=1.0% Cr, <=1.0% Mo, 0.10 to 0.20% Ti, and the balance Fe with inevitable impurities. Preferably, <=0.15% Nb and <=0.2% V and furthermore incorporated therein, and also, the conditions of Nb+0.5V+Ti>=0.175% are allowed to satisfy. More preferably, <=0.004% Ca is furthermore added thereto. This steel is subjected to hot rolling to form a high strength section of a 690MPa class, and its tensile elongation percentage in a hot dip galvanizing bath shows >=20% to prevent the generation of cracking from the periphery of the bolt hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として鉄塔用鋼
材として用いられる耐溶融亜鉛メッキ割れ特性に優れた
非調質高強度鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-refined high-strength steel excellent in hot-dip galvanizing crack resistance mainly used as a steel material for steel towers.

【0002】[0002]

【従来の技術】近年、使用鋼材の重量低減を目的とした
高強度鋼材が種々の分野で積極的に使用されるようにな
ってきた。送電用鉄塔向け鋼材にもこのような傾向が現
れてきており、現在引張強さが590MPa級の鋼材が
用いられている。また、大型送電鉄塔は、山中に建設さ
れることが多く、資材の運搬におけるコスト低減のため
更なる高張力化が求められている。
2. Description of the Related Art In recent years, high-strength steel materials for the purpose of reducing the weight of steel materials used have been actively used in various fields. Such a tendency has also appeared in steel materials for power transmission towers, and steel materials having a tensile strength of 590 MPa class are currently used. In addition, large power transmission towers are often constructed in the mountains, and further higher tension is required to reduce costs in transporting materials.

【0003】鉄塔用鋼材は建設された後にメンテナンス
フリーとするため溶融亜鉛メッキが施される。鉄塔用の
形鋼(例えば等辺等厚山形鋼)は、現地で溶接施工をす
ることなく鉄塔とすることが可能であるため、母材のメ
ッキ割れ感受性が重要視されるが、780MPa以上の
高強度形鋼ではメッキ処理時に形鋼のボルト接合用の穴
開け部からメッキ割れが生じるおそれがあるので高強度
化の大きな妨げとなっている。
[0003] After being constructed, steel materials for steel towers are subjected to hot-dip galvanizing to make them maintenance-free. Since steel sections for steel towers (e.g., equilateral equiangular section steels) can be made into steel towers without welding work on site, plating cracking susceptibility of the base material is regarded as important, but high strength of 780 MPa or more is required. In the case of high-strength section steel, plating cracking may occur from a drilled portion for bolt connection of the section steel at the time of plating treatment, which hinders high strength.

【0004】溶融亜鉛メッキされる高強度鋼に関しては
従来より特開昭58−84959号公報および特開昭5
9−11316号公報などの技術が提案されてきたが、
いずれも溶接部において発生する割れを防止する鋼材に
関するものであり、ボルト穴加工部からの割れを防止す
る観点からの高強度鋼に関する知見は少ないのが現状で
ある。
A high strength steel to be hot-dip galvanized has been disclosed in Japanese Patent Application Laid-Open Nos.
Techniques such as 9-1316 have been proposed,
All of them relate to steel materials that prevent cracks generated in welded portions, and at present there is little knowledge about high-strength steels from the viewpoint of preventing cracks from being formed in bolted holes.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
を根本的に解決するためのものであり、母材の耐溶融亜
鉛メッキ割れ特性に優れた非調質型高張力鋼を提供する
ものである。
SUMMARY OF THE INVENTION The present invention fundamentally solves the above-mentioned problems, and provides a non-heat treated high-strength steel excellent in hot-dip galvanizing crack resistance of a base material. Things.

【0006】[0006]

【課題を解決するための手段】本発明は、この目的を達
成するためになされたもので、 (1)重量比でC:0.08〜0.20%、Si:0.
6%以下、Mn:1.0〜2.0%、Cu:2.0%以
下、Ni:2.0%以下、Cr:1.0%以下、Mo:
1.0%以下、Ti:0.10〜0.2%を含み、残部
がFeおよび不可避的不純物からなることを特徴とする
耐溶融亜鉛メッキ割れ特性に優れた非調質高強度鋼。
Means for Solving the Problems The present invention has been made to achieve this object. (1) C: 0.08 to 0.20% by weight, Si: 0.
6% or less, Mn: 1.0 to 2.0%, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo:
A non-refined high-strength steel excellent in hot-dip galvanizing crack resistance, containing 1.0% or less and Ti: 0.10 to 0.2%, with the balance being Fe and unavoidable impurities.

【0007】(2)重量比でNb:0.15%以下、
V:0.2%以下で、かつ、Nb+0.5V+Ti≧
0.175%を満たすことを特徴とする(1)に記載の
耐溶融亜鉛メッキ割れ特性に優れた非調質高強度鋼。 (3)重量比でCa:0.004%以下を添加すること
を特徴とする(1)または(2)に記載の耐溶融亜鉛メ
ッキ割れ特性に優れた非調質高強度鋼である。
(2) Nb: 0.15% or less by weight ratio
V: 0.2% or less, and Nb + 0.5V + Ti ≧
The non-refined high-strength steel excellent in hot-dip galvanizing crack resistance described in (1), wherein the steel satisfies 0.175%. (3) The non-refined high-strength steel excellent in hot-dip galvanizing crack resistance described in (1) or (2), wherein Ca: 0.004% or less by weight is added.

【0008】[0008]

【発明の実施の形態】本発明者らは、0.11C−0.
25Siを基本成分として、Ti,Nb,V添加量を変
化させたもの、及びそれらにCaを添加した鋼を、熱間
圧延により等辺等厚山形鋼とし、それより図2に示す引
張試験片を採取し、常温引張強度とメッキ浴中引張の伸
びとの関係における添加元素の影響を検討した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have prepared 0.11C-0.
A steel having 25Si as a basic component and varying amounts of Ti, Nb, and V, and a steel to which Ca was added was made into an equilateral equiangular iron by hot rolling, and the tensile test piece shown in FIG. Samples were taken and the effect of added elements on the relationship between room temperature tensile strength and tensile elongation in the plating bath was examined.

【0009】その結果、Ti量によって両者の関係が整
理され、Ti≧0.10%の場合、溶融亜鉛メッキによ
るボルト穴加工部での割れが防止される目安であるメッ
キ浴中引張での伸び20%以上が高強度鋼においても確
保されることが判明した。
As a result, the relationship between the two is organized by the amount of Ti, and when Ti ≧ 0.10%, the elongation by tension in a plating bath is a measure for preventing cracking in a bolt hole processed portion by hot-dip galvanizing. It has been found that 20% or more is secured even in high-strength steel.

【0010】すなわち、図1中に示すように、Ti添加
量が0.06%と低い場合、メッキ浴中引張における伸
びは低く、高強度鋼では伸びが20%以下となるが、
0.10%を越えるようになると、高強度鋼においても
メッキ浴中引張における伸びは20%以上になる。
That is, as shown in FIG. 1, when the Ti content is as low as 0.06%, the elongation in tension in the plating bath is low, and the elongation in high-strength steel is 20% or less.
If it exceeds 0.10%, the elongation in tension in the plating bath will be 20% or more even in high strength steel.

【0011】更にCaを添加した場合は浴中引張伸びは
改善される。Nb及びVのうち一種又は二種を添加した
場合も、Ca添加ほどではないものの、やはり改善効果
が認められる。
When Ca is further added, the tensile elongation in the bath is improved. When one or two of Nb and V are added, an improvement effect is still observed, though not as much as Ca addition.

【0012】本発明鋼は、スラブ加熱温度1100〜1
350℃、圧延終了温度850℃以下で熱間圧延すれ
ば、厚板、形鋼等の品種にかかわらず優れた耐溶融亜鉛
メッキ特性を確保することができる。
The steel of the present invention has a slab heating temperature of 1100 to 1
If hot rolling is performed at 350 ° C. and a rolling end temperature of 850 ° C. or less, excellent hot-dip galvanizing characteristics can be ensured regardless of the type of plate, section steel or the like.

【0013】以下、添加成分の限定理由を説明する。 C:0.08〜0.20% Cは強度を高めるのに必須の元素である。0.08%未
満では高強度を得るのが困難で、0.20%を越えると
鋼の靱性が著しく劣化するため、0.08%以上、0.
20%以下に限定した。
Hereinafter, the reasons for limiting the added components will be described. C: 0.08 to 0.20% C is an element essential for increasing the strength. If it is less than 0.08%, it is difficult to obtain high strength, and if it exceeds 0.20%, the toughness of the steel is significantly deteriorated.
Limited to 20% or less.

【0014】Si:0.6%以下 Siはメッキ後の外観状況と関係しており、0.6%を
越えるとメッキ焼けが発生しやすくなる。よって、0.
6%以下に限定した。
Si: 0.6% or less Si is related to the appearance after plating, and if it exceeds 0.6%, plating burn tends to occur. Therefore, 0.
It was limited to 6% or less.

【0015】Mn:1.0〜2.0% Mnは強度、靱性の面から必須の元素であるが、1.0
%未満では高強度を得るのが困難で、2.0%を越える
と焼き入れ性が高くなり粗いベイナイトが生成し、靱性
が著しく劣化するため、Mn:1.0%以上2.0%以
下に限定した。 P:不可避不純物レベル Pは粒界に偏析し、靱性を劣化するが、現状の精錬技術
で十分に低減されているため、上限値は限定しないが、
低いほど望ましい。 S:不可避不純物レベル Sは主に介在物の形態で鋼中に存在し、脆化により材質
の劣化を引き起こすが、現状の精錬技術では十分に低減
されているため、上限値は限定しないが、低いほど望ま
しい。 Cu:2.0%以下 Cuは鋼の強度を高めるのに有効な元素であるが、2.
0%を越えて添加した場合にはCu割れが発生しやす
い。よって2.0%以下に限定した。 Ni:2.0%以下 Niは鋼の強度上昇ならびに靱性向上に有効な元素であ
るが、経済性を考慮し、2.0%以下に限定した。 Cr:1.0%以下 Crは鋼の強度を高めるのに有効な元素であるが、1.
0%を越えて添加すると鋼の靱性を劣化させるため、
1.0%以下に限定した。 Mo:1.0%以下 Moは鋼の強度を高めるのに有効な元素であるが、1.
0%を越えて添加すると鋼の靱性を著しく劣化させるた
め、1.0%以下に限定した。 Ti:0.1〜0.2% Tiは微量の添加で析出強化により鋼の強度を高め、ま
た耐溶融亜鉛メッキ割れ特性に優れた性質を示すため有
効な元素であるので0.1%以上の量を添加する。0.
2%を越えて添加すると鋼の析出物が粗くなり、靱性が
著しく劣化するため、0.1〜0.2%の範囲に限定し
た。 Nb:0.15%以下、V:0.2%以下 Nb、Vは微量の添加で析出強化により鋼の強度を高め
るのに有効な元素であるが、Nb含有量が0.15%を
越えるか、またはV含有量が0.2%を越えて過剰添加
されると、鋼の靭性を著しく劣化させるため、上記の値
に限定し、一種又は二種を添加できるものとした。
Mn: 1.0 to 2.0% Mn is an essential element in view of strength and toughness.
If it is less than 2.0%, it is difficult to obtain high strength, and if it exceeds 2.0%, hardenability is increased, coarse bainite is generated, and toughness is significantly deteriorated. Limited to. P: Inevitable impurity level P segregates at the grain boundaries and degrades toughness, but the upper limit value is not limited, since it is sufficiently reduced by the current refining technology.
Lower is more desirable. S: unavoidable impurity level S is mainly present in the form of inclusions in steel and causes deterioration of the material due to embrittlement. However, since the current refining technology has sufficiently reduced it, the upper limit is not limited. Lower is more desirable. Cu: 2.0% or less Cu is an element effective for increasing the strength of steel.
When added in excess of 0%, Cu cracks are likely to occur. Therefore, it was limited to 2.0% or less. Ni: 2.0% or less Ni is an element effective for increasing the strength and toughness of steel, but is limited to 2.0% or less in consideration of economy. Cr: 1.0% or less Cr is an element effective for increasing the strength of steel.
If added in excess of 0%, the toughness of the steel deteriorates.
It was limited to 1.0% or less. Mo: 1.0% or less Mo is an element effective for increasing the strength of steel.
If added in excess of 0%, the toughness of the steel will be significantly degraded, so it was limited to 1.0% or less. Ti: 0.1 to 0.2% Ti is an effective element because it enhances the strength of steel by precipitation strengthening with a small amount of addition and exhibits excellent properties in hot-dip galvanizing cracking resistance. Add the amount of 0.
If added in excess of 2%, the precipitates of the steel become coarse and the toughness is remarkably deteriorated. Therefore, the range is limited to 0.1 to 0.2%. Nb: 0.15% or less, V: 0.2% or less Nb and V are effective elements for increasing the strength of steel by precipitation strengthening with a small amount of addition, but the Nb content exceeds 0.15%. Or, if the V content exceeds 0.2% and is excessively added, the toughness of the steel is remarkably deteriorated. Therefore, it is limited to the above value, and one or two types can be added.

【0016】Ti,Nb,Vを添加する場合、高強度と
ともに耐溶融亜鉛メッキ割れに優れた特性を示す条件と
して、Nb+0.5V+Ti≧0.175%の関係式を
満足させるものとする。 Ca:0.004%以下 Caは添加することで耐溶融亜鉛メッキ割れ特性を著し
く改善することができる唯一の元素である。しかし、
0.004%を越えて添加すると、Ca−O−Sのクラ
スターが発生し、鋼の清浄性が低下してしまう。従っ
て、Caを0.004%以下に限定した。 Al:Alは脱酸のため必須の元素であるが、現状の精
錬レベルの添加量ではなんら問題を生じないため、現状
の不可避不純物レベルとした。Alは本発明においては
脱酸のために添加する場合もあり、その場合は通常の添
加量(0.005〜0.60%)とする。型鋼などでS
i脱酸においては不可避不純物として扱う。 B:不可避不純物レベル Bは鋼の焼き入れ性を著しく向上させる一方、溶接部の
耐溶融亜鉛メッキ割れ性を著しく劣化させるため、溶接
される場合は2ppm以下に管理されている。本発明鋼
は原則として溶接施工を対象とせず、ボルト穴加工程度
であり、Bの上限値5ppm程度の管理とする。しか
し、Bは低いほど望ましい。
In the case where Ti, Nb, and V are added, the relational expression of Nb + 0.5V + Ti ≧ 0.175% is satisfied as a condition for exhibiting high strength and excellent resistance to hot-dip galvanizing cracks. Ca: 0.004% or less Ca is the only element that can significantly improve the hot-dip galvanizing crack resistance by adding Ca. But,
If it is added in excess of 0.004%, Ca-OS clusters are generated and the cleanliness of the steel decreases. Therefore, Ca was limited to 0.004% or less. Al: Al is an indispensable element for deoxidation. However, since there is no problem with the addition amount at the current refining level, the current inevitable impurity level was used. In the present invention, Al may be added for deoxidation, and in that case, the usual addition amount (0.005 to 0.60%) is used. S for steel
It is treated as an inevitable impurity in i-deoxidation. B: Inevitable impurity level While B significantly improves the hardenability of steel, it significantly deteriorates the hot-dip galvanizing cracking resistance of the welded portion. Therefore, when B is welded, it is controlled to 2 ppm or less. The steel of the present invention is not targeted for welding work in principle, and has a hole drilling degree, and the upper limit of B is about 5 ppm. However, lower B is more desirable.

【0017】[0017]

【実施例】表1に実施例を示す。本発明鋼は、例えばス
ラブ加熱温度1100〜1350℃、圧延終了温度85
0℃以下の条件の熱間圧延により製造されるが、実施例
ではいずれの鋼も等辺等厚山形鋼に圧延した。表中のメ
ッキ割れの有無の項は、圧延した山形鋼に実際の施工と
同様に、接合用ボルトの穴開け加工を施した後に溶融亜
鉛メッキ浴中に浸漬し、穴開け加工部から割れが発生す
るかどうかを確認した結果である。
Examples are shown in Table 1. The steel of the present invention has, for example, a slab heating temperature of 1100 to 1350 ° C and a rolling end temperature of 85.
It is manufactured by hot rolling at a temperature of 0 ° C. or less, but in the examples, all steels were rolled into equilateral equiangular angle steel. As for the presence or absence of plating cracks in the table, the rolled angle iron is pierced in a hot-dip galvanizing bath after drilling holes for joining bolts in the same manner as in actual It is the result of confirming whether or not it occurs.

【0018】1−3は低Cのため強度が低くなってい
る。また、1−6は低Mnのため強度が低めとなってい
る。1−12は低Tiであるため、強度レベルは780
MPa級であるが、穴開け加工部に割れが発生してい
る。
1-3 have low strength due to low C. Also, 1-6 has low strength due to low Mn. Since 1-12 is low Ti, the intensity level is 780
Although it is of the MPa class, cracks have occurred in the perforated portions.

【0019】1−5,1−7,1−8,1−9,1−1
0,1−11,1−13,1−14,1−15のそれぞ
れは、Si,Mn,Cu,Ni,Cr,Mo,Ti,N
b,Vの添加量が高く、強度が900MPa以上と高す
ぎるため、割れが生じている。
1-5, 1-7, 1-8, 1-9, 1-1
0, 1-11, 1-13, 1-14, and 1-15 are Si, Mn, Cu, Ni, Cr, Mo, Ti, and N, respectively.
Since the added amounts of b and V are high and the strength is too high at 900 MPa or more, cracking occurs.

【0020】1−16はCa添加量が高く、鋼の清浄性
が劣るため、強度は780MPaレベルであるが、割れ
が発生している。一方、1−1,1−2,1−17,1
−18,1−19,1−20は供試鋼の成分が全て本発
明の範囲を満たしているため、高強度鋼で、かつ、割れ
の発生も認められない。
In No. 1-16, the Ca content is high and the cleanliness of the steel is inferior, so that the strength is at a level of 780 MPa, but cracks occur. On the other hand, 1-1, 1-2, 1-17, 1
-18, 1-19, and 1-20 are all high-strength steels and have no cracks because the components of the test steels all satisfy the range of the present invention.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明によれば、鉄塔や橋梁等の構造物
部材でボルト穴加工等をした後、溶融亜鉛メッキ処理さ
れてもボルト穴加工部等で割れを生じない耐溶融亜鉛メ
ッキ割れ特性に優れた非調質高強度鋼を提供することが
できる。
According to the present invention, a hot-dip galvanizing crack which does not cause a crack in a bolt-hole processing part even if it is subjected to hot-dip galvanizing after a bolt hole is formed in a structural member such as a steel tower or a bridge. A non-heat treated high-strength steel having excellent characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼材の常温強度TS(MPa)とメッキ浴中引
張試験の伸び(y)との関係を示す図。
FIG. 1 is a view showing the relationship between the room temperature strength TS (MPa) of a steel material and the elongation (y) of a tensile test in a plating bath.

【図2】溶融亜鉛中における母材の脆化を調べるための
引張試験片を示す図である。
FIG. 2 is a diagram showing a tensile test piece for examining embrittlement of a base material in molten zinc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC:0.08〜0.20%、S
i:0.6%以下、Mn:1.0〜2.0%、Cu:
2.0%以下、Ni:2.0%以下、Cr:1.0%以
下、Mo:1.0%以下、Ti:0.10〜0.2%を
含み、残部がFeおよび不可避的不純物からなることを
特徴とする耐溶融亜鉛メッキ割れ特性に優れた非調質高
強度鋼。
1. C: 0.08 to 0.20% by weight, S
i: 0.6% or less, Mn: 1.0 to 2.0%, Cu:
2.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Ti: 0.10 to 0.2%, the balance being Fe and inevitable impurities Non-refined high-strength steel with excellent hot-dip galvanizing crack resistance, characterized by being made of
【請求項2】 重量比でNb:0.15%以下、V:
0.2%以下で、かつ、Nb+0.5V+Ti≧0.1
75%を満たすことを特徴とする請求項1記載の耐溶融
亜鉛メッキ割れ特性に優れた非調質高強度鋼。
2. Nb: 0.15% or less by weight, V:
0.2% or less and Nb + 0.5V + Ti ≧ 0.1
The non-heat-treated high-strength steel excellent in hot-dip galvanizing crack resistance according to claim 1, wherein the steel satisfies 75%.
【請求項3】 重量比でCa:0.004%以下を添加
することを特徴とする請求項1または請求項2記載の耐
溶融亜鉛メッキ割れ特性に優れた非調質高強度鋼。
3. The non-finished high-strength steel with excellent hot-dip galvanizing crack resistance according to claim 1, wherein Ca: 0.004% or less is added in a weight ratio.
JP25060096A 1996-09-20 1996-09-20 Rolled or normalize high strength steels excellent in hot dip galvanizing cracking resistance Pending JPH1096055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25060096A JPH1096055A (en) 1996-09-20 1996-09-20 Rolled or normalize high strength steels excellent in hot dip galvanizing cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25060096A JPH1096055A (en) 1996-09-20 1996-09-20 Rolled or normalize high strength steels excellent in hot dip galvanizing cracking resistance

Publications (1)

Publication Number Publication Date
JPH1096055A true JPH1096055A (en) 1998-04-14

Family

ID=17210293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25060096A Pending JPH1096055A (en) 1996-09-20 1996-09-20 Rolled or normalize high strength steels excellent in hot dip galvanizing cracking resistance

Country Status (1)

Country Link
JP (1) JPH1096055A (en)

Similar Documents

Publication Publication Date Title
JP6297960B2 (en) Wire rod or steel bar for rebar, and method for producing the same
JP5937538B2 (en) High strength steel plate excellent in low temperature toughness, elongation and weldability, and method for producing the same
JP3895002B2 (en) Non-tempered high-tensile steel with excellent resistance to hot-dip galvanizing cracking
JP3355957B2 (en) Non-tempered high-strength steel with excellent hot-dip galvanizing crack resistance
JP3322139B2 (en) Non-tempered high-strength steel with excellent hot-dip galvanizing crack resistance
JPH1096055A (en) Rolled or normalize high strength steels excellent in hot dip galvanizing cracking resistance
JP4144121B2 (en) Non-tempered high strength steel with excellent toughness of base metal and weld heat affected zone
JPH10110243A (en) Non-heat treated high strength steel excellent in resistance to hot-dip galvanizing crack
JPH1096054A (en) Rolled or normalized high strength steels excellent in hot-dip galvanizing cracking resistance
JPH10110236A (en) Non-heat treated high strength steel excellent in hot dip galvanizing cracking resistance
JPH10110241A (en) Non-heat treated high strength steel excellent in resistance to hot-dip galvanizing crack
JPH10110242A (en) Non-heat treated high strength steel excellent in resistance to hot-dip galvanizing crack
JP4074385B2 (en) Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment
JPS5852021B2 (en) Kouensei Kōchiyouriyoku Kōtansōkōsenzai
JP6589536B2 (en) Manufacturing method of welded joint
JPH10310844A (en) Non-heat treated high strength angle excellent in hot dip galvanizing cracking resistance
JPS59159970A (en) Steel material for chain with high strength and toughness
JPH1096017A (en) Manufacture of not tempered and annealed high-strength steel excellent ion resistance to hop dip galvanizing crack
JPH1096026A (en) Manufacture of not tempered and annealed high strength steel excellent in resistance to hot dip galvanizing crack
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JP3267170B2 (en) 780MPa class high tensile steel with excellent hot-dip galvanizing crack resistance
JPH1096016A (en) Manufacture of not tempered and annealed high-strength steel excellent on resistance to hot dip galvanizing crack
JPH1096015A (en) Manufacture of not tempered and annealed high-strength steel excellent in resistance to hot dip galvanizing crack
JP3385153B2 (en) PC steel bar with excellent delayed fracture characteristics of welds
JP2986989B2 (en) Method for producing high-strength steel for Zn-Al plating