JPH108364A - Water-disintegrable conjugate fiber and nonwoven fabric, and water-absorbable article - Google Patents

Water-disintegrable conjugate fiber and nonwoven fabric, and water-absorbable article

Info

Publication number
JPH108364A
JPH108364A JP8181138A JP18113896A JPH108364A JP H108364 A JPH108364 A JP H108364A JP 8181138 A JP8181138 A JP 8181138A JP 18113896 A JP18113896 A JP 18113896A JP H108364 A JPH108364 A JP H108364A
Authority
JP
Japan
Prior art keywords
water
fiber
disintegrable
component
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8181138A
Other languages
Japanese (ja)
Other versions
JP3741170B2 (en
Inventor
Kazuhiko Aratake
Yuji Nakajima
裕司 中嶌
一彦 荒武
Original Assignee
Chisso Corp
チッソ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp, チッソ株式会社 filed Critical Chisso Corp
Priority to JP18113896A priority Critical patent/JP3741170B2/en
Publication of JPH108364A publication Critical patent/JPH108364A/en
Application granted granted Critical
Publication of JP3741170B2 publication Critical patent/JP3741170B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject conjugate fiber disintegrable in a short time, excellent in mechanical strength and heat-salability, and useful for water- absorbing articles, etc., by arranging a 1st component consisting of a water- disintegrable resin composition so as to be present continuously on part of the fiber surface in its length direction. SOLUTION: This conjugate fiber is made up of a 1st component composed of a starch-base polymer and pref. 30-70wt.% of a copolymer prepared by partially hydrolyzing a copolymer from vinyl acetate and a functional group-free unsaturated monomer such as ethylene, propylene, isobutylene or styrene so as to be 78-98% in degree of saponification and a 2nd component consisting of a thermoplastic resin such as low-density polyethylene, The 1st component is arranged so as to be present continuously on part of the fiber surface in its length direction. It is preferable that the objective nonwoven fabric is produced by wetting the 1st component of the crimped water-disintegrable conjugate fibers so as to mutually bonding the fibers.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、水崩壊繊性複合繊維、詳しくは水崩壊性及び熱接着性の澱粉系高分子を1 BACKGROUND OF THE INVENTION The present invention is water-disintegratable 繊性 composite fibers, and more particularly a water-disintegratability and thermal bonding of the starch-based polymer 1
成分に含む水崩壊性複合繊維及び、該繊維を用いて作製した不織布及び吸収性物品に関するもので、特に水中に投棄して廃棄処理ができる紙おむつ等の吸収性物品や掃除布等に使用するのに好適である水崩壊性複合繊維に関するものである。 Water disintegration conjugate fiber and the component, for use in making the present invention relates to a nonwoven fabric and an absorbent article, the absorbent article and cleaning cloth such as paper diapers, especially can disposal by dumping into water with the fiber those on water disintegratable composite fibers are suitable.

【0002】 [0002]

【従来の技術】水の存在で溶解,崩壊が起こる繊維としては、ポリビニルアルコール繊維があり、繊維,不織布等に加工されて種々の用途に使用されている。 BACKGROUND ART dissolution in the presence of water, the fibers collapse occurs, there is a polyvinyl alcohol fiber, fibers, is processed into a nonwoven fabric or the like have been used in various applications. しかしながら、ポリビニルアルコール繊維は水に対する溶解度が低く、80℃以上の温水で溶解しなければならない為、 However, polyvinyl alcohol fibers have low solubility in water, because must dissolve at 80 ° C. or more hot water,
例えば水洗トイレなど室温の水への廃棄処理が困難である。 For example it is difficult disposal to room temperature water, such as flush toilets.

【0003】特開平04−100913号公報に、ポリビニルアルコ−ル系重合体と澱粉とからなる生分解性繊維が提案されている。 [0003] in JP-A-04-100913, polyvinyl alcohol - biodegradable fibers comprising a Le polymer and starch has been proposed. しかし分解性が弱く、完全分解するのに期間が長いという問題と、繊維強度が低いという問題があって、使用上の障害となっている。 However degradability weak, the complete decomposition problem of long period of time to, there is a fiber strength problem of low, which is an obstacle on the used.

【0004】また特開平01−260017号公報には、ケン化度96モル%のPVA系ポリマーを鞘成分、 [0004] JP-A-01-260017, the sheath component of the PVA-based polymer having a saponification degree 96 mol%,
ケン化度80〜95モル%のPVA系ポリマーを芯成分とした水崩壊性PVA系複合繊維が提案されている。 Water disintegratable PVA type composite fiber of the saponification degree 80 to 95 mol% of the PVA-based polymer as a core component has been proposed. しかしこの複合繊維は、低融点成分を鞘側に配置していないため熱接着性がない。 However, this composite fiber, there is no heat-adhesive because no low melting point component is disposed on the sheath side.

【0005】また特開平07−126918号公報には、融点が210℃以上のポリビニルアルコール系ポリマーを鞘成分とし、融点が210℃未満の水溶性ポリマーを芯成分となるように溶液紡糸法によって作製された鞘芯型複合繊維が提案されている。 [0005] JP-A-07-126918, produced by a solution spinning method as melting point and a polyvinyl alcohol-based polymer above 210 ° C. and the sheath component comprises a water-soluble polymer having a melting point of less than 210 ° C. as a core component has been the sheath-core type composite fibers have been proposed. この複合繊維は熱接着可能であるが、鞘側のポリビニルアルコール系ポリマーが80℃以上の熱水でないと溶解しない事から、常温の水に廃棄ができないという欠点を持っている。 This composite fibers can be thermal bonding, since a polyvinyl alcohol-based polymer sheath side does not dissolve the non-80 ° C. or more hot water, it has the disadvantage that it can not discard the cold water.

【発明が解決しようとする課題】接着性があり、常温の水で簡単に溶解する性能を持ち、かつ高い強度を有する水崩壊性繊維が望まれているが、従来の技術ではこれを満足するものが得られていない。 There adhesion [0005] has the ability to easily dissolve in water at normal temperature, and Water disintegratable fiber having a high strength is desired, the prior art to satisfy this things can not be obtained. 本発明の課題は、熱接着性を有する水崩壊性複合繊維、不織布、吸収性物品を提供することにある。 An object of the present invention is to provide water-disintegratable composite fiber having thermal bonding property, nonwoven fabrics, the absorbent article.

【0006】 [0006]

