JPH1075592A - Speed controller - Google Patents

Speed controller

Info

Publication number
JPH1075592A
JPH1075592A JP8228065A JP22806596A JPH1075592A JP H1075592 A JPH1075592 A JP H1075592A JP 8228065 A JP8228065 A JP 8228065A JP 22806596 A JP22806596 A JP 22806596A JP H1075592 A JPH1075592 A JP H1075592A
Authority
JP
Japan
Prior art keywords
controller
torque
speed
motor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8228065A
Other languages
Japanese (ja)
Other versions
JP3555351B2 (en
Inventor
Toshimitsu Maruki
利光 丸木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP22806596A priority Critical patent/JP3555351B2/en
Publication of JPH1075592A publication Critical patent/JPH1075592A/en
Application granted granted Critical
Publication of JP3555351B2 publication Critical patent/JP3555351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Multiple Motors (AREA)
  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a speed controller which can respond quickly following the change of speed setting without adjusting each element of P(proportion), I(integration), and D (differentiation) in a well balanced state. SOLUTION: A speed controller is composed of a motor 17 which drives a load, a motor 24 which gives a load torque to the load, the speed control (ASR) section 1 of the motor 17, and the load torque control (ATR) section 2 of the motor 24 and the ASR section 1 is composed of a P-gain speed controller 11, a PI torque controller 15 which generates a torque command by adding the output Δτ of the controller 11 to a set load torque τ1 set and inputs the deviation of the detected torque τ1 of the motor 17 from the torque command, and a current controller 16. Though the speed controller 11 only has a proportional gain P and the torque controller 15 has an integrated gain I, gains P and PI can be adjusted easily, because the response of the speed controller is faster that that of a PI gain controller by one digit or more. Since N1 set is added to an ATR minor loop, no speed change occurs due to the fluctuation of the load torque and the response of the controller is fast.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータ,ダイナモ
メータ,車両などを制御する速度制御装置に関する。
The present invention relates to a speed control device for controlling a motor, a dynamometer, a vehicle, and the like.

【0002】[0002]

【従来の技術】従来、例えばモータの速度制御方式に
は、PID制御方式や加速度マイナーループ付速度制御
方式がある。
2. Description of the Related Art Conventionally, for example, a motor speed control system includes a PID control system and a speed control system with an acceleration minor loop.

【0003】PID制御方式は図4(a)に示すよう
に、速度の指令値N1setと検出値N1との偏差信号を
PIDゲインの速度制御器41でP演算し、電流制御ル
ープ付の電流制御器45でモータ46を駆動して、回転
系47をモータトルクτ1と負荷トルクτ2の差トルクで
回転させている。
In the PID control method, as shown in FIG. 4A, a deviation signal between a speed command value N 1 set and a detected value N 1 is subjected to P calculation by a PID gain speed controller 41, and a current control loop is provided. The motor 46 is driven by the current controller 45 to rotate the rotation system 47 with the difference torque between the motor torque τ 1 and the load torque τ 2 .

【0004】また、加速度マイナーループ付速度制御方
式は図4(b)に示すように、速度の指令値N1set
と検出値N1との偏差信号をPゲインの速度制御器42
でP演算し、その出力信号と速度検出値N1を回転系の
伝達関数SJを有する加速度マイナー回路43を通した
加速度信号との差信号をPIゲインのトルク制御器44
でPI演算し、電流制御器45でモータ46を駆動し、
回転系47をモータトルクτ1と負荷トルクτ2の差トル
クで回転させている。
The speed control method with the acceleration minor loop is, as shown in FIG. 4B, a speed command value N 1 set.
The difference signal between the detected value N 1 and the P gain of the speed controller 42
And the difference signal between the output signal and the detected speed value N 1 through the acceleration signal having the transfer function SJ of the rotation system and passed through the acceleration minor circuit 43 is used as the torque controller 44 of the PI gain.
, And the motor 46 is driven by the current controller 45,
The rotating system 47 is rotated by the difference torque between the motor torque τ 1 and the load torque τ 2 .

【0005】[0005]

【発明が解決しようとする課題】上記従来の速度制御回
路はPID演算やPI演算を行っていて必ず積分要素I
が入っている。これは、フィードバック制御の特徴とし
て単純にP(比例)制御すると、速度の設定と検出に定
常偏差(誤差)が発生するためである。
The above-mentioned conventional speed control circuit performs a PID operation and a PI operation, so that the integral element I
Contains. This is because a simple P (proportional) control characteristic of the feedback control causes a steady-state deviation (error) in speed setting and detection.

【0006】この定常偏差を無くするためにPI(比例
積分)制御を行うとオーバーシュートを生じ易くなる。
このオーバーシュートを無くするために、D(微分要
素)を追加してPID制御をしたり、加速度マイナー回
路を追加して加速度マイナーループ付制御をしている。
If PI (proportional integration) control is performed to eliminate the steady-state deviation, overshoot is likely to occur.
In order to eliminate this overshoot, PID control is performed by adding a D (differential element), and control with an acceleration minor loop is performed by adding an acceleration minor circuit.

【0007】PID制御において安定した適正な応答波
形を得るためには、PI定数で安定性と応答時間を調整
し、オーバーシュートを無くするようにD定数を調整し
なければならない。
In order to obtain a stable and appropriate response waveform in PID control, it is necessary to adjust stability and response time with a PI constant, and to adjust a D constant so as to eliminate overshoot.

【0008】また、制御対象は一般的に線形性が変化す
るため、運転状態に応じて、P,I,Dの各要素をバラ
ンス良く調整しなければならず、その調整方法も経験と
ノウハウを必要とする難しいもので、必ずしも常に最適
の調整になっているとは言えない。
In addition, since the control target generally changes linearity, it is necessary to adjust each of the elements P, I, and D in a well-balanced manner according to the operating state. The adjustment method also requires experience and know-how. It is difficult and necessary, and it is not always the best adjustment.

【0009】本発明は、従来のこのような問題点に鑑み
てなされたものであり、その目的とするところは、P,
I,Dの各要素をバランスよく調整する必要なく速度設
定の変化に追従した速い応答が得られる速度制御装置を
提供することにある。
The present invention has been made in view of the above-mentioned conventional problems.
It is an object of the present invention to provide a speed control device capable of obtaining a fast response following a change in speed setting without having to adjust I and D components in a well-balanced manner.

【0010】[0010]

【課題を解決するための手段】本発明は、負荷を駆動す
る第1のモータ及び負荷に負荷トルクを与える第2のモ
ータと、第1のモータを制御する速度制御部及び第2の
モータを制御する負荷トルク制御部とからなり、前記速
度制御部は、速度設定値と速度検出値との偏差信号が入
力する比例ゲインの速度制御器と、この速度制御器の出
力と負荷トルク制御部の負荷トルク設定値とを加算した
トルク指令値と前記第1のモータのトルク検出値との偏
差信号が入力する比例積分ゲインのトルク制御器と、こ
のトルク制御器からの電流指令により前記第1のモータ
を駆動する電流制御器と、を備えていることを特徴とす
るものである。
SUMMARY OF THE INVENTION The present invention comprises a first motor for driving a load, a second motor for applying a load torque to the load, a speed controller for controlling the first motor, and a second motor. A load torque control unit for controlling the speed control unit, wherein the speed control unit is a proportional gain speed controller to which a deviation signal between the speed set value and the speed detection value is input, and an output of the speed controller and a load torque control unit. A proportional integral gain torque controller to which a deviation signal between a torque command value obtained by adding a load torque set value and a torque detection value of the first motor is input; and a first current command from the torque controller. And a current controller for driving the motor.

【0011】また、この装置には、前記速度設定値が入
力し前記トルク制御器の入力部に補償トルク信号を出力
する回転系の伝達関数を有するフィードフォワード補償
回路を設けるとよい。
Further, the apparatus may be provided with a feedforward compensation circuit having a transfer function of a rotating system for inputting the speed set value and outputting a compensation torque signal to an input section of the torque controller.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1 図1に速度制御装置の制御システム構成を、図2にその
制御ブロック図を示す。図1において、Aは供試体(負
荷)、M1は供試体Aを駆動する供試体入力用モータ、
M2は供試体Aの負荷トルク制御用モータ、1はモータ
M1を制御する速度制御(ASR制御)部、2はモータ
M2を負荷に設定された負荷トルクを与えるトルク制御
(ATR制御)部である。なお、図中、J0及びJ1,J
2は供試体A及びモータ1,2の慣性モーメントを示
す。
Embodiment 1 FIG. 1 shows a control system configuration of a speed control device, and FIG. 2 shows a control block diagram thereof. In FIG. 1, A is a specimen (load), M1 is a specimen input motor for driving the specimen A,
M2 is a motor for controlling the load torque of the specimen A, 1 is a speed control (ASR control) unit for controlling the motor M1, and 2 is a torque control (ATR control) unit for applying a set load torque to the motor M2. . In the figure, J 0 and J 1 , J
2 indicates the moment of inertia of the specimen A and the motors 1 and 2.

【0013】図2について、ASR制御部1は速度設定
値N1setと回転系19の検出速度N1との偏差信号を
P演算するPゲイン速度制御器、この速度制御器の出力
△τと負荷トルク設定値τ2setを加算する加算器1
3と、この加算器の出力とモータ17(M1)のトルク
τ1との偏差をPI演算するPIゲインのトルク制御器
15と、このトルク制御器からの電流指令に基づいてモ
ータ17を制御する電流制御(ACR制御)器16で構
成され、ASRループにATRマイナーループを持って
いる。
Referring to FIG. 2, the ASR control unit 1 has a P gain speed controller for calculating the deviation signal between the speed set value N 1 set and the detected speed N 1 of the rotation system 19, and the output Δτ of the speed controller. Adder 1 for adding load torque set value τ 2 set
3, a PI gain torque controller 15 for performing PI calculation of a deviation between the output of the adder and the torque τ 1 of the motor 17 (M1), and the motor 17 is controlled based on a current command from the torque controller. It is composed of a current control (ACR control) unit 16 and has an ATR minor loop in the ASR loop.

【0014】ATR制御部2は、負荷トルク設定値τ2
setとモータ24(M2)が出力する負荷トルクτ2
との偏差をPI演算するPIトルク制御器22と、この
トルク制御器からの電流指令に基づいてモータ24(M
2)を制御する電流制御器23で構成されている。
The ATR control unit 2 has a load torque set value τ 2
set and the load torque τ 2 output by the motor 24 (M2).
And a PI torque controller 22 that performs a PI calculation of a deviation from the motor 24 (M) based on a current command from the torque controller.
2 ) a current controller 23 for controlling

【0015】ATR制御部2は、トルクを設定してモー
タ24(M2)をトルク制御し、供試体Aに設定した負
荷トルクを与える。ASR制御部1は速度偏差信号をP
演算する速度制御器11の出力と負荷トルク設定値τ2
setを加算器13で加算して、ATRマイナーループ
のトルク設定としてモータ17(M1)をトルク制御す
るとともに、ASRループで速度制御する。
The ATR control unit 2 sets the torque to control the torque of the motor 24 (M 2), and applies the set load torque to the specimen A. The ASR controller 1 sets the speed deviation signal to P
The output of the speed controller 11 to be calculated and the load torque set value τ 2
The set 17 is added by the adder 13 to control the torque of the motor 17 (M1) as the torque setting of the ATR minor loop, and to control the speed by the ASR loop.

【0016】なお、ATR制御は、PI制御が必要であ
り、一般的に制御組合わせの関係上、入力ATR−出力
ASRの場合もあり、ASR制御部1にはATRの機能
が付いている。また、ATR制御部2のPIトルク制御
器22はASR制御のPI速度制御器と異なり応答が一
桁以上速く調整も比較的容易である。
Note that the ATR control requires PI control, and generally there may be an input ATR-output ASR due to a control combination, and the ASR control unit 1 has an ATR function. Further, the PI torque controller 22 of the ATR control unit 2 has a response which is one digit or more faster than the PI speed controller of the ASR control, and the adjustment is relatively easy.

【0017】ASR制御をPI制御で行った時にI(積
分)出力となっているのは負荷トルクに相当するτ2
の指令になっていることに着目する必要がある。従っ
て、負荷トルクτ2に相当するτ2setを加算器13で
ATRマイナーループに加算することにより積分機能で
あるI制御の役目を果すことができる。また、PI速度
制御の場合は速度偏差とフィードバック制御応答により
I定数を決定するが、この制御回路では、負荷トルク値
は既値で分かっているので、直接応答遅れなしにPIト
ルク制御器15のトルク設定ができる。
It is necessary to pay attention that the I (integral) output when the ASR control is performed by the PI control is a command corresponding to τ 2 corresponding to the load torque. Therefore, by adding the τ 2 set corresponding to the load torque τ 2 to the ATR minor loop by the adder 13, it is possible to perform the role of I control as an integration function. In the case of PI speed control, the I constant is determined based on the speed deviation and the feedback control response. However, in this control circuit, since the load torque value is already known, the PI torque controller 15 has no direct response delay. The torque can be set.

【0018】この結果、ASR制御調整は速度制御器1
1の比例ゲインのみのため非常に容易に最適調整が可能
となる。
As a result, the ASR control adjustment is performed by the speed controller 1
Since only the proportional gain is 1, the optimum adjustment can be performed very easily.

【0019】実施の形態2 図3に速度制御装置の制御ブロック図を示す。なお、図
2に示したものと同一構成部分は同一符号を付してその
重複する説明を省略する。
Embodiment 2 FIG. 3 shows a control block diagram of the speed control device. Note that the same components as those shown in FIG. 2 are denoted by the same reference numerals, and redundant description thereof will be omitted.

【0020】図3において、12は速度設定値N1se
tが入力し、補償トルク信号ταを出力する回転系の伝
達関数S(J0+J1+J2)を有するフィードフォワー
ドトルク補償回路、14はPゲインの速度制御器11の
出力△τと負荷トルク設定値τ2set及びフィードフ
ォワード補償回路からの補償トルクταを加算してPI
ゲインのトルク制御器15に出力する加算器である。そ
の他の構成は図2のものと変わりがない。
In FIG. 3, reference numeral 12 denotes a speed set value N 1 se
A feedforward torque compensating circuit having a transfer function S (J 0 + J 1 + J 2 ) of a rotating system that inputs a t and outputs a compensation torque signal τα, and 14 is an output Δτ of the P-gain speed controller 11 and load torque The set value τ 2 set and the compensation torque τα from the feedforward compensation circuit are added and PI
It is an adder that outputs to the gain torque controller 15. Other configurations are the same as those in FIG.

【0021】この制御回路はASR制御回路1のATR
マイナーループにフィードフォワード補償回路12から
の補償トルクταが加わるので、速度設定変化に対して
応答性が向上し、加減速中の設定偏差をゼロにすること
が可能になる。
This control circuit corresponds to the ATR of the ASR control circuit 1.
Since the compensation torque τα from the feedforward compensation circuit 12 is applied to the minor loop, the response to the speed setting change is improved, and the set deviation during acceleration / deceleration can be reduced to zero.

【0022】[0022]

【発明の効果】本発明は、上記のとおり構成されている
ので、次に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0023】(1)ATRマイナーループの応答速度で
速度設定の変化に追従するので、速い応答が得られる。
(1) Since a change in speed setting is followed by the response speed of the ATR minor loop, a fast response can be obtained.

【0024】(2)負荷トルク設定をATRマイナール
ープに加えているので、負荷トルク変動によりASR制
御の速度は変動しない。
(2) Since the setting of the load torque is added to the ATR minor loop, the speed of the ASR control does not fluctuate due to the fluctuation of the load torque.

【0025】(3)速度制御器に積分制御要素がないの
で、積分によるオーバーチャージがなく、オーバーシュ
ートが原理的に生じない。
(3) Since the speed controller has no integral control element, there is no overcharging due to integration and no overshoot occurs in principle.

【0026】(4)ASR制御調整は比例ゲインのみの
ため極めて容易に最適調整が可能である。
(4) Since the ASR control adjustment is performed only with the proportional gain, the optimum adjustment can be performed very easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1,2にかかる速度制御装置の制御
システム構成図。
FIG. 1 is a control system configuration diagram of a speed control device according to first and second embodiments.

【図2】実施の形態1にかかる速度制御装置の制御ブロ
ック図。
FIG. 2 is a control block diagram of the speed control device according to the first embodiment.

【図3】実施の形態2にかかる速度制御装置の制御ブロ
ック図。
FIG. 3 is a control block diagram of a speed control device according to a second embodiment;

【図4】従来例にかかる制御ブロック図。FIG. 4 is a control block diagram according to a conventional example.

【符号の説明】[Explanation of symbols]

A…供試体 M1…供試体の速度制御用モータ M2…供試体の出力トルク制御用モータ 1…速度制御部(ASR制御部) 2…トルク制御部(ATR制御部) 11…Pゲイン速度制御器 12…フィードフォワードトルク補償回路 15…PIゲインのトルク制御器 16…電流制御器(ACR制御器) 17…モータM1 19…回転系 22…PIゲインのトルク制御器 23…電流制御器(ACR制御器) 41…PIDