JPH109038A - Air-fuel ratio detecting device of engine - Google Patents

Air-fuel ratio detecting device of engine

Info

Publication number
JPH109038A
JPH109038A JP15816896A JP15816896A JPH109038A JP H109038 A JPH109038 A JP H109038A JP 15816896 A JP15816896 A JP 15816896A JP 15816896 A JP15816896 A JP 15816896A JP H109038 A JPH109038 A JP H109038A
Authority
JP
Japan
Prior art keywords
exhaust
air
fuel ratio
cylinder
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15816896A
Other languages
Japanese (ja)
Inventor
Yukimasa Kai
志誠 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15816896A priority Critical patent/JPH109038A/en
Publication of JPH109038A publication Critical patent/JPH109038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the air-fuel ratio of the fuel mixed gas separately to each cylinder at a high accuracy, depending on the exhaust gas sensors installed to an exhaust pipe assembly. SOLUTION: This air-fuel ratio detecting device consists of a condition variable Y consisting of the exhaust gas equivalent ratio signal line at the exhaust pipe assembly, which is found from the exhaust gas sensors installed to the exhaust pipe assembly; a condition variable X consisting of the object equivalent ratio of the fuel mixed gas at each cylinder; and a transmission matrix C to relate the condition variable Y and the condition variable X; and a condition variable X' which consists of the actual equivalent ratio signal line of the fuel mixed gas of each cylinder is inferred depending on the condition variable Y and the transmission matrix C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエンジンの空燃比検
出装置に関し、詳しくは、排気管集合部に取付けられた
排気センサの検出信号に基づいて各気筒別に燃焼混合気
の空燃比を検出する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio detecting device for an engine, and more particularly, to a technology for detecting an air-fuel ratio of a combustion mixture for each cylinder based on a detection signal of an exhaust sensor attached to an exhaust pipe assembly. About.

【0002】[0002]

【従来の技術】従来、各気筒別に燃焼混合気の空燃比を
検出して、空燃比(燃料噴射量)を制御する装置として
は、例えば特開昭59−101563号公報,特開平7
−83094号公報,特開平5−44544号公報に開
示されるようなものがあった。前記特開昭59−101
563号公報のものは、排気集合部の排気センサの信号
を検知する時期を運転状態に応じて設定することで、各
気筒別に空燃比を検出する構成となっている。
2. Description of the Related Art Conventionally, as a device for detecting an air-fuel ratio of a combustion mixture for each cylinder and controlling an air-fuel ratio (fuel injection amount), for example, Japanese Patent Application Laid-Open No. 59-101563 and Japanese Patent Application Laid-Open No.
And JP-A-5-44544. JP-A-59-101
No. 563 discloses a configuration in which the air-fuel ratio is detected for each cylinder by setting the timing of detecting the signal of the exhaust gas sensor of the exhaust collecting section according to the operating state.

【0003】また、前記特開平7−83094号公報の
ものは、排気系の挙動を記述するモデルを備え、排気系
に配置した単一の排気センサの出力から前記モデルに基
づいて各気筒の空燃比を推定する構成となっている。具
体的には、排気系集合部の空燃比を、各気筒の空燃比の
時間的な寄与度を考慮した加重平均であるとして、各気
筒の空燃比を分離抽出するものである。
Japanese Patent Application Laid-Open No. 7-83094 has a model that describes the behavior of an exhaust system. The output of a single exhaust sensor disposed in the exhaust system is used to calculate the empty space of each cylinder based on the model. It is configured to estimate the fuel ratio. More specifically, the air-fuel ratio of each of the cylinders is separated and extracted by assuming that the air-fuel ratio of the exhaust system collecting section is a weighted average in consideration of the temporal contribution of the air-fuel ratio of each cylinder.

【0004】更に、特開平5−44544号公報のもの
は、各気筒にそれぞれ取付けられた筒内圧センサの信号
に基づいて各気筒の空燃比を個別に検出する構成となっ
ている。
Further, Japanese Patent Application Laid-Open No. 5-44544 has a configuration in which the air-fuel ratio of each cylinder is individually detected based on the signal of an in-cylinder pressure sensor attached to each cylinder.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記特開昭
59−101563号公報のものでは、各気筒からの排
気のトラベルタイムを考慮して排気センサの信号を検知
しているが、実際には、排気管内に残留する他気筒の排
気の影響があるため、各気筒の空燃比を正確に分離して
検出することができないという問題があった。
In Japanese Patent Application Laid-Open No. Sho 59-101563, the signal of the exhaust sensor is detected in consideration of the travel time of the exhaust gas from each cylinder. However, there is a problem that the air-fuel ratio of each cylinder cannot be accurately separated and detected because of the influence of the exhaust of other cylinders remaining in the exhaust pipe.

【0006】また、前記特開平7−83094号公報の
ものでは、他気筒の残留排気の影響は考慮されているも
のの、時系列的な遅れのみが考慮されており、排気系の
形状による各気筒間における残留排気特性の違いや感度
の違い(排気の流れとセンサ位置との相関により各気筒
の排気がセンサで検出される度合い)は考慮されていな
い。
In Japanese Patent Application Laid-Open No. 7-83094, although the influence of residual exhaust of other cylinders is taken into account, only a time-series delay is taken into account. The difference in the residual exhaust characteristics and the difference in the sensitivity (the degree to which the exhaust of each cylinder is detected by the sensor based on the correlation between the flow of the exhaust and the sensor position) is not taken into consideration.

【0007】即ち、前記特開平7−83094号公報の
ものでは、運転条件が同じであれば、排気系集合部にお
ける空燃比に対する各気筒の寄与度は、直近に燃焼した
気筒は40%,その前が30%などとモデル化されることに
なり、直近に燃焼した気筒やその前に燃焼した気筒がど
の気筒であったかによっては、寄与度を変化させる構成
ではない。
That is, in the case of Japanese Patent Application Laid-Open No. 7-83094, if the operating conditions are the same, the degree of contribution of each cylinder to the air-fuel ratio in the exhaust system collecting section is 40% for the most recently burned cylinder, The previous model is modeled as 30%, etc., and the configuration does not change the degree of contribution depending on the cylinder that burned most recently or the cylinder that burned before that.

【0008】しかし、実際には、前述のように気筒間で
の残留排気特性の違いや感度の違いがあるため、同じ運
転条件であっても、直近に燃焼した気筒が#1気筒の場
合と、直近に燃焼した気筒が#3気筒の場合とで、それ
ぞれの気筒における寄与度が異なることになり、例え
ば、直近に燃焼した気筒が#1気筒の場合、#1気筒は
40%、その前の#2気筒は30%などとモデル化するのが
正しい場合でも、直近に燃焼した気筒が#3気筒の場合
には、#3気筒は45%、その前の#1気筒は25%という
ように異なる寄与度でモデル化すべきである場合が生じ
る。
However, in practice, there is a difference in residual exhaust characteristics and a difference in sensitivity among the cylinders as described above, so that the most recently burned cylinder is the # 1 cylinder even under the same operating conditions. The degree of contribution in each cylinder is different between the case where the most recently burned cylinder is the # 3 cylinder and the case where the most recently burned cylinder is the # 1 cylinder.
Even if it is correct to model 40% and the previous # 2 cylinder as 30%, if the most recently burned cylinder is # 3 cylinder, # 3 cylinder is 45% and the previous # 1 cylinder is May need to be modeled with different contributions, such as 25%.

【0009】このため、排気系の形状が複雑であって、
前記残留排気特性や感度が気筒間で大きく異なる場合に
は、気筒別の空燃比検出精度が低下するという問題があ
り、更に、前記残留排気特性や感度が運転条件によって
変化するため、広範囲な運転条件で空燃比を気筒別に安
定的に検出することが困難であるという問題があった。
Therefore, the shape of the exhaust system is complicated,
When the residual exhaust characteristics and the sensitivity are greatly different between cylinders, there is a problem that the air-fuel ratio detection accuracy for each cylinder is reduced.Moreover, since the residual exhaust characteristics and the sensitivity change depending on operating conditions, a wide range of operation is performed. There is a problem that it is difficult to stably detect the air-fuel ratio for each cylinder under the conditions.

【0010】一方、前記特開平5−44544号公報の
ものでは、各気筒の空燃比を比較的高精度に検出できる
ものの、各気筒にそれぞれ筒内圧センサを取り付ける必
要があり、排気管集合部に設けた単一の排気センサで空
燃比を気筒別に検出させる場合に比べて、システムコス
トが増大するという問題があった。本発明は上記問題点
に鑑みなされたものであり、排気管集合部に取付けられ
た排気センサの検出信号に基づき、排気系の形状が複雑
で残留排気特性や感度が気筒間で大きく異なる場合であ
っても、各気筒別の空燃比を精度良く検出できる空燃比
検出装置を提供することを目的とする。
On the other hand, in Japanese Patent Application Laid-Open No. 5-44544, although the air-fuel ratio of each cylinder can be detected with relatively high accuracy, it is necessary to attach an in-cylinder pressure sensor to each cylinder. There is a problem that the system cost is increased as compared with a case where the provided single exhaust sensor detects the air-fuel ratio for each cylinder. The present invention has been made in view of the above problems, and is based on a detection signal of an exhaust sensor attached to an exhaust pipe assembly, and based on a case where the shape of an exhaust system is complicated and residual exhaust characteristics and sensitivity greatly differ between cylinders. Even if there is, an object of the present invention is to provide an air-fuel ratio detection device that can accurately detect the air-fuel ratio of each cylinder.

【0011】[0011]

【課題を解決するための手段】そのため、請求項1記載
の発明は、エンジンの排気管集合部に取付けられ、燃焼
混合気の空燃比に相関する排気成分濃度に応じた検出信
号を出力する排気センサを用いて多気筒エンジンの燃焼
混合気の空燃比を各気筒別に検出する装置であって、前
記排気管集合部における排気空燃比を、各気筒の燃焼混
合気の空燃比それぞれに対する重み付けで表す排気伝達
モデルであって、各気筒の時系列的な影響度の変化に対
応すると共に、各気筒間における影響度の違いに対応し
て設定された排気伝達モデルに基づき、前記排気センサ
の検出信号から各気筒の燃焼混合気の空燃比を推定する
構成とした。
According to the present invention, there is provided an exhaust system which is attached to an exhaust pipe assembly of an engine and outputs a detection signal corresponding to an exhaust component concentration correlated with an air-fuel ratio of a combustion mixture. An apparatus for detecting an air-fuel ratio of a combustion mixture in a multi-cylinder engine for each cylinder using a sensor, wherein an exhaust air-fuel ratio in the exhaust pipe assembly is represented by a weight for each air-fuel ratio of a combustion mixture in each cylinder. A detection signal of the exhaust sensor based on an exhaust transmission model, which is based on an exhaust transmission model corresponding to a change in the degree of influence of each cylinder over time and corresponding to a difference in the degree of influence between the cylinders. From this, the air-fuel ratio of the combustion mixture in each cylinder is estimated.

【0012】即ち、排気管集合部における排気空燃比
は、各気筒の燃焼が時系列的に実行されることに伴っ
て、各気筒の空燃比が時系列的な遅れをもって影響する
一方、気筒間における残留排気特性や感度の違いがある
ために、時系列的な遅れをもって影響する気筒がどの気
筒であるかによってもその影響度が異なる。そこで、前
記時系列的な遅れのみならず、気筒間における残留排気
特性や感度の違いにも対応する排気伝達モデルを設定
し、排気管集合部における検出結果から前記排気伝達モ
デルに基づいて燃焼混合気の空燃比を気筒別に検出する
構成とした。
That is, the exhaust air-fuel ratio in the exhaust pipe collecting section is determined by the fact that the combustion of each cylinder is performed in a time-series manner. , There is a difference in the residual exhaust characteristics and the sensitivity, and the degree of the influence also differs depending on which cylinder is affected with a time-series delay. Therefore, an exhaust gas transmission model is set up corresponding to not only the chronological delay but also the difference in residual exhaust characteristics and sensitivity between the cylinders. The air-fuel ratio of the gas is detected for each cylinder.

【0013】尚、前記排気センサとしては、排気成分と
しての排気中のO2 濃度或いはCO濃度に感応するセン
サを用いることができ、理論空燃比を境界にしてオン・
オフ的に検出信号が変化する所謂ストイキセンサであっ
ても良いし、空燃比を広域に検出できる広域空燃比セン
サであっても良い。また、空燃比は、空燃比の他、燃空
比,空気過剰率,当量比(空気過剰率の逆数)などの空
燃比を示すパラメータを含むものとする。
As the exhaust gas sensor, a sensor sensitive to the concentration of O 2 or CO in the exhaust gas as an exhaust gas component can be used.
A so-called stoichiometric sensor whose detection signal changes off may be used, or a wide-range air-fuel ratio sensor that can detect the air-fuel ratio in a wide range. The air-fuel ratio includes parameters indicating the air-fuel ratio, such as the fuel-air ratio, the excess air ratio, and the equivalent ratio (the reciprocal of the excess air ratio), in addition to the air-fuel ratio.

【0014】請求項2記載の発明では、前記排気伝達モ
デルを、エンジンの回転速度及び負荷に応じて予め複数
種備え、そのときのエンジンの回転速度及び負荷に対応
する排気伝達モデルを選択して用いる構成とした。かか
る構成によると、エンジンの回転速度及び負荷の変化に
よる時系列的な遅れ特性の変化、残留排気特性の変化,
感度の変化等に対応して、燃焼混合気の空燃比を推定で
きることになる。
According to the present invention, a plurality of types of the exhaust transmission models are provided in advance according to the rotational speed and the load of the engine, and the exhaust transmission model corresponding to the rotational speed and the load of the engine at that time is selected. The configuration was used. According to such a configuration, a change in chronological delay characteristics due to a change in engine speed and load, a change in residual exhaust characteristics,
The air-fuel ratio of the combustion air-fuel mixture can be estimated in response to a change in sensitivity or the like.

【0015】請求項3記載の発明では、前記排気伝達モ
デルを、エンジンの定常運転状態で燃焼混合気の目標空
燃比を各気筒別に独立に変化させたときに、前記排気セ
ンサで検出される前記排気管集合部における排気空燃比
の変化量に基づいて学習する構成とした。即ち、ある特
定気筒の燃焼混合気の空燃比を変化させると、前記特定
気筒の残留排気特性や感度特性に応じて、他気筒の排気
空燃比に影響を与えることになり、前記空燃比を変化さ
せた前後での排気空燃比の変化量からそれぞれの気筒へ
の影響度を知ることができ、各気筒別に前記影響度を検
知することで、気筒毎の残留排気特性や感度の違いを学
習できることになる。
In the third aspect of the present invention, when the target air-fuel ratio of the combustion air-fuel mixture is changed independently for each cylinder in the steady operation state of the engine, the exhaust gas sensor detects the exhaust transmission model. The learning is performed based on the amount of change in the exhaust air-fuel ratio in the exhaust pipe assembly. That is, if the air-fuel ratio of the combustion mixture of a specific cylinder is changed, the air-fuel ratio of another cylinder is affected according to the residual exhaust characteristics and sensitivity characteristics of the specific cylinder, and the air-fuel ratio changes. It is possible to know the degree of influence on each cylinder from the amount of change in the exhaust air-fuel ratio before and after that, and to learn the difference in residual exhaust characteristics and sensitivity for each cylinder by detecting the degree of influence for each cylinder. become.

【0016】請求項4記載の発明では、前記排気センサ
で検出される前記排気管集合部での排気空燃比信号列か
らなる状態変数Yと、各気筒別の燃焼混合気の目標空燃
比信号列からなる状態変数Xと、前記状態変数Yと前記
状態変数Xとを関係付ける前記排気伝達モデルに相当す
る伝達行列Cとからなり、前記状態変数Yと前記伝達行
列Cとから各気筒別の燃焼混合気の実空燃比信号列から
なる状態変数X’を演算する構成とした。
According to a fourth aspect of the present invention, there is provided a state variable Y consisting of an exhaust air-fuel ratio signal sequence in the exhaust pipe collecting section detected by the exhaust sensor, and a target air-fuel ratio signal sequence of a combustion mixture for each cylinder. And a transfer matrix C corresponding to the exhaust transfer model relating the state variable Y to the state variable X. The combustion variable for each cylinder is obtained from the state variable Y and the transfer matrix C. The configuration is such that the state variable X ′ composed of the actual air-fuel ratio signal sequence of the air-fuel mixture is calculated.

【0017】かかる構成によると、目標空燃比信号列か
らなる状態変数Xと排気空燃比信号列からなる状態変数
Yとを関係付ける伝達行列Cは、各気筒の燃焼混合気そ
れぞれが排気空燃比に与える影響度を、排気空燃比を求
める気筒毎に示す要素から設定されることになる(伝達
行列Cは、気筒数分の行及び気筒数分の列からなる行列
となる。)。これにより、気筒間の残留排気特性や感度
の違いに対応した気筒別の空燃比推定を、簡便な方程式
に基づいて演算できる。また、伝達行列Cとして簡便に
各気筒の影響度を設定でき、更に、伝達行列Cから各気
筒の影響度を読み取ることが可能である。
According to this configuration, the transfer matrix C relating the state variable X consisting of the target air-fuel ratio signal train and the state variable Y consisting of the exhaust air-fuel ratio signal train is such that the combustion air-fuel ratio of each cylinder corresponds to the exhaust air-fuel ratio. The degree of influence is set based on an element indicating each cylinder for which the exhaust air-fuel ratio is to be obtained (the transfer matrix C is a matrix including rows corresponding to the number of cylinders and columns corresponding to the number of cylinders). This makes it possible to calculate cylinder-by-cylinder air-fuel ratio estimation corresponding to differences in residual exhaust characteristics and sensitivity between cylinders based on simple equations. Further, the degree of influence of each cylinder can be easily set as the transfer matrix C, and the degree of influence of each cylinder can be read from the transfer matrix C.

【0018】請求項5記載の発明では、前記伝達行列C
の各行各列の和がそれぞれ1となるように設定される構
成とした。即ち、伝達行列の行及び列の和をそれぞれ1
とすることで、各気筒の燃焼混合気の空燃比がそれぞれ
どの程度の影響度をもって排気空燃比が形成されるかを
正しくモデル化したことになり、かつ、特定気筒の燃焼
混合気の空燃比がそれぞれの排気空燃比に対してどの程
度の影響度をもって分配されるかを正しくモデル化した
ことになる。
According to the fifth aspect of the present invention, the transfer matrix C
Are set so that the sum of each row and each column becomes 1. That is, the sum of the rows and columns of the transfer matrix is 1
By doing so, the degree of influence of the air-fuel ratio of the combustion air-fuel ratio of each cylinder is correctly modeled as to how much the air-fuel ratio of the exhaust air-fuel ratio is formed. Has been correctly modeled as to what degree of influence is distributed to each exhaust air-fuel ratio.

【0019】[0019]

【発明の効果】請求項1記載の発明によると、時系列的
な遅れのみならず、排気系の形状による各気筒間におけ
る残留排気特性の違いや感度の違いを考慮して、排気管
集合部に取付けた排気センサに基づいて燃焼混合気の空
燃比を各気筒別に精度良く推定できるという効果があ
る。
According to the first aspect of the present invention, not only the chronological delay but also the difference in residual exhaust characteristics and the difference in sensitivity among the cylinders due to the shape of the exhaust system are taken into consideration, and the exhaust pipe collecting section is considered. There is an effect that the air-fuel ratio of the combustion mixture can be accurately estimated for each cylinder based on the exhaust sensor attached to the cylinder.

【0020】請求項2記載の発明によると、エンジンの
運転条件の変化による感度の変化等に対応して、全運転
領域で気筒別の空燃比検出を高精度に行なわせることが
できるという効果がある。請求項3記載の発明による
と、排気伝達モデルを学習することで、経時的な変化に
も対応して、気筒別の空燃比の検出精度を安定的に維持
させることができるという効果がある。
According to the second aspect of the present invention, it is possible to accurately detect the air-fuel ratio for each cylinder in the entire operation range in response to a change in sensitivity due to a change in operating conditions of the engine. is there. According to the third aspect of the invention, by learning the exhaust transmission model, there is an effect that the detection accuracy of the air-fuel ratio for each cylinder can be stably maintained in response to changes over time.

【0021】請求項4記載の発明によると、排気系の形
状等による気筒間での感度の違い等を考慮した気筒別の
空燃比検出を、簡便な演算でかつ精度良く行なえると共
に、伝達特性を簡易に表すことができるという効果があ
る。請求項5記載の発明によると、伝達行列を正規化し
て、気筒別空燃比の推定精度を確保できるようになると
いう効果がある。
According to the fourth aspect of the present invention, the air-fuel ratio detection for each cylinder in consideration of the difference in sensitivity among the cylinders due to the shape of the exhaust system and the like can be performed with a simple calculation and with high accuracy, and the transmission characteristics can be improved. Can be simply represented. According to the fifth aspect of the invention, there is an effect that the transfer matrix is normalized and the accuracy of estimating the air-fuel ratio for each cylinder can be secured.

【0022】[0022]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。実施形態のシステム構成を示す図1において、エ
ンジン1は、4気筒4サイクルエンジンである。前記エ
ンジン1を制御するエンジン・コントロール・モジュー
ル(以下、ECMと略す)2は、CPU3,RAM4,
ROM5,タイマー6,I/Oポート7等を含んで構成
される。
Embodiments of the present invention will be described below. In FIG. 1 showing a system configuration of the embodiment, an engine 1 is a four-cylinder four-cycle engine. An engine control module (hereinafter abbreviated as ECM) 2 for controlling the engine 1 includes a CPU 3, a RAM 4,
It includes a ROM 5, a timer 6, an I / O port 7, and the like.

【0023】前記ECM2には、各種のセンサからの検
出信号が、前記I/Oポート7を介して入力されるよう
になっている。前記各種のセンサとしては、エンジン1
の吸入空気量を検出するエアフローメータ8、スロット
ル弁9の開度を検出するスロットルセンサ10、エンジン
1の冷却水温度を検出する水温センサ11、クランク角を
検出するクランク角センサ12、吸気マニホールド13の集
合部に取付けられ、排気成分濃度に応じた検出信号を出
力する排気センサ14等が設けられている。
Detection signals from various sensors are input to the ECM 2 through the I / O port 7. The various sensors include an engine 1
An air flow meter 8 for detecting an intake air amount of the engine, a throttle sensor 10 for detecting an opening degree of a throttle valve 9, a water temperature sensor 11 for detecting a cooling water temperature of the engine 1, a crank angle sensor 12 for detecting a crank angle, and an intake manifold 13. And an exhaust sensor 14 that outputs a detection signal corresponding to the exhaust component concentration is provided.

【0024】尚、前記排気センサ14は、例えば、理論空
燃比よりもリーン領域では排気中の酸素濃度に、また、
リッチ領域ではCO濃度に比例した信号を出力すること
で、排気空燃比を広範囲に検出する広域空燃比センサで
あっても良いし、また、排気中の酸素濃度に感応し、リ
ーン領域でロー信号を出力し、リッチ領域でハイ信号を
出力するストイキセンサであっても良く、燃焼混合気の
空燃比に相関する排気成分濃度に応じた検出信号を出力
するセンサであれば、公知のいずれのセンサを用いても
良い。
It should be noted that the exhaust sensor 14 detects the oxygen concentration in the exhaust gas in a region leaner than the stoichiometric air-fuel ratio.
In the rich region, a wide range air-fuel ratio sensor that detects the exhaust air-fuel ratio over a wide range by outputting a signal proportional to the CO concentration may be used, or it may respond to the oxygen concentration in the exhaust gas, and a low signal in the lean region. May be a stoichiometric sensor that outputs a high signal in a rich region, and any known sensor that outputs a detection signal corresponding to an exhaust component concentration correlated with the air-fuel ratio of the combustion mixture. May be used.

【0025】前記ECM2は、前記各種センサからの検
出信号に基づいて、各気筒の吸気ポート部にそれぞれ取
付けられた燃料噴射弁15による燃料噴射量を制御すると
共に、各気筒の燃焼室に臨ませて取付けられた点火プラ
グ16による点火時期を制御する。また、前記ECM2
は、前記燃料噴射弁15による燃料噴射量を制御対象とす
る空燃比制御において、前記排気センサ14からの検出信
号に基づいて燃焼混合気の実空燃比を各気筒別に推定
し、該推定結果に基づいて各気筒の実空燃比をそれぞれ
目標空燃比に一致させるべく、燃料噴射量を各気筒別に
独立に制御するようになっている。
The ECM 2 controls the amount of fuel injected by the fuel injection valves 15 attached to the intake ports of the respective cylinders based on the detection signals from the various sensors, and faces the combustion chambers of the respective cylinders. The ignition timing by the attached spark plug 16 is controlled. In addition, the ECM2
In the air-fuel ratio control using the fuel injection amount by the fuel injection valve 15 as a control target, the actual air-fuel ratio of the combustion mixture is estimated for each cylinder based on the detection signal from the exhaust sensor 14, and the estimation result The fuel injection amount is controlled independently for each cylinder so that the actual air-fuel ratio of each cylinder matches the target air-fuel ratio.

【0026】ここで、前記排気センサ14を用いたECM
2による気筒別の空燃比検出制御について説明する。
尚、本実施形態では、理論空燃比を基準とした燃料噴射
量制御によって空燃比を制御する関係上、空燃比を当量
比(燃焼混合気の燃空比と理論燃空比との比であり、空
気過剰率λの逆数)で表すものとするが、空燃比,燃空
比,空気過剰率のいずれを用いても良い。
Here, an ECM using the exhaust sensor 14 is described.
2 will be described.
In the present embodiment, since the air-fuel ratio is controlled by the fuel injection amount control based on the stoichiometric air-fuel ratio, the air-fuel ratio is set to the equivalent ratio (the ratio between the fuel-air ratio of the combustion mixture and the stoichiometric fuel-air ratio. , The reciprocal of the excess air ratio λ), but any of the air-fuel ratio, the fuel-air ratio, and the excess air ratio may be used.

【0027】本実施形態のように、排気マニホールド13
の集合部に排気センサ14を取り付ける場合、排気マニホ
ールド13内における残留排気の影響があって、各気筒の
排気を完全に分離して排気センサ14で検出させることは
できず、例えば#1気筒の排気行程に対応するタイミン
グで排気センサ14の検出信号をサンプリングしても、該
サンプリングされた検出信号には、他気筒(#2〜#4
気筒)の排気が影響し、気筒間で当量比のばらつきがあ
る場合には、かかるばらつきの影響を受けて検出対象の
気筒(#1気筒)の当量比を誤検出することになってし
まう。
As in the present embodiment, the exhaust manifold 13
When the exhaust sensor 14 is attached to the gathering portion of the cylinders, the exhaust of each cylinder cannot be completely separated and detected by the exhaust sensor 14 due to the influence of the residual exhaust in the exhaust manifold 13. Even if the detection signal of the exhaust sensor 14 is sampled at a timing corresponding to the exhaust stroke, the sampled detection signal includes other cylinders (# 2 to # 4).
If the equivalent ratio varies among the cylinders due to the influence of the exhaust of the cylinder, the equivalent ratio of the cylinder (# 1 cylinder) to be detected is erroneously detected due to the influence of the variation.

【0028】前記気筒間での残留排気の影響は、運転条
件(エンジン回転速度,負荷)によって変化すると共
に、排気マニホールドの形状によって、残留排気特性が
気筒間でばらつき、かつ、感度が気筒間で異なるため、
影響度合いが個々の気筒で異なり、例えば前回に燃焼行
程であった気筒が#1気筒である場合には、今回の燃焼
気筒に対する影響度が25%であるのに対し、前回燃焼気
筒が#3気筒である場合には前記影響度が20%になるな
ど、燃焼履歴に応じた時系列的な重み付けのみでは、気
筒間における影響度を精度良く推定することができな
い。
The effect of the residual exhaust between the cylinders varies depending on operating conditions (engine speed, load), and the residual exhaust characteristics vary among the cylinders and the sensitivity between the cylinders varies depending on the shape of the exhaust manifold. Because they are different
The degree of influence differs for each cylinder. For example, if the cylinder that was previously in the combustion stroke is the # 1 cylinder, the degree of influence on the current combustion cylinder is 25%, whereas the degree of influence on the previous cylinder is # 3. In the case of a cylinder, the influence degree between cylinders cannot be accurately estimated only by time-series weighting according to the combustion history, for example, the influence degree becomes 20%.

【0029】そこで、本実施形態では、以下に示すよう
にして、前記気筒間での残留排気特性のばらつき,感度
のばらつきを考慮した気筒別の当量比検出を行なう。
尚、感度とは、排気が排気センサ14で検出される度合い
を示し、例えばある気筒の排気が排気センサ14のセンサ
素子から離れた部分を主に通過する場合には感度が低く
なり、逆に、ある気筒の排気が排気センサ14のセンサ素
子付近を集中的に通過する場合には感度が高くなる。
Therefore, in the present embodiment, the equivalence ratio detection for each cylinder is performed in consideration of the variation in the residual exhaust characteristics and the variation in the sensitivity among the cylinders as described below.
Note that the sensitivity indicates the degree to which the exhaust gas is detected by the exhaust sensor 14.For example, when the exhaust gas of a certain cylinder mainly passes through a portion of the exhaust sensor 14 away from the sensor element, the sensitivity becomes low, and conversely, However, when the exhaust of a certain cylinder intensively passes near the sensor element of the exhaust sensor 14, the sensitivity increases.

【0030】まず、上記のような各気筒間での影響度の
違いを、行列式により以下のように表すものとする。
尚、排気センサ14の検出信号に基づいて検出される各気
筒別の排気当量比信号列yi(i=1〜4)からなる状
態変数をYとし、各気筒別の燃焼混合気の目標当量比信
号列xi(i=1〜4)からなる状態変数をXとし、更
に、前記状態変数Yと前記状態変数Xとを関係付ける伝
達行列をCとして示すものとする(図2,図3参照)。
First, the difference in the degree of influence between the cylinders as described above is represented by a determinant as follows.
In addition, Y is a state variable composed of an exhaust equivalence ratio signal sequence yi (i = 1 to 4) for each cylinder detected based on the detection signal of the exhaust sensor 14, and the target equivalence ratio of the combustion mixture for each cylinder is Y. A state variable composed of the signal sequence xi (i = 1 to 4) is represented by X, and a transfer matrix relating the state variable Y and the state variable X is represented by C (see FIGS. 2 and 3). .

【0031】[0031]

【数1】 (Equation 1)

【0032】排気管集合部の当量比Y(k)は、各気筒
の残留排気分を考慮すると、 Y(k)=(CX(k) +α*CX(k-1) +β*CX(k-
2) +・・・)/(1+α+β+・・・・) (k:時間を表す離散パラメータ、α,β:残留排気割
合)で表され、気筒間で当量比のばらつきがあるとして
も、定常状態では各気筒の当量比はそれぞれに一定であ
ると見做すことができ、X(k) =X(k-1) =X(k-2)=
・・・であるから、前記数1に示すように、Y=C*X
として排気伝達特性をモデル化できる。
The equivalence ratio Y (k) of the exhaust pipe collecting section is calculated as follows: Y (k) = (CX (k) + α * CX (k−1) + β * CX (k−)
2) + ...) / (1 + α + β +...) (K: discrete parameter representing time, α, β: residual exhaust ratio), and even if the equivalence ratio varies between cylinders, steady state Then, the equivalent ratio of each cylinder can be considered to be constant, and X (k) = X (k-1) = X (k-2) =
..., as shown in the above equation 1, Y = C * X
The exhaust transmission characteristics can be modeled as

【0033】ここで、前記行列式を展開すると、 y1=c11*x1+c12*x3+c13*x4+c14*x
2 y3=c21*x1+c22*x3+c23*x4+c24*x
2 y4=c31*x1+c32*x3+c33*x4+c34*x
2 y2=c41*x1+c42*x3+c43*x4+c44*x
2 となり、更に上記方程式の右辺の各項を、燃焼履歴(点
火順:#1→#3→#4→#2)に従って燃焼履歴の新
しい順に並べ変えると、 y1=c11*x1+c14*x2+c13*x4+c12*x
3 y3=c22*x3+c21*x1+c24*x2+c23*x
4 y4=c33*x4+c32*x3+c31*x1+c34*x
2 y2=c44*x2+c43*x4+c42*x3+c41*x
1 となる。
Here, when the determinant is expanded, y1 = c11 * x1 + c12 * x3 + c13 * x4 + c14 * x
2 y3 = c21 * x1 + c22 * x3 + c23 * x4 + c24 * x
2 y4 = c31 * x1 + c32 * x3 + c33 * x4 + c34 * x
2 y2 = c41 * x1 + c42 * x3 + c43 * x4 + c44 * x
2 and the terms on the right-hand side of the above equation are rearranged in the order of newest combustion history according to the combustion history (ignition order: # 1 → # 3 → # 4 → # 2). * X
3 y3 = c22 * x3 + c21 * x1 + c24 * x2 + c23 * x
4 y4 = c33 * x4 + c32 * x3 + c31 * x1 + c34 * x
2 y2 = c44 * x2 + c43 * x4 + c42 * x3 + c41 * x
It becomes 1.

【0034】ここで、燃焼履歴による時系列的な遅れの
みを考慮する場合には、前記伝達行列Cの要素は、c11
=c22=c33=c44、c14=c21=c32=c43、c13=
c24=c31=c42、c12=c23=c34=c41とすれば良
いが、前述のように、気筒間における残留排気特性や感
度のばらつきによって、必ずしも、伝達行列Cの各要素
を前記のような関係に設定することはできない。
Here, when considering only the time-series delay due to the combustion history, the element of the transfer matrix C is c11.
= C22 = c33 = c44, c14 = c21 = c32 = c43, c13 =
c24 = c31 = c42, c12 = c23 = c34 = c41, but as described above, due to the variation of the residual exhaust characteristics and the sensitivity among the cylinders, the elements of the transfer matrix C are not necessarily related to each other. Cannot be set to.

【0035】そこで、例えば同じ直近の燃焼気筒に対す
る重み付け(c11,c22,c33,c44)であっても、そ
の気筒の残留排気特性や感度の違いに対応して、前記重
み付けを個別に設定するようにすれば、前記Y=C*X
により、時系列的な遅れのみならず、気筒間における残
留排気特性や感度の違いを考慮した排気伝達モデルを設
定することが可能になり、該排気伝達モデルに従って排
気センサ14の検出信号に基づいて各気筒の燃焼混合気の
実当量比を精度良く推定できることになる。
Therefore, for example, even if the weights (c11, c22, c33, c44) are assigned to the same nearest combustion cylinder, the weights are individually set in accordance with the residual exhaust characteristics and the sensitivity of the cylinder. In this case, Y = C * X
Accordingly, it is possible to set an exhaust transmission model in consideration of not only a time-series delay but also a difference in residual exhaust characteristics and sensitivity between cylinders, and based on a detection signal of the exhaust sensor 14 according to the exhaust transmission model. The actual equivalence ratio of the combustion mixture in each cylinder can be accurately estimated.

【0036】前記伝達行列Cは、以下のようにして求め
られる。まず、燃焼混合気の目標当量比を例えばx1=
x2=x3=x4=1としたときの各状態変数を、X=
X0,Y=Y0とし、前記目標当量比を、x1=1+Δ
x,x2=x3=x4=1として、第1気筒#1のみの
目標当量比をΔxだけ変更した場合の各状態変数を、X
=X1,Y=Y1とする。
The transfer matrix C is obtained as follows. First, the target equivalent ratio of the combustion air-fuel mixture is, for example, x1 =
Each state variable when x2 = x3 = x4 = 1 is represented by X =
X0, Y = Y0, and the target equivalent ratio is x1 = 1 + Δ
x, x2 = x3 = x4 = 1, and each state variable when the target equivalent ratio of only the first cylinder # 1 is changed by Δx is X
= X1, Y = Y1.

【0037】ここで、定常状態であれば、第1気筒#1
の当量比以外は個々には一定であると見做すことができ
るから、
Here, in the steady state, the first cylinder # 1
Can be regarded as constant except for the equivalence ratio of

【0038】[0038]

【数2】 (Equation 2)

【0039】となり、伝達行列Cの第1列、即ち、第1
気筒#1の当量比に乗算される各要素が、
And the first column of the transfer matrix C, ie, the first column
Each element multiplied by the equivalent ratio of cylinder # 1 is

【0040】[0040]

【数3】 (Equation 3)

【0041】として求められる。同様に、x3=1+Δ
x,x4=1+Δx x2=1+Δxとしたときの状態
変数をそれぞれX3,Y3、X4,Y4、X2,Y2と
すると、
Is obtained. Similarly, x3 = 1 + Δ
Assuming that the state variables when x, x4 = 1 + Δx x2 = 1 + Δx are X3, Y3, X4, Y4, X2, and Y2, respectively,

【0042】[0042]

【数4】 (Equation 4)

【0043】となり、伝達行列Cの全ての要素が求ま
る。上記の操作,演算は、特定気筒の目標当量比変化
が、各気筒の排気当量比に対してそれぞれどの程度の影
響を与えるかを求めることになり、結果的に、気筒間に
おける残留排気特性や感度の違いが求められることにな
る。上記の操作,演算による伝達行列Cの設定は、エン
ジンの種別毎に代表的に行なわせても良いし、また、実
機上(オンボード)で個々のエンジン毎に行なわせても
良い。
Thus, all the elements of the transfer matrix C are obtained. The above operations and calculations determine how much the change in the target equivalence ratio of a specific cylinder affects the exhaust equivalence ratio of each cylinder, and as a result, the residual exhaust characteristics between the cylinders and the like. A difference in sensitivity will be required. The setting of the transfer matrix C by the above operation and calculation may be performed representatively for each type of engine, or may be performed for each engine on an actual machine (on-board).

【0044】そして、前記ECM2のRAM或いはRO
Mに前記伝達行列C(又は逆行列C -1)を記憶させてお
くことで、排気センサ14から求めた各気筒の実排気当量
比から前記伝達行列C(排気伝達モデル)に基づいて各
気筒の燃焼混合気の実当量比X’(X’=C-1*Y)を
高精度に推定できることになる。尚、前記伝達行列C
は、エンジン回転速度と負荷とによって変動するので、
エンジン回転速度,負荷によって区分される領域毎に、
エンジンが定常状態にあるときに、上記の操作,演算を
その都度行なわせ、図6に示すように、各領域毎に伝達
行列Cを求める必要がある。
Then, the RAM or RO of the ECM2 is used.
M is the transfer matrix C (or inverse matrix C) -1)
The actual exhaust equivalent of each cylinder calculated from the exhaust sensor 14
Ratio based on the transfer matrix C (exhaust transfer model)
The actual equivalent ratio X '(X' = C) of the combustion mixture in the cylinder-1* Y)
It can be estimated with high accuracy. The transfer matrix C
Varies with the engine speed and load,
For each area divided by engine speed and load,
When the engine is in a steady state,
Each time, as shown in FIG.
It is necessary to find the matrix C.

【0045】また、状態変数X,Yの各要素を、前述の
ように点火順(#1→#3→#4→#2)に並べると、
伝達行列Cは対角要素(c11,c33,c44,c22)付近
に大きな数字が集中することになり、逆行列C-1の計算
上有利である。次に、ECM2による気筒別の当量比検
出制御の様子を、図5のフローチャートを参照しつつ説
明する。
When the elements of the state variables X and Y are arranged in the order of ignition (# 1 → # 3 → # 4 → # 2) as described above,
In the transfer matrix C, large numbers are concentrated near the diagonal elements (c11, c33, c44, c22), which is advantageous in calculating the inverse matrix C- 1 . Next, the state of the equivalent ratio detection control for each cylinder by the ECM 2 will be described with reference to the flowchart of FIG.

【0046】S50では、クランク角センサ12の検出信号
に基づいて演算されるエンジン1の回転速度Neと、エ
アフローメータ8で検出される吸入空気量Qaとを読み
込む。S51では、前記読み込んだエンジン回転速度Ne
と吸入空気量Qaとに基づいて、エンジン負荷を代表す
る基本燃料噴射量(基本燃料噴射パルス幅)Tp(Tp
=K×Qa/Ne、Kは定数)を演算する。
At S50, the rotational speed Ne of the engine 1 calculated based on the detection signal of the crank angle sensor 12 and the intake air amount Qa detected by the air flow meter 8 are read. In S51, the read engine speed Ne is read.
And a basic fuel injection amount (basic fuel injection pulse width) Tp (Tp
= K × Qa / Ne, where K is a constant).

【0047】S52では、エンジン回転速度Neと基本燃
料噴射量Tpとに応じて区分される領域毎に目標排気当
量比を記憶したマップを参照し、目標排気当量比Y(y
1=y2=y3=y4=y)を求める。S53では、図6
に示すように、エンジン回転速度Neと負荷とによって
区分される運転領域毎に予め伝達行列Cを記憶したマッ
プから、現在の回転速度Ne及び負荷に対応する伝達行
列Cを参照する。
In S52, the target exhaust equivalence ratio Y (y is referred to by referring to a map in which the target exhaust equivalence ratio is stored for each area divided according to the engine speed Ne and the basic fuel injection amount Tp.
1 = y2 = y3 = y4 = y). In S53, FIG.
As shown in (1), the transfer matrix C corresponding to the current rotational speed Ne and the load is referred to from a map in which the transfer matrix C is stored in advance for each operation region divided by the engine rotational speed Ne and the load.

【0048】S54では、前記目標排気当量比Yと、現在
の運転条件に見合った伝達行列Cの逆行列C-1とから燃
焼混合気の目標当量比Xを、X=C-1*Yとして求め
る。S55では、排気センサ14からの検出信号Ipを読み
込み、S56では、各気筒別の実排気当量比Y’を求め
る。前記実排気当量比Y’は、各気筒の排気行程にタイ
ミングを合わせた所定のサンプリングタイミングで前記
排気センサ14の検出信号をサンプリングして行なわれ
る。具体的には、例えば排気BTDC80°〜90°の間で
排気センサ14の検出信号をサンプリングし、前記排気B
TDC80°〜90°の間での排気センサ14による検出結果
(空気過剰率として検出される場合にはその逆数として
当量比を求めることになる)の平均値として、各気筒の
実排気当量比を点火順に従って時系列的に検出する(図
4参照)。
In S54, the target equivalent ratio X of the combustion mixture is determined as X = C -1 * Y from the target exhaust equivalent ratio Y and the inverse matrix C -1 of the transfer matrix C corresponding to the current operating condition. Ask. In S55, the detection signal Ip from the exhaust sensor 14 is read, and in S56, the actual exhaust equivalent ratio Y 'for each cylinder is obtained. The actual exhaust equivalent ratio Y ′ is obtained by sampling the detection signal of the exhaust sensor 14 at a predetermined sampling timing that is synchronized with the exhaust stroke of each cylinder. Specifically, for example, the detection signal of the exhaust sensor 14 is sampled between 80 ° and 90 ° of the exhaust BTDC and the exhaust B
As an average value of the detection results by the exhaust sensor 14 between 80 ° and 90 ° TDC (when the detection is performed as an excess air ratio, the equivalent ratio is obtained as the reciprocal thereof), the actual exhaust equivalent ratio of each cylinder is calculated. Detection is performed in chronological order according to the ignition order (see FIG. 4).

【0049】S57では、前記各気筒別の実排気当量比
Y’と、現在の運転条件に見合った伝達行列Cの逆行列
-1とに基づいて、各気筒の燃焼混合気の実当量比X’
(X’=C-1*Y’)を演算する。このようにして、各
気筒別の実当量比X’を演算すると、ECM2は、該演
算結果に基づいて燃料噴射量を各気筒別に独立に制御す
る。
In step S57, the actual equivalent ratio of the combustion mixture in each cylinder is determined based on the actual exhaust equivalent ratio Y 'for each cylinder and the inverse matrix C -1 of the transfer matrix C corresponding to the current operating conditions. X '
(X ′ = C −1 * Y ′) is calculated. When the actual equivalent ratio X ′ for each cylinder is calculated in this way, the ECM 2 controls the fuel injection amount independently for each cylinder based on the calculation result.

【0050】次に、前記伝達行列Cの学習制御を、図7
のフローチャートを参照して説明する。前記伝達行列C
の学習制御とは、残留排気特性や感度の経時的な変化に
対応すべく、伝達行列Cの各要素を求め直して、マップ
データを逐次更新させることを示す。S60では、水温セ
ンサ11で検出される水温が所定温度以上であって、か
つ、排気センサ14の活性状態、即ち、完暖状態であって
排気センサ14を用いたフィードバック制御が可能な状態
であるか否かを判別する。
Next, the learning control of the transfer matrix C will be described with reference to FIG.
This will be described with reference to the flowchart of FIG. The transfer matrix C
The learning control means that the elements of the transfer matrix C are recalculated and the map data is sequentially updated in order to cope with the change over time in the residual exhaust characteristics and the sensitivity. In S60, the water temperature detected by the water temperature sensor 11 is equal to or higher than the predetermined temperature, and the exhaust sensor 14 is in an active state, that is, a fully warmed state, and the feedback control using the exhaust sensor 14 is possible. It is determined whether or not.

【0051】S60で、水温が所定温度以上であって、か
つ、排気センサ14の活性状態であると判別されると、S
61では、回転速度Neの変化量ΔNeの絶対値、及び、
基本燃料噴射量Tpの変化量ΔTpの絶対値が、それぞ
れ所定値以下であるか否かによって、エンジン1の定常
運転状態を判別する。定常運転状態であるときには、S
62で、エンジン回転速度Neと基本燃料噴射量Tpとに
基づいて、伝達行列Cのマップにおける学習領域を判定
する。
If it is determined in S60 that the water temperature is equal to or higher than the predetermined temperature and that the exhaust sensor 14 is in the active state, the program proceeds to S60.
In 61, the absolute value of the change amount ΔNe of the rotation speed Ne, and
The steady operation state of the engine 1 is determined based on whether or not the absolute value of the variation ΔTp of the basic fuel injection amount Tp is equal to or smaller than a predetermined value. When the vehicle is in a steady operation state, S
At 62, a learning region in the map of the transfer matrix C is determined based on the engine speed Ne and the basic fuel injection amount Tp.

【0052】S63では、排気センサ14の出力を回転同期
で読み込む。S64では、前記読み込んだ排気センサ14の
出力に基づいて状態変数Y0、即ち、噴射量(目標当量
比)の気筒別補正を行なう前の状態での気筒別の実排気
当量比を求める。S65では、第1気筒#1の燃焼混合気
の目標当量比を、Δx1だけ変化させるべく、第1気筒
#1の噴射量をフィートホワード制御する。
At S63, the output of the exhaust sensor 14 is read in rotation synchronization. In S64, based on the output of the exhaust sensor 14 read out, the state variable Y0, that is, the actual exhaust equivalent ratio for each cylinder in a state before the cylinder-by-cylinder correction of the injection amount (target equivalent ratio) is obtained. In S65, the injection amount of the first cylinder # 1 is foot-forward controlled so as to change the target equivalent ratio of the combustion mixture of the first cylinder # 1 by Δx1.

【0053】S66では、前記噴射量補正後の排気センサ
14の出力を読み込む。S67では、前記S66で読み込んだ
排気センサ14の出力に基づいて状態変数Y1、即ち、噴
射量(当量比)の気筒別の補正後における気筒別の実排
気当量比を求める。S68では、
In step S66, the exhaust gas sensor after the injection amount correction is performed.
Read 14 outputs. At S67, based on the output of the exhaust sensor 14 read at S66, the state variable Y1, that is, the actual exhaust equivalent ratio for each cylinder after the correction of the injection amount (equivalent ratio) for each cylinder is obtained. In S68,

【0054】[0054]

【数5】 (Equation 5)

【0055】により、伝達行列Cの第1列の各要素を演
算する。同様のステップの繰り返しを、S69〜S80で行
なうことで、伝達行列Cの第2,第3,第4行の各要素
を演算する。そして、S81では、現在のエンジン回転速
度及び負荷に対応する伝達行列Cを設定する。尚、前記
S69,S72,S76,S80で演算された各要素をそのまま
伝達行列Cの各要素として用いるのではなく、エンジン
の燃焼混合気の実当量比Xと実排気当量比Yとの因果性
を考慮して、伝達行列Cの各行各例の和がそれぞれ1に
なるように下の式を繰り返して正規化することが好まし
い。
Thus, each element of the first column of the transfer matrix C is calculated. By repeating the same steps in S69 to S80, each element of the second, third, and fourth rows of the transfer matrix C is calculated. Then, in S81, a transfer matrix C corresponding to the current engine speed and load is set. The elements calculated in S69, S72, S76 and S80 are not directly used as the elements of the transfer matrix C, but the causality of the actual equivalent ratio X and the actual exhaust equivalent ratio Y of the combustion mixture of the engine is used. In consideration of the above, it is preferable to normalize by repeating the following equation so that the sum of each row and each example of the transfer matrix C becomes 1 respectively.

【0056】[0056]

【数6】 (Equation 6)

【0057】尚、上記実施の形態では、4気筒エンジン
を例としたが、排気管集合部に取り付けた排気センサに
対して各気筒の排気が時系列的に排出される構成であれ
ば良く、気筒数を限定するものではないことは明らかで
ある。また、各グループが2気筒以上の気筒からなる複
数のグループに分けて、各グループ毎に排気管を集合さ
せる構成であっても良い。
In the above-described embodiment, a four-cylinder engine is taken as an example. However, any structure may be used as long as the exhaust of each cylinder is discharged in a time-series manner to an exhaust sensor attached to an exhaust pipe assembly. It is clear that the number of cylinders is not limited. Further, the configuration may be such that each group is divided into a plurality of groups including two or more cylinders, and the exhaust pipes are assembled for each group.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態のエンジンのシステム構成図。FIG. 1 is a system configuration diagram of an engine according to an embodiment.

【図2】実施形態における状態変数の相関を示す図。FIG. 2 is a diagram showing a correlation between state variables in the embodiment.

【図3】実施形態において排気伝達モデルを示す伝達行
列と状態変数との相関を示す図。
FIG. 3 is a diagram showing a correlation between a transfer matrix indicating an exhaust transfer model and a state variable in the embodiment.

【図4】実施形態における排気センサに基づく排気当量
比の検出特性を示す図。
FIG. 4 is a view showing detection characteristics of an exhaust equivalent ratio based on an exhaust sensor in the embodiment.

【図5】排気伝達モデルに基づいて燃焼混合気の実当量
比を検出する様子を示すフローチャート。
FIG. 5 is a flowchart showing a state of detecting an actual equivalent ratio of a combustion mixture based on an exhaust transfer model.

【図6】伝達行列の運転条件に応じたマップを示す図。FIG. 6 is a diagram showing a map according to operating conditions of a transfer matrix.

【図7】伝達行列(排気伝達モデル)の学習制御の様子
を示すフローチャート。
FIG. 7 is a flowchart showing a state of learning control of a transfer matrix (an exhaust transfer model).

【符号の説明】[Explanation of symbols]

1 エンジン 2 ECM 3 CPU 4 RAM 5 ROM 6 タイマー 7 I/Oポート 8 エアフローメータ 9 スロットル弁 10 スロットルセンサ 11 水温センサ 12 クランク角センサ 13 吸気マニホールド 14 排気センサ 15 燃料噴射弁 16 点火プラグ 1 Engine 2 ECM 3 CPU 4 RAM 5 ROM 6 Timer 7 I / O Port 8 Air Flow Meter 9 Throttle Valve 10 Throttle Sensor 11 Water Temperature Sensor 12 Crank Angle Sensor 13 Intake Manifold 14 Exhaust Sensor 15 Fuel Injection Valve 16 Spark Plug

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】エンジンの排気管集合部に取付けられ、燃
焼混合気の空燃比に相関する排気成分濃度に応じた検出
信号を出力する排気センサを用いて多気筒エンジンの燃
焼混合気の空燃比を各気筒別に検出する装置であって、 前記排気管集合部における排気空燃比を、各気筒の燃焼
混合気の空燃比それぞれに対する重み付けで表す排気伝
達モデルであって、各気筒の時系列的な影響度の変化に
対応すると共に、各気筒間における影響度の違いに対応
して設定された排気伝達モデルに基づき、前記排気セン
サの検出信号から各気筒の燃焼混合気の空燃比を推定す
ることを特徴とするエンジンの空燃比検出装置。
1. An air-fuel ratio of a combustion mixture of a multi-cylinder engine using an exhaust sensor attached to an exhaust pipe assembly of the engine and outputting a detection signal corresponding to an exhaust-gas concentration correlated with the air-fuel ratio of the combustion mixture. Is an exhaust transmission model in which the exhaust air-fuel ratio in the exhaust pipe assembly is expressed by weighting the air-fuel ratio of the combustion mixture in each cylinder, and the time series of each cylinder Estimating an air-fuel ratio of a combustion mixture of each cylinder from a detection signal of the exhaust sensor based on an exhaust transmission model set corresponding to a change in the degree of influence and corresponding to a difference in the degree of influence between the cylinders. An air-fuel ratio detection device for an engine.
【請求項2】前記排気伝達モデルを、エンジンの回転速
度及び負荷に応じて予め複数種備え、そのときのエンジ
ンの回転速度及び負荷に対応する排気伝達モデルを選択
して用いることを特徴とする請求項1記載のエンジンの
空燃比検出装置。
2. A plurality of exhaust transmission models are provided in advance according to the engine speed and load, and an exhaust transmission model corresponding to the engine speed and load at that time is selected and used. The engine air-fuel ratio detection device according to claim 1.
【請求項3】前記排気伝達モデルを、エンジンの定常運
転状態で燃焼混合気の目標空燃比を各気筒別に独立に変
化させたときに、前記排気センサで検出される前記排気
管集合部における排気空燃比の変化量に基づいて学習す
ることを特徴とする請求項1又は2に記載のエンジンの
空燃比検出装置。
3. When the target air-fuel ratio of the combustion air-fuel mixture is changed independently for each cylinder in the steady-state operating state of the engine, the exhaust gas is detected by the exhaust sensor. 3. The engine air-fuel ratio detecting device according to claim 1, wherein learning is performed based on a change amount of the air-fuel ratio.
【請求項4】前記排気センサで検出される前記排気管集
合部での排気空燃比信号列からなる状態変数Yと、各気
筒別の燃焼混合気の目標空燃比信号列からなる状態変数
Xと、前記状態変数Yと前記状態変数Xとを関係付ける
前記排気伝達モデルに相当する伝達行列Cとからなり、
前記状態変数Yと前記伝達行列Cとから各気筒別の燃焼
混合気の実空燃比信号列からなる状態変数X’を演算す
ることを特徴とする請求項1〜3のいずれか1つに記載
のエンジンの空燃比検出装置。
4. A state variable Y consisting of an exhaust air / fuel ratio signal train detected by the exhaust sensor at the exhaust pipe collecting section, and a state variable X consisting of a target air / fuel ratio signal train of a combustion mixture for each cylinder. , A transmission matrix C corresponding to the exhaust gas transmission model relating the state variable Y and the state variable X,
4. A state variable X 'comprising an actual air-fuel ratio signal sequence of a combustion mixture for each cylinder is calculated from the state variable Y and the transfer matrix C. Engine air-fuel ratio detector.
【請求項5】前記伝達行列Cの各行各列の和がそれぞれ
1となるように設定されることを特徴とする請求項4記
載のエンジンの空燃比検出装置。
5. An air-fuel ratio detecting device for an engine according to claim 4, wherein the sum of each row and each column of said transfer matrix C is set to be 1.
JP15816896A 1996-06-19 1996-06-19 Air-fuel ratio detecting device of engine Pending JPH109038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15816896A JPH109038A (en) 1996-06-19 1996-06-19 Air-fuel ratio detecting device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15816896A JPH109038A (en) 1996-06-19 1996-06-19 Air-fuel ratio detecting device of engine

Publications (1)

Publication Number Publication Date
JPH109038A true JPH109038A (en) 1998-01-13

Family

ID=15665767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15816896A Pending JPH109038A (en) 1996-06-19 1996-06-19 Air-fuel ratio detecting device of engine

Country Status (1)

Country Link
JP (1) JPH109038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7356985B2 (en) 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP2012219683A (en) * 2011-04-07 2012-11-12 Denso Corp Controller for internal combustion engine
US10006382B2 (en) 2013-02-04 2018-06-26 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7356985B2 (en) 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP2012219683A (en) * 2011-04-07 2012-11-12 Denso Corp Controller for internal combustion engine
US10006382B2 (en) 2013-02-04 2018-06-26 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine

Similar Documents

Publication Publication Date Title
US5600056A (en) Air/fuel ratio detection system for multicylinder internal combustion engine
JP3162553B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2717744B2 (en) Air-fuel ratio detection and control method for internal combustion engine
JP4673787B2 (en) Air-fuel ratio control device for internal combustion engine
US7287525B2 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US5870688A (en) Misfire diagnostic system for internal combustion engine
US6840214B2 (en) Air-fuel ratio control apparatus for internal combustion engine
JPH06173755A (en) Air-fuel ratio estimating unit for each engine cylinder of internal combustion engine
JP2007023917A (en) Air fuel ratio control device for internal combustion engine
US5569847A (en) Air-fuel ratio estimator for internal combustion engine
JP3805596B2 (en) Electronic control device for internal combustion engine
JP2008540912A (en) Method and apparatus for determining the ratio between the fuel mass burned in a cylinder of an internal combustion engine and the fuel mass supplied to the cylinder
JP2002030986A (en) Device for estimating air/fuel ratio by cylinders of internal combustion engine
JPH109038A (en) Air-fuel ratio detecting device of engine
KR0137194B1 (en) Misfire detecting device for internal combustion engine
JP2689362B2 (en) Air-fuel ratio detection method for internal combustion engine
JP3223472B2 (en) Control device for internal combustion engine
JP4474377B2 (en) Air-fuel ratio control device for internal combustion engine
JP3683355B2 (en) Cylinder air-fuel ratio estimation device for internal combustion engine
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JP3602575B2 (en) Air-fuel ratio estimator for each cylinder of internal combustion engine
JP2002276451A (en) Atmospheric pressure detecting device for internal combustion engine
JP2683974B2 (en) Air-fuel ratio control method for internal combustion engine
JP3273175B2 (en) Engine misfire detection device
JPH04116237A (en) Air-fuel ratio controller of internal combustion engine