【発明を解決するための手段】本発明者らは、上記課題を解決すべく、鋭意検討を重ねた結果、下記水崩壊性複合繊維を使用することにより、所期の目的を達成することを知り本発明を完成するに至った。 The present inventors have INVENTION To achieve the] In order to solve the above problems, the results of intensive studies, by using the following water disintegratable composite fibers, to achieve the intended purpose this has led to the completion of the present invention to know. 本発明は、次の構成を有する。 The present invention has the following configuration. (1)水崩壊性樹脂組成物からなる第1成分と、熱可塑性樹脂からなる第2成分との複合繊維であって、前記第1成分が繊維表面の少なくとも一部を長さ方向に連続して存在するように配された水崩壊性複合繊維。 (1) a first component consisting of water-disintegrating resin composition, a composite fiber of a second component comprising a thermoplastic resin, the first component is continuous in the length direction at least part of the fiber surface water disintegratable composite fibers arranged such that there Te. (2)水崩壊性樹脂組成物が、澱粉系高分子と、酢酸ビニルと官能基を含まない不飽和モノマーとの共重合体を部分加水分解した共重合体とからなる組成物である前記(1)項に記載の水崩壊性複合繊維。 (2) the water-disintegrating resin composition, a starch-based polymer, a composition comprising a copolymer of an unsaturated monomer containing no vinyl acetate and the functional group and partially hydrolyzed copolymer ( 1) water disintegratability composite fiber according to claim. (3)官能基を含まない不飽和モノマーが、エチレン、 (3) unsaturated monomers containing no functional group, ethylene,
プロピレン、イソブチレンまたはスチレンのなかから選ばれた少なくとも1種の官能基を含まない不飽和モノマーであり、部分加水分解した共重合体のケン化度が78 Propylene, an unsaturated monomer which does not contain at least one functional group selected from among isobutylene or styrene, saponification degree of partially hydrolyzed copolymer is 78
〜98%であり、かつ、該部分加水分解した共重合体が水崩壊性複合樹脂組成物に対して30〜70重量%含まれている前記(2)項に記載の水崩壊性複合繊維。 It was 98%, and the the copolymer was partial hydrolysis is contained 30 to 70 wt% in water disintegrating composite resin composition (2) water-disintegratable composite fiber according to claim. (4)捲縮を有する前記(1)〜(3)項に記載の水崩壊性複合繊維。 (4) the having crimps (1) to (3) water-disintegratable composite fiber according to claim. (5)前記(1)〜(4)項に記載の水崩壊性複合繊維を用いた不織布。 (5) the (1) to (4) non-woven fabric using a water-disintegrable composite fiber according to claim. (6)前記(1)〜(4)項に記載の水崩壊性複合繊維を含む不織繊維集合体について、少なくとも該水崩壊性複合繊維の第1成分を水で湿潤することによって前記繊維同士を接着させることを特徴とする不織布の製法。 (6) the (1) to (4) non-woven fiber aggregate containing water disintegratability composite fiber according to claim, wherein the fibers by the first component of at least the aqueous disintegration conjugate fiber wetting with water preparation of the nonwoven fabric, characterized in that adhering. (7)前記(1)〜(5)項に記載の水崩壊性複合繊維または不織布を材料として用いた吸収性物品。 (7) the (1) to (5) an absorbent article using the water-disintegrable composite fiber or nonwoven fabric according as the material in section.

【0007】以下、本発明を詳細に説明する。 [0007] In the following, the present invention will be described in detail. 本発明の水崩壊性繊維材料の第1成分として用いられる水崩壊性樹脂組成物中の1種である澱粉系高分子としては、玉蜀黍澱粉,ワラビ澱粉,葛澱粉,馬鈴薯澱粉,小麦澱粉, The one kind is starch-based polymers in water disintegrating resin composition used as the first component of the water-disintegratable fibrous material of the present invention, corn starch, bracken starch, arrowroot starch, potato starch, wheat starch,
キッサバ澱粉,サゴ澱粉,タピオカ澱粉,蜀黍,豆澱粉,ハス澱粉,ヒシ澱粉,甘藷澱粉等の少なくとも1種以上を熱変性した熱可塑性を有する均一溶融体を例示できる。 Kissaba starch, sago starch, tapioca starch, sorghum, beans starch, can be exemplified a homogeneous melt with lotus starch, water chestnut starch, a thermoplastic at least 1 or more and then heat-denatured such as sweet potato starch. 熱変性は、好ましくは、水分を5〜30重量%含んだ澱粉を密閉空間において水分を保持しながら、60 Heat denaturation, preferably, while maintaining the water content in the enclosed space of water 5 to 30 wt% inclusive starch, 60
〜300MPaの高圧下に、80〜290℃で熱処理して行うがこれに限定されない。 The high pressure of ~300MPa, but not limited to performed by heat treatment at from 80 to 290 ° C.. これ以外の澱粉系高分子としては化学変性澱粉誘導体(アリルエ−テル化澱粉, Chemically modified starch derivatives as other starch-based polymer (Arirue - etherified starch,
カルボキシメチルエ−テル化澱粉,ヒドロキシエチルエ−テル化澱粉,ヒドロキシプロピルエ−テル化澱粉,メチルエ−テル化澱粉,リン酸架橋澱粉,ホルムアルデヒド架橋澱粉,エピクロルヒドリン架橋澱粉,アクロレイン架橋澱粉,アセト酢酸エステル化澱粉,酢酸エステル化澱粉,コハク酸エステル化澱粉,キサトゲン酸エステル化澱粉,硝酸エステル化澱粉,尿素リン酸エステル化澱粉,リン酸エステル化澱粉)、化学分解変性澱粉(ジアルデヒド澱粉、酸処理澱粉,次亜塩素酸酸化澱粉等),酵素変性澱粉(加水分解デキストリン,酵素分解デキストリン,アミロ−ス等)、物理的変性澱粉(α− Carboxymethyl et - etherified starch, hydroxyethyl et - etherified starch, hydroxypropyl et - etherified starch, methyl ethyl - etherified starch, phosphoric acid crosslinked starch, formaldehyde-crosslinked starch, epichlorohydrin-crosslinked starch, acrolein-crosslinked starch, acetoacetic ester starch, acetate starch, succinate starch, Kisatogen acid esterified starch, nitrate starch, urea phosphate esterified starch, phosphoric acid esterified starch), chemical degradation-modified starches (dialdehyde starch, acid-treated starches, hypochlorite oxidized starches, etc.), enzyme-modified starch (hydrolyzed dextrin, enzyme-decomposed dextrin, amylose - scan, etc.), physical modified starch (alpha-
澱粉,分別アミロ−ス,湿熱処理澱粉等)が例示できるが、溶融押出の加工性の点からは、熱変性澱粉の使用が最も好ましい。 Starch, fractionated amylose - scan, heat-moisture treated starch, etc.) can be exemplified, from the viewpoint of processability of the melt extrusion, the use of heat denaturation starch is most preferred.

【0008】また、本発明で使用する水崩壊性樹脂組成物に含まれる部分加水分解した共重合体としては、酢酸ビニルと、エチレン、プロピレン、イソブチレンまたはスチレンなどの官能基を含まない不飽和モノマーとを共重合させたのち、該共重合体の有する酢酸ビニルエスエル基を加水分解して得られる共重合体が使用できる。 [0008] As the copolymer obtained by partial hydrolysis in the water disintegrating resin composition used in the present invention, vinyl acetate, ethylene, propylene, unsaturated monomers without functional groups, such as isobutylene or styrene preparative After copolymerized, a copolymer obtained by vinyl acetate SL group of the copolymer was hydrolyzed may be used. 本発明では、加水分解して得られる共重合体のケン化度が78〜98%であるときに効果が大きく、より好ましくは85%〜98%であり、さらに好ましくは90%〜9 In the present invention, the effect is large when the degree of saponification of a copolymer obtained by hydrolyzing is 78 to 98%, more preferably 85% to 98%, still more preferably 90% to 9
8%である。 8%. 本発明では、部分加水分解した共重合体の配合量が、水崩壊性、加工性の点から、水崩壊性樹脂組成物に対し30〜70重量%であるときに効果は大きく、より好ましくは40〜60重量%である。 In the present invention, the amount of partially hydrolyzed copolymer, water disintegratability, in terms of processability, effect is large when to water disintegrating resin composition is 30 to 70 wt%, more preferably 40 to 60% by weight. 本発明では、使用する官能基を含まない不飽和モノマーは特に限定されないが、エチレン、プロプレン、イソブチレンまたはスチレンのなかから選ばれる少なくとも1種の官能基を含まない不飽和モノマーを使用するのが好ましい。 In the present invention, is not particularly limited unsaturated monomers without functional groups to be used are ethylene, Puropuren, to use an unsaturated monomer which does not contain at least one functional group selected from among isobutylene or styrene preferably .

【0009】第2成分に使用する熱可塑性樹脂としては、低密度ポリエチレン、直鎖低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ナイロン6、ナイロン66などのポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステルなどのポリエステル系樹脂などの汎用樹脂が例示でき、これらを1種または2種以上を併用することができる。 [0009] As the thermoplastic resin used in the second component, low density polyethylene, linear low density polyethylene, high density polyethylene, polyolefin resins such as polypropylene, nylon 6, polyamide resins such as nylon 66, polyethylene terephthalate, polybutylene terephthalate, can purpose resin is exemplified such as polyester resins such as copolyester, these can be alone or in combination of two or more.

【0010】本発明の水崩壊性複合繊維における第1成分/第2成分の比は、重量比で70/30〜30/70 [0010] The first component / second component ratio of the water-disintegrable composite fiber of the present invention, the weight ratio 70 / 30-30 / 70
の範囲が好ましい。 The preferred range of. 第2成分に対する第1成分の重量比が30/70より小さいと該水崩壊性複合繊維から不織布を製造するときに実用に耐える接着性能が得られにくく、第2成分に対する第1成分の重量比が70/30より大きいと、該水崩壊性複合繊維を使用して得られた不織布は十分な強度を得られにくい。 Hardly adhesive performance for practical use can be obtained when the weight ratio of the first component to the second component to produce a nonwoven fabric from the 30/70 smaller than aqueous disintegration composite fibers, the weight ratio of the first component to the second component There larger than 70/30, the nonwoven fabric obtained by using the aqueous disintegration composite fiber is difficult to obtain sufficient strength. 接着と強度のバランスがより好ましいのは、第1成分/第2成分の重量比が60/40〜40/60の範囲である。 Adhesion and the balance of strength is more preferred, the weight ratio of first component / second component is in the range of 60 / 40-40 / 60.

【0011】前述した澱粉系高分子と、部分加水分解した共重合体を配合し、これら以外に必要に応じて可塑剤,艶消し剤,顔料,光安定剤,熱安定剤,酸化防止剤等の各種添加剤を本発明の効果を損なわない範囲で添加する事ができる。 [0011] and starch-based polymers described above, blended with partially hydrolyzed copolymer, a plasticizer if necessary in addition to these, matting agents, pigments, light stabilizers, heat stabilizers, antioxidants, etc. the various additives can be added within a range not to impair the effects of the present invention. 例えば、可塑剤を添加する事で、曳糸性を向上する事ができる。 For example, by addition of a plasticizer, it can be improved spinnability. 可塑剤としては、下記のグリコール類またはエタノールアミンの化合物を例示する事ができる。 As the plasticizer, it is possible to illustrate the compounds of the glycol or ethanolamine below. 具体的には、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、プロピレングリコール、グリセリン、2,3−ブタジエンオール、1,3−ブタンジオール、ジエチレングリコール、 Specifically, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, propylene glycol, glycerin, 2,3-butadiene ol, 1,3-butanediol, diethylene glycol,
トリエチレングリコール、1,7−ヘプタンジオール、 Triethylene glycol, 1,7-heptane diol,
シクロヘキサン−1,2−ジオール、シクロヘキサン− Cyclohexane-1,2-diol, cyclohexane -
1,4−ジオール、ピナコール、ヒドロベンゾイン、ベンズピナコールを例示できる。 1,4-diol, pinacol, hydrobenzoin, and benzpinacol be exemplified.

【0012】本発明の水崩壊性複合繊維は複合紡糸法で紡糸し、延伸,捲縮等を付与する事もできる。 [0012] The water-disintegrating composite fiber of the present invention is spun in a composite spinning method, it is also possible to impart stretch, crimp, or the like. 捲縮を付与する手段としては、多くの場合、延伸工程中にクリンパーで付与する方法が取られるが、本発明はこれに限定されない。 The means for imparting crimp, often, a method of imparting at crimper during the stretching step is taken, the present invention is not limited thereto. 捲縮を付与することでカーディング性を向上でき、なおかつ捲縮を有した繊維から作られた布帛に嵩高性を与えることができる。 Crimp can be improved carding properties by imparting, yet crimp can provide bulkiness to the fabric made from fibers having a. なお、捲縮の程度は、一般に、繊維の繊度や繊維長を考慮して選択され、通常20 Incidentally, the degree of crimp are generally selected in consideration of fineness and fiber length of the fibers, typically 20
d/f以下の繊維には、1インチあたり10〜15山の捲縮が付与されるが、本発明はこれに限定されるものではない。 The following fibers d / f, although crimped 10-15 crests per inch is applied, the present invention is not limited thereto. . また、ラウリルホスフェ−トカリウムの如き表面処理剤を後加工で付着させることにより、耐ガス変色性を向上させることも可能である。 Also, lauryl phosphepinium - by depositing a post processing such as surface treatment agent of Tokariumu, it is possible to improve the resistance to gas discoloration resistance.

【0013】本発明の水崩壊性複合繊維は、従来から作製されている熱可塑性複合繊維とは異なり、例えば、並列型にあっては一方の成分に、また、鞘芯型にあっては鞘側成分に澱粉系高分子を主体とした水崩壊性樹脂組成物を使用している為、明確な融点を持っていない。 [0013] Water disintegratability composite fiber of the present invention, unlike the thermoplastic composite fibers are prepared conventionally, for example, the one component In the parallel type, also, in the sheath-core type sheath because you are using a water disintegratability resin composition consisting mainly of starch-based polymer in the side components, it does not have a definite melting point. そのため通常熱可塑性繊維に行われるスルーエアー加工だけでは熱接着が難しい。 Hence thermal bonding is difficult only through-air processing normally performed thermoplastic fibers. しかし澱粉系高分子は水分の存在下で湿潤し軟化する特徴を持つので、本発明の水崩壊性複合繊維を例えば水蒸気などで加湿し、第1成分中の澱粉系高分子を軟化させることで、水崩壊性複合繊維同士を接着させる。 However, since starch-based polymer has a feature wetting softened in the presence of moisture, a wet water disintegratability composite fiber of the present invention for example water vapor, etc., by softening the starch-based polymer of the first component , to bond the water-disintegrable composite fibers. この後に、繊維に付着し残存している水分を蒸発させ、接着を強化する目的を兼ねてスルーエアー加工等を施すのも良い。 Thereafter, to evaporate the water remaining attached to the fibers, it may also be subjected to a through-air processing or the like also serves as a purpose of enhancing the adhesion. スルーエアー加工等を行う際の処理温度は、水崩壊性複合繊維中の第2成分を構成する熱可塑性樹脂の融点を越えない範囲に設定するのが好ましい。 Through processing temperature for carrying out the air processing and the like is preferably set in a range not exceeding the thermal plasticity resin melting point which constitutes the second component of the water-disintegratable composite fibers. また、澱粉系高分子を湿潤する方法としては、 Further, as a method for wetting a starch-based polymer,
水蒸気,水中浸漬等の方法が採用できるが、本発明はこれらに限定されるものではない。 Steam, a method of immersion in water or the like can be employed, the present invention is not limited thereto.

【0014】本発明の水崩壊性複合繊維は、その複合の形態が並列型または鞘芯型であるときに、接着強度等の点で本発明の効果がより大きい。 [0014] water-disintegratable conjugate fiber of the present invention, when the form of the complex is a parallel type or sheath-core type, the effect of the present invention is greater than in the viewpoint of adhesive strength. 本発明の不織布は、前記水崩壊性複合繊維から構成され、かつ構成繊維同士が部分的に接着されているものであるが、該構成繊維同士は3次元的に交絡されることにより不織布の強度が更に向上する。 Nonwoven fabric of the present invention is composed of the water disintegratable composite fibers, and although constituting fibers are those which are partially bonded, the strength of the nonwoven fabric by the constituent fibers to each other is three-dimensionally entangled There is further improved. 交絡はニードルパンチ加工などで付与することができる。 Confounding can be applied in such as needle punching. 本発明の不織布の製造においては、具体的には、得られた本発明の水崩壊性複合繊維を原綿とし、 In the production of the nonwoven fabric of the present invention, specifically, the water-disintegrable composite fiber of the present invention obtained as raw cotton,
エアレイド法によってウェブを作製し、このウェブをスチームに曝す事で構成繊維同士を部分的に軟化接着させ、更にスルーエアー加工機にかけるなどの工程を例示できる。 To prepare a web by air-laid process, the configuration fibers in exposing the web to a steam partially softened adhesive may further illustrate processes such as subjecting the through-air processing machine.

【0015】本発明の吸収性物品は、前記複合繊維から構成されており、好ましくは、液体透過性の表面材層, The absorbent article of the present invention, the is composed of a composite fiber, preferably a liquid permeable facing layer,
液体不透過性のバックシート層及び表面材層とバックシート層の間の吸収材からなる。 Consisting absorber between the liquid-impermeable backsheet layer and surface material layer and the backsheet layer. しかし本発明はこれらの構成に限定されるものではなく、さらにこれらの層の間に単層もしくは複数の層を付加挿入することも出来る。 However, the present invention is not limited to these configurations, it is possible to further insert additional single layer or multiple layers between these layers.
こうした付加挿入層は、吸収材への体液の迅速な移行を司る機能,体液の逆戻りを防止する機能等を持っている。 Such additional insertion layer has a function which controls a rapid transition of the body fluid to the absorbent material, and has a function for preventing the reversal of body fluid. 表面材は液体透過性を充分に有するもので、多岐に及ぶ要求性能に合わせて編織物,不織布,または多孔性フィルムや、これらの複合材料等が選択、使用出来る。 Facer those having a sufficiently liquid permeable, knitted fabric in accordance with the required performance ranging variety, nonwoven or or porous film, these composite materials are selected, can be used.
バックシートは、液体不透過性のシートであり、蒸気を透過させる蒸気透過性のシートでなおかつ、多量の水によって溶解する素材を使用する事が好ましい。 The backsheet is a sheet of liquid impervious, yet a sheet of vapor permeable to transmit steam, it is preferable to use a material that dissolves by a large amount of water. 或いは不織布とシートの複合化物も用いる事が出来る。 Or a composite compound of non-woven fabric and the seat can also be used. 付加挿入層は液体の拡散を促進する機能を付与させる場合、ティッシュ等が使用出来る。 If additional insertion layer is to impart the function of promoting the diffusion of liquids, tissue or the like can be used.

【0016】吸収材は、セルロース繊維、高吸水性ポリマーを均一に混ぜた組成をとるのが一般的であるが、さらに水ぬれ時の型保持の為に、水溶性バインダーとして水崩壊性複合繊維を混ぜる事も出来る。 The absorbent material is cellulose fibers, but take the composition uniformly mixed superabsorbent polymer is generally further due to die holding during wetting water, water-disintegrating conjugate fiber as a water-soluble binder it is also possible to mix. セルロース繊維としては吸収材に従来から用いられているものであれば特に制限はない。 Not particularly limited as long as it has been conventionally used for absorbent material as cellulose fibers.

【0017】高吸水性ポリマーは、吸水体に従来から用いられているものであれば特に制限はないが、例えば澱粉−アクリル酸グラフト重合体,ポリアクリル酸ソーダ架橋体,イソブチレン−無水マレイン酸共重合体またはそのケン化物,PVA架橋体,ポリアクリル酸塩等が使用出来る。 The superabsorbent polymer is not particularly limited as long as it has been conventionally used for the water-absorbent structure, such as starch - graft polymers of acrylic acid, sodium polyacrylate crosslinked isobutylene - maleic acid copolymer polymer or a saponified, PVA crosslinked, polyacrylic acid salts and the like can be used. 以下本発明を実施例の性能を比較例と比較しながら詳細に説明する。 Below present invention compared to Comparative Example the performance of the embodiment will be described in detail. ただし、本発明は以下の実施例のみに限定されるものではない。 However, the present invention is not limited only to the following examples.

【0018】 [0018]

【実施例】 【Example】

[水崩壊性複合繊維の作製]コ−ンスタ−チを原料として熱変性をした水分10重量%を含む澱粉を60重量%、エチレン30モル%とポリ酢酸ビニ−ル70モル% [Preparation of water-disintegrable composite fiber] co - Nsuta - Chi 60% by weight of starch containing 10 wt% moisture thermal denaturation as a raw material, ethylene 30 mol% and polyvinyl acetate vinyl - le 70 mol%
の共重合体のケン化度が98%の部分加水分解共重合体を40重量%の組成比で混ぜた後、造粒し、ペレットとしたものを鞘成分に、メルトフロ−レ−ト16g/10 After saponification of the copolymer was mixed with 98% of partially hydrolyzed copolymer in the composition ratio of 40 wt%, granulated, what was pellet sheath component, melt flow - Le - DOO 16g / 10
分(230℃、2.16kgf)のポリプロピレンを芯成分として、鞘芯型複合紡糸用の孔径0.8mmφ,孔数350の口金と圧縮比2.0のフルフライトスクリュ−を使用し、溶融紡糸を行った。 Min (230 ° C., 2.16 kgf) as polypropylene core component of diameter of sheath-core type conjugate spinning 0.8 mm, full flight screw of the cap and compression ratio 2.0 pore number 350 - using a melt spinning It was carried out. この方法で3d/fの複合繊維を得た。 To obtain a composite fiber of 3d / f in this way. なお、表面仕上剤としてラウリルホスフェ−トカリウム塩を0.3重量%付着させた。 Incidentally, lauryl phosphepinium as a surface finishing agent - Tokariumu salts were deposited 0.3 wt%. チョップは、この繊維を繊維長5mmにカットして作製し、ステープルファイバーは、この繊維をクリンパ−で12山/25mmの捲縮を付与して繊維長38mmにカットして作製した。 Chops, the fibers prepared by cutting the fiber length 5 mm, staple fibers, the fibers crimper - prepared in by crimped of 12 peaks / 25mm was cut into a fiber length of 38mm and.

【0019】[ニードルパンチ不織布の作製]水崩壊性複合繊維(ステープルファイバー)をカード機に通し、 [0019] Through Preparation of needle-punched nonwoven] water disintegratability composite fibers (staple fibers) in carding machine,
目付け20g/m 2のウェブを形成した後、公知のニードルパンチ加工法を用いて繊維同士を交絡させ、つき固める。 After forming a basis weight of 20 g / m 2 web of entangled fibers by a known needle punching method, tamped. この後、熱処理を行う事で、より接着性を上げる事ができる。 After this, by performing the heat treatment, it is possible to increase the more or less adhesive. 得られた不織布は使用される大きさにカットし、サンプルもしくはサンプルのパーツとする事ができる。 The resulting nonwoven fabric was cut to a size to be used, it can be a sample or sample parts.

【0020】[カードウェブ−熱処理による不織布の作製]水崩壊性複合繊維(ステープルファイバー)をカード機に通し、目付け20g/m 2のウェブを形成した後、必要であればウェブに2kgf/cm 2のスチームを5秒間当て、つぎに100℃設定のスルーエアー加工機で熱処理を10秒間行い繊維間同士を固着させる。 [0020] - through the Card web manufacturing nonwoven by heat treatment] water disintegratability composite fibers (staple fibers) in carding machine, basis weight 20 g / m after the formation of the second web, 2 kgf the web if necessary / cm 2 rely on steam for 5 seconds, to fix the fibers between each other for 10 seconds to a heat treatment following the 100 ° C. set by through-air processing machine. 得られた不織布は使用される大きさにカットし、サンプルもしくはサンプルのパーツとする事ができる。 The resulting nonwoven fabric was cut to a size to be used, it can be a sample or sample parts.

【0021】[エアレイド不織布の作製]水崩壊性複合繊維(チョップ)を繊維長8mmに切断し、乾燥状態で機械的にほぐして単繊維化し、目付け20g/m 2のウェブを連続的に形成した後、ウェブに2kgf/cm 2のスチームを5秒間当て、つぎに100℃設定のスルーエアー加工機で熱処理を10秒間行い繊維間同士を固着させる。 [0021] The Preparation of air-laid nonwoven fabric] water-disintegratable conjugate fiber (chop) was cut to a fiber length of 8 mm, and filaments of mechanically loosened in the dry state, was continuously formed a basis weight of 20 g / m 2 web after, against 5 seconds steam 2 kgf / cm 2 to the web, to a heat treatment and then at 100 ° C. setting through-air processing machine to fix the fibers between each other for 10 seconds. 得られた不織布は使用される大きさにカットし、 The resulting nonwoven fabric was cut to a size to be used,
サンプルもしくはサンプルのパーツとする事ができる。 It can be a sample or samples of the parts.

【0022】[吸収性物品の作製] 表面材の作製 :表面材の面積,目付けは32cm×1 [0022] [Preparation of absorbent article] surface material Preparation of: the area of ​​the surface material, the basis weight 32cm × 1
2cm,20g/m 2吸収材の作製 :吸収材の面積,目付けは、32cm× 2 cm, Preparation of 20 g / m 2 absorbent: the area of the absorbent, the basis weight, 32cm ×
12cm,400g/m 2とし、吸収材はパルプ繊維と澱粉−アクリル酸グラフト重合体(高分子吸収剤)及び水崩壊性複合繊維を均一に混ぜたものをテ 12cm, and 400 g / m 2, absorbent pulp fibers and starch - acrylic acid graft polymer te those mixed uniformly (polymeric absorbent) and water disintegration conjugate fiber
ィッシュで包み作製した。 It was produced wrapped in Isshu. バックシートの作製:澱粉系高分子を使用して、Tダイから押出し、目付け50g/m 2のフィルムとした。 Preparation of backsheet: using a starch-based polymer, and from T-die extrusion, the film having a basis weight of 50 g / m 2. 上記で作製した表面材、吸収材、バックシートを用いて吸収性物品を作製した。 Surface material prepared in the above, absorbent material, to produce an absorbent article using a back sheet.

【0023】[繊維強度]本発明における繊維強度の定義とその測定法は、JISL−1015に準じ、単繊維強度を試長20mm,引張速度50%/minで引張試験を行った。 [0023] [fiber strength] definition and measurement of fiber strength in the present invention, according to JISL-1015, a single fiber strength sample length 20 mm, a tensile test at a tensile rate 50% / min were performed.

【0024】[水崩壊性の測定]以下の疑似水洗トイレを使用する。 [0024] To use the water collapse of the measurement] The following pseudo-flush toilets. 評価に用いた疑似トイレは、縦0.3m× Pseudo toilet used for the evaluation, the vertical 0.3m ×
横0.3m×高さ0.5mの水槽の底中央に、直径3c The bottom center of the aquarium horizontal 0.3 m × height 0.5 m, diameter 3c
mの孔を持ち、その孔に水止め用コックがついたホースを接続した構造である。 Has a hole of m, is a structure that is connected a hose with water stop cock in the hole. この水槽は、水槽の底からホースの開放口までの高さを0.45mとなるように設置する。 The water tank is installed height from the bottom of the tank to the open mouth of the hose so that the 0.45 m. さらに以下のデータを収集し、水崩壊性を判定した。 Further collect the following data were determined water disintegratability. (1)前記吸収性物品サンプルが0.3m×0.3mの面積を占めるまで分散するのにかかる時間(分散時間)。 (1) the absorbent article sample takes to disperse until occupying an area of ​​0.3 m × 0.3 m times (dispersion time). (2)サンプルが(1)の条件まで分散した後、疑似トイレの水をホースから流出させ 、水槽の水が完全に排出した後、ホース中に詰まり残存したサンプルを採取し、充分乾燥した後、重量を測定する。 (2) After the sample has been dispersed to the conditions of (1), a pseudo toilet water was drained from the hose, after aquarium water is completely discharged, samples were taken which were clogged remaining in the hose, after thoroughly dried , to measure the weight. この値と初期絶乾重量とから残存比率(%)を算出する。 Calculated residual ratio (%) of from this value and the initial absolute dry weight. 残存比率は次式より求められる。 Remaining ratio is calculated from the following equation. 残存比率(ホースに目詰まりしたサンプルの重量比(%))=[ホースに目詰まりしたサンプルの絶乾重量(g)/サンプルの初期絶乾重量(g)]×100 測定の手順は以下の通りである。 Remaining ratio (weight ratio of samples clogged the hose (%)) = [the bone-dry weight of the sample clogged the hose (g) / sample initial absolute dry weight (g)] of × 100 measurement procedure following it is as. 1)水止めコックを閉じ、水がホースから流れ出さないようにする。 1) water stop closing the cock, water is prevented from flowing out from the hose. 2)この水槽に水を9dm 3注ぐ。 2) 9dm 3 pour water to the water tank. 3)サンプルに純水を0.05dm 3しみこませる。 3) 0.05dm 3 impregnated with pure water in the sample. 4)評価サンプルを水槽に投入し、それと同時に上記(1)の条件までの時間を測定する。 4) an evaluation sample was placed in a water tank, at the same simultaneously measuring the time until the above conditions (1). 5)上記(1)の条件まで分散した後、27dm 3の水を水槽に加え、水止めコックを一気に全開にする。 5) were dispersed to the above conditions (1), of water are added 27Dm 3 in water bath and to stretch fully open water stop cock. 6)水が完全に排出した後、ホースに残存したサンプルを採取し重量を測定する。 6) After the water is completely discharged, weighed samples were taken remaining in the hose. 7)水崩壊性の総合評価は(1)の分散時間と(2)の残存比率から判断する。 7) overall evaluation of the water disintegratable determines the residual ratio of dispersion time and (2) (1). 本発明の水崩壊性繊維及び、この繊維を使用して作られた不織布,吸収性物品は、主に使い捨て用途に使用される事を念頭においているので、トイレにそのまま投棄しても問題なく処理できるだけの水崩壊性能を有しているかをチェックした。 Water disintegratability fibers and the present invention, a nonwoven fabric made using this fiber, the absorbent article, since the place mainly to be used for disposable applications in mind, no problem even if it is dumped into the toilet process and check that has as much as possible of water collapse performance.

【0025】実施例1(不織布) 水崩壊性複合繊維を上記のエアレイド不織布作製法によって不織布とした。 [0025] Example 1 (nonwoven fabric) water disintegratable composite fibers was a nonwoven fabric by an air-laid nonwoven fabric production method of the above. この不織布を水0.05dm 3に浸漬してから疑似トイレに投棄し、水崩壊性能を調査した。 This non-woven fabric was dumped from the immersion in water 0.05dm 3 to pseudo toilet, to investigate the water collapse performance. 結果、不織布の接着が緩やかになり、わずかな水の流れで、繊維がバラバラに開繊された。 Result, the adhesion of the nonwoven fabric becomes gentle, with little water flow, the fibers are opened apart. 芯成分は非水崩壊性である為、水中に残存していた。 Since the core component is a non-aqueous disintegrating, it remained in the water. ホースのコックを開き水を放出し残存量をみたところ、ホースには何も残っておらず全て排出された。 Was looking at the release of the water, open the cock of the hose remaining amount, the hose has been discharged all not nothing left. 結果、水崩壊性は良好であった(詳細結果を表3に示す)。 Result, the water disintegratability is (showing the detailed results in Table 3) which was good.

【0026】実施例2(吸収性物品) 上記の吸収性物品作製法に記した方法で作製した表面材、吸収材、バックシートを用いて吸収性物品を作製した。 [0026] Example 2 (absorbent article) The surface material produced by the method noted absorbent article manufacturing method, absorbent material was produced absorbent article using a back sheet. この吸収性物品に水0.05dm 3を吸収させてから、疑似トイレに投棄し、水崩壊性能を調査した。 It was allowed to absorb water 0.05dm 3 to this absorbent article, dumped in pseudo toilet, to investigate the water collapse performance. 結果、バックシートは、水に溶解して消失したが、吸収材を構成するパルプ,高分子吸収剤はそのまま水中に残り、次第に分散していった。 Result, the backsheet has been disappeared is dissolved in water, the pulp constituting the absorber, polymeric absorbent as it remains in the water, began to gradually dispersed. 表面材の芯成分は非水崩壊性である為、水中に残存していた。 For the core component of the surface material is non-aqueous disintegrating, it remained in the water. ホースのコックを開き、サンプルの残存量をみたが、ホースには残らずに排出された。 Open the cock of the hose, but saw the remaining amount of the sample, it has been discharged without remain in the hose. 結果、水崩壊性は良好であった(詳細結果は表3に示す)。 Result, the water disintegratability was good (detailed results are shown in Table 3).

【0027】実施例3(不織布) 水崩壊性複合繊維を上記のカードウェブ−熱処理による不織布作製法によって不織布とした。 [0027] Example 3 (nonwoven) water disintegratable composite fiber card webs above - was nonwoven non-woven fabric manufacturing method according to the heat treatment. この不織布を水0.05dm 3に浸漬してから疑似トイレに投棄し、水崩壊性能を調査した。 This non-woven fabric was dumped from the immersion in water 0.05dm 3 to pseudo toilet, to investigate the water collapse performance. 結果、不織布の接着は緩やかになりわずかな水の流れで、繊維がバラバラに開繊された。 Result, the adhesion of the nonwoven fabric with little water flow becomes gentle, fibers are opened apart.
芯成分は非水崩壊性である為、水中に残存していた。 Since the core component is a non-aqueous disintegrating, it remained in the water. ホースのコックを開き、水を放出し、残存量をみたところ、ホースには何も残っておらず全て排出された。 Open the cock of the hose, the water was released, it was seen the residual amount, the hose has been discharged all not nothing left. 結果、水崩壊性は良好であった(詳細結果を表3に示す)。 Result, the water disintegratability is (showing the detailed results in Table 3) which was good.

【0028】実施例4(繊維) 上記の水崩壊性複合繊維の紡糸方法を使用して、3d/ [0028] Using the spinning method of Example 4 (Fiber) The water disintegratable composite fibers, 3d /
fの鞘芯型複合繊維を作製して、単糸強度を測定した。 To prepare a sheath-core type composite fibers of f, it was measured single yarn strength.
結果、3.2g/dとなり、PE/PPの複合繊維程度の強力を示した。 Result, 3.2 g / d, and the demonstrated potent about composite fibers of PE / PP.

【0029】比較例1(不織布) 熱可塑性複合繊維(PE/PPの複合、3d/f×5m The composite of Comparative Example 1 (nonwoven fabric) thermoplastic composite fibers (PE / PP, 3d / f × 5m
mのチョップ)をエアレイド不織布作製法によって不織布とした(このとき、スルーエアー加工機の設定温度は137℃とした)。 And non-woven fabric by m chops) air-laid nonwoven fabric production method (In this case, the setting temperature of the through-air processing machine was 137 ° C.). この不織布を水0.05dm 3中に浸漬してから疑似トイレに投棄し、水崩壊性能を調査した。 This non-woven fabric was dumped from was immersed in water 0.05dm 3 to pseudo toilet, to investigate the water collapse performance. 結果、鞘芯ともに非水崩壊性であった為、水面を浮遊していた。 A result, because it was a non-aqueous disintegration in both the sheath-core, had been floating on the water. ホースのコックを開き水を放出しても流れ出さす残存したままとなった(詳細結果を表3に示す)。 It was left remaining to be flow out even to release the water to open the cock hose (shown in Table 3 details the results).

【0030】比較例2(吸収性物品) 熱可塑性複合繊維(PE/PPの複合、3d/f×5m [0030] Comparative Example 2 (absorbent article) composite thermoplastic composite fibers (PE / PP, 3d / f × 5m
mのチョップ)を使用して作製した表面材、吸収材、バックシートを用いて吸収性物品を作製した。 Surface material was prepared using a chop) of m, absorbent, to produce an absorbent article using a back sheet. この吸収性物品に水0.05dm 3を含浸させてから、疑似トイレに投棄し、水崩壊性能を調査した。 After impregnated with water 0.05Dm 3 in the absorbent article, it dumped pseudo toilet was investigated water disintegration performance. バックシート,表面材は水中でなんら変化を示さなかったが、吸収材は水分を吸収して膨潤した。 Backsheet, but the surface material did not show any change in water absorption material swelled by absorbing water. ホースのコックを開き、水を流したが全く溶解していない為流れなかった(詳細結果は表3に示す)。 Open the cock of the hose and flushed with water did not flow because it does not completely dissolved (detailed results are shown in Table 3).

【0031】比較例3(不織布) 熱可塑性複合繊維(PE/PPの複合、3d/f×5m The composite of Comparative Example 3 (nonwoven) thermoplastic composite fibers (PE / PP, 3d / f × 5m
mのチョップ)を上記のカードウェブ−熱処理による不織布作製法によって不織布とした(このとき、スルーエアー加工機の設定温度は137℃とした)。 m chops) the card web of said - was a nonwoven fabric by a nonwoven fabric manufacturing method according to the heat treatment (at this time, the set temperature of the through-air processing machine was 137 ° C.). この不織布を水0.05dm 3中に浸漬してから疑似トイレに投棄し、水崩壊性能を調査した。 This non-woven fabric was dumped from was immersed in water 0.05dm 3 to pseudo toilet, to investigate the water collapse performance. 結果、鞘芯ともに非水崩壊性である為、水面を浮遊していた。 A result, since it is a non-aqueous disintegrating in both the sheath-core, had been floating on the water. ホースのコックを開き水を放出しても流れ出さす残存したままとなった(詳細結果を表3に示す)。 It was left remaining to be flow out even to release the water to open the cock hose (shown in Table 3 details the results).

【0032】比較例4(繊維) コ−ンスタ−チを原料として熱変性をした水分10重量%を含む澱粉を60重量%、エチレン30モル%とポリ酢酸ビニ−ル70モル%の共重合体のケン化度が98% [0032] Comparative Example 4 (Fiber) co - Nsuta - Chi 60% by weight of starch containing 10 wt% moisture thermal denaturation as a raw material, ethylene 30 mol% and polyvinyl acetate vinyl - le 70 mole% of the copolymer saponification degree of 98%
の部分加水分解共重合体を40重量%の組成比で混ぜた後、造粒し、ペレットとしたものをレギュラー紡糸用の孔径0.8mmφ,孔数350の口金と圧縮比2.0のフルフライトスクリュ−を使用し、溶融紡糸を行った。 After a partial hydrolysis copolymer mixed in a composition ratio of 40 wt%, granulated, pore size for the regular spinning those pellets 0.8 mm, full compression ratio 2.0 spinneret hole number 350 Flight screw - were carried out using melt spinning.
この方法で3d/fのレギュラー繊維を得た。 To obtain a regular fiber of 3d / f in this way. この単糸強度を測定したところ、0.5g/dとなり、低強力を示した。 Measurement of the the single yarn strength showed 0.5 g / d, and the low strength.

【0033】実施例に示したように水崩壊性複合繊維は、澱粉系高分子のみで作られた繊維とくらべ、強力が6.5倍程度になっており、不織布などで強力が必要な用途に使用できる事がわかった。 The water-disintegrable composite fiber as shown in the examples, starch-based than the fibers made only by the polymer, strong has become about 6.5 times, the nonwoven fabric such as a strong applications requiring it has been found that can be used for.

【0034】 [0034]

【表1】 [Table 1]

【0035】 [0035]

【表2】 [Table 2]

【0036】 [0036]

【表3】 [Table 3]

【0037】 [0037]

【発明の効果】本発明の水崩壊性複合繊維から作られた不織布,吸収性物品を常温の水中に投下すると、短時間に崩壊し、形態をバラバラにできる。 Nonwoven fabrics made from water-disintegrating conjugate fiber of the present invention, when to drop the absorbent article at room temperature in water, disintegrated in a short period of time, can be a form apart. そのため、下水(水洗トイレ)に流す事で簡単に廃棄処理ができる用途に幅広く利用できる。 Therefore, it can be widely used in applications that can be easily disposed of by flowing in the sewage (flush toilets). 更に芯側に熱可塑性樹脂を使用しているので、澱粉系高分子のみで構成した水崩壊性繊維に較べ強度が高くなり強度が必要な用途にも対応できる。 Furthermore because it uses a thermoplastic resin in the core side, can cope with starch-based polymers only strength compared to the configuration water disintegratability fibers becomes high strength applications requiring.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 D06M 13/244 A61F 13/18 Z D06M 13/26 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 Docket No. FI technique in identification symbol Agency display portion D06M 13/244 A61F 13/18 Z D06M 13/26

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】水崩壊性樹脂組成物からなる第1成分と、 1. A first component comprising a water-disintegrating resin composition,
    熱可塑性樹脂からなる第2成分との複合繊維であって、 A composite fiber of the second component comprising a thermoplastic resin,
    前記第1成分が繊維表面の少なくとも一部を長さ方向に連続して存在するように配された水崩壊性複合繊維。 At least a portion arranged to present continuously in the longitudinal direction water disintegratability composite fibers of said first component is the fiber surface.
  2. 【請求項2】水崩壊性樹脂組成物が、澱粉系高分子と、 2. A water-disintegrable resin composition, a starch-based polymer,
    酢酸ビニルと官能基を含まない不飽和モノマーとの共重合体を部分加水分解した共重合体とからなる組成物である請求項1に記載の水崩壊性複合繊維。 Water disintegratability composite fiber according to claim 1 is a composition comprising a copolymer of an unsaturated monomer containing no vinyl acetate and the functional group from a partially hydrolyzed copolymer.
  3. 【請求項3】官能基を含まない不飽和モノマーが、エチレン、プロピレン、イソブチレンまたはスチレンのなかから選ばれた少なくとも1種の官能基を含まない不飽和モノマーであり、部分加水分解した共重合体のケン化度が78〜98%であり、かつ、該部分加水分解した共重合体が水崩壊性複合樹脂組成物に対して30〜70重量%含まれている請求項2に記載の水崩壊性複合繊維。 Wherein the unsaturated monomer containing no functional groups, ethylene, propylene, an unsaturated monomer which does not contain at least one functional group selected from among isobutylene or styrene, partially hydrolyzed copolymer of a saponification degree of 78 to 98%, and partial hydrolyzed copolymer water disintegratability of claim 2 that contains 30 to 70 wt% in water disintegrating composite resin composition sex composite fiber.
  4. 【請求項4】捲縮を有する請求項1〜3に記載の水崩壊性複合繊維。 4. A water-disintegrable composite fiber according to claim 1 having a crimp.
  5. 【請求項5】請求項1〜4に記載の水崩壊性複合繊維を用いた不織布。 5. A nonwoven fabric using water disintegratability composite fiber according to claim 1.
  6. 【請求項6】請求項1〜4に記載の水崩壊性複合繊維を含む不織繊維集合体について、少なくとも該水崩壊性複合繊維の第1成分を水で湿潤することによって前記繊維同士を接着させることを特徴とする不織布の製法。 For 6. nonwoven fiber aggregate containing water disintegratability composite fiber according to claim 1, adhering the fibers together by a first component of at least the aqueous disintegration conjugate fiber wetting with water preparation of the nonwoven fabric, characterized in that to.
  7. 【請求項7】請求項1〜5に記載の水崩壊性複合繊維または不織布を材料として用いた吸収性物品。 7. The absorbent article using the water-disintegrable composite fiber or nonwoven fabric according to claims 1 to 5 as a material.
JP18113896A 1996-06-21 1996-06-21 Water disintegration composite fibers and nonwoven absorbent article Expired - Fee Related JP3741170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18113896A JP3741170B2 (en) 1996-06-21 1996-06-21 Water disintegration composite fibers and nonwoven absorbent article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18113896A JP3741170B2 (en) 1996-06-21 1996-06-21 Water disintegration composite fibers and nonwoven absorbent article

Publications (2)

Publication Number Publication Date
JPH108364A true JPH108364A (en) 1998-01-13
JP3741170B2 JP3741170B2 (en) 2006-02-01

Family

ID=16095559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18113896A Expired - Fee Related JP3741170B2 (en) 1996-06-21 1996-06-21 Water disintegration composite fibers and nonwoven absorbent article

Country Status (1)

Country Link
JP (1) JP3741170B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035239A2 (en) * 1999-03-08 2000-09-13 HUMATRO CORPORATION, c/o Ladas & Parry Absorbent, flexible, structure comprising starch fibers
JP2003523785A (en) * 1999-04-03 2003-08-12 キンバリー クラーク ワールドワイド インコーポレイテッド Water-dispersible panty liner
US6623854B2 (en) 2001-05-10 2003-09-23 The Procter & Gamble Company High elongation multicomponent fibers comprising starch and polymers
US6723160B2 (en) 2002-02-01 2004-04-20 The Procter & Gamble Company Non-thermoplastic starch fibers and starch composition for making same
US6743506B2 (en) 2001-05-10 2004-06-01 The Procter & Gamble Company High elongation splittable multicomponent fibers comprising starch and polymers
US6746766B2 (en) 2001-05-10 2004-06-08 The Procter & Gamble Company Multicomponent fibers comprising starch and polymers
US6783854B2 (en) 2001-05-10 2004-08-31 The Procter & Gamble Company Bicomponent fibers comprising a thermoplastic polymer surrounding a starch rich core
US6811740B2 (en) 2000-11-27 2004-11-02 The Procter & Gamble Company Process for making non-thermoplastic starch fibers
US6830810B2 (en) 2002-11-14 2004-12-14 The Procter & Gamble Company Compositions and processes for reducing water solubility of a starch component in a multicomponent fiber
US6946506B2 (en) 2001-05-10 2005-09-20 The Procter & Gamble Company Fibers comprising starch and biodegradable polymers
WO2007130685A1 (en) 2006-05-05 2007-11-15 The Procter & Gamble Company Films with microcapsules
US7604745B2 (en) 2004-02-06 2009-10-20 Takachiho Corp. Water-purifying solid material made of a natural raw material containing polysaccharides as principal components, and water-purifying method using the same
WO2010090220A1 (en) * 2009-02-06 2010-08-12 ユニ・チャーム株式会社 Water-disintegrable nonwoven fabric
WO2010108002A1 (en) 2009-03-18 2010-09-23 The Procter & Gamble Company Structured fluid detergent compositions comprising dibenzylidene sorbitol acetal derivatives
WO2010108000A1 (en) 2009-03-18 2010-09-23 The Procter & Gamble Company Structured fluid detergent compositions comprising dibenzylidene polyol acetal derivatives and detersive enzymes
US20120299211A1 (en) * 2001-05-10 2012-11-29 Eric Bryan Bond Multicomponent fibers comprising a dissolvable starch component, processes therefor, and fibers therefrom
US9017586B2 (en) 2004-04-29 2015-04-28 The Procter & Gamble Company Polymeric structures and method for making same
US9074305B2 (en) 2010-07-02 2015-07-07 The Procter & Gamble Company Method for delivering an active agent
US9163205B2 (en) 2010-07-02 2015-10-20 The Procter & Gamble Company Process for making films from nonwoven webs
US9175250B2 (en) 2010-07-02 2015-11-03 The Procter & Gamble Company Fibrous structure and method for making same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035239A2 (en) * 1999-03-08 2000-09-13 HUMATRO CORPORATION, c/o Ladas & Parry Absorbent, flexible, structure comprising starch fibers
EP1035239A3 (en) * 1999-03-08 2001-02-14 HUMATRO CORPORATION, c/o Ladas & Parry Absorbent, flexible, structure comprising starch fibers
SG90106A1 (en) * 1999-03-08 2002-07-23 Humatro Corp Absorbent, flexible, structure comprising starch fibers
US6709526B1 (en) 1999-03-08 2004-03-23 The Procter & Gamble Company Melt processable starch compositions
US9458556B2 (en) 1999-03-08 2016-10-04 The Procter & Gamble Company Fiber comprising polyvinylpyrrolidone
JP2003523785A (en) * 1999-04-03 2003-08-12 キンバリー クラーク ワールドワイド インコーポレイテッド Water-dispersible panty liner
US6811740B2 (en) 2000-11-27 2004-11-02 The Procter & Gamble Company Process for making non-thermoplastic starch fibers
US6746766B2 (en) 2001-05-10 2004-06-08 The Procter & Gamble Company Multicomponent fibers comprising starch and polymers
US6743506B2 (en) 2001-05-10 2004-06-01 The Procter & Gamble Company High elongation splittable multicomponent fibers comprising starch and polymers
US6783854B2 (en) 2001-05-10 2004-08-31 The Procter & Gamble Company Bicomponent fibers comprising a thermoplastic polymer surrounding a starch rich core
US6623854B2 (en) 2001-05-10 2003-09-23 The Procter & Gamble Company High elongation multicomponent fibers comprising starch and polymers
US20120299211A1 (en) * 2001-05-10 2012-11-29 Eric Bryan Bond Multicomponent fibers comprising a dissolvable starch component, processes therefor, and fibers therefrom
US6946506B2 (en) 2001-05-10 2005-09-20 The Procter & Gamble Company Fibers comprising starch and biodegradable polymers
US7851391B2 (en) 2001-05-10 2010-12-14 The Procter & Gamble Company Multicomponent fibers comprising starch and polymers
US9925706B2 (en) 2001-05-10 2018-03-27 The Procter & Gamble Company Process of producing a melt-spinnable fiber using thermoplastic polymer and destructured starch
US6723160B2 (en) 2002-02-01 2004-04-20 The Procter & Gamble Company Non-thermoplastic starch fibers and starch composition for making same
US6830810B2 (en) 2002-11-14 2004-12-14 The Procter & Gamble Company Compositions and processes for reducing water solubility of a starch component in a multicomponent fiber
US7604745B2 (en) 2004-02-06 2009-10-20 Takachiho Corp. Water-purifying solid material made of a natural raw material containing polysaccharides as principal components, and water-purifying method using the same
US9017586B2 (en) 2004-04-29 2015-04-28 The Procter & Gamble Company Polymeric structures and method for making same
WO2007130685A1 (en) 2006-05-05 2007-11-15 The Procter & Gamble Company Films with microcapsules
JP2010180510A (en) * 2009-02-06 2010-08-19 Uni Charm Corp Water-disintegrable nonwoven fabric
CN102362024A (en) * 2009-02-06 2012-02-22 尤妮佳股份有限公司 Water-disintegrable nonwoven fabric
WO2010090220A1 (en) * 2009-02-06 2010-08-12 ユニ・チャーム株式会社 Water-disintegrable nonwoven fabric
WO2010108002A1 (en) 2009-03-18 2010-09-23 The Procter & Gamble Company Structured fluid detergent compositions comprising dibenzylidene sorbitol acetal derivatives
WO2010108000A1 (en) 2009-03-18 2010-09-23 The Procter & Gamble Company Structured fluid detergent compositions comprising dibenzylidene polyol acetal derivatives and detersive enzymes
US9163205B2 (en) 2010-07-02 2015-10-20 The Procter & Gamble Company Process for making films from nonwoven webs
US9175250B2 (en) 2010-07-02 2015-11-03 The Procter & Gamble Company Fibrous structure and method for making same
US9421153B2 (en) 2010-07-02 2016-08-23 The Procter & Gamble Company Detergent product and method for making same
US9480628B2 (en) 2010-07-02 2016-11-01 The Procer & Gamble Company Web material and method for making same
US9074305B2 (en) 2010-07-02 2015-07-07 The Procter & Gamble Company Method for delivering an active agent
US10045915B2 (en) 2010-07-02 2018-08-14 The Procter & Gamble Company Method for delivering an active agent

Also Published As

Publication number Publication date
JP3741170B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
US5124197A (en) Inflated cellulose fiber web possessing improved vertical wicking properties
US6194517B1 (en) Ion sensitive polymeric materials
US6410644B2 (en) Temperature sensitive polymers and water-dispersible products containing the polymers
US3804092A (en) Water dispersible nonwoven fabric
CN1044269C (en) Nonwoven articles and methods of producing same
EP0972100B1 (en) Dispersible nonwoven fabric and method of making same
US6783854B2 (en) Bicomponent fibers comprising a thermoplastic polymer surrounding a starch rich core
JP3489140B2 (en) The absorbent article
KR100188057B1 (en) Nonwoven web containing shaped fibers
CN1195908C (en) Biodegradable cellulose acetate constructions and tobacco filter
US6589892B1 (en) Bicomponent nonwoven webs containing adhesive and a third component
JP3170594B2 (en) Cellulosic fibers
AU2002259167B2 (en) Multicomponent fibers comprising starch and biodegradable polymers
CN1313164C (en) Structure including absorptivity and flexibility of starch fiber
AU732367B2 (en) Ion sensitive binder for fibrous materials
US9163355B2 (en) Highly absorbent composite and method of making the same
US6743506B2 (en) High elongation splittable multicomponent fibers comprising starch and polymers
KR100996019B1 (en) Improved binder fiber and nonwoven web
KR100909148B1 (en) Beforehand through a polymerization reaction in place - the method of adding the superabsorbent to the fibrous web formed
AU2002309683B2 (en) Fibers comprising starch and biodegradable polymers
US5972805A (en) Ion sensitive polymeric materials
US6479415B1 (en) Absorbent structures having fluid acquisition and distribution layer
AU2001290859C1 (en) Disposable nonwoven wiping fabric and method of production
CN1309427C (en) Plasticized superabsorbent polymer sheets and use thereof in hygienic articles
EP0095917B1 (en) Hydrophilic microfibrous absorbent webs, methods for their manufacture and use thereof in disposable absorbent articles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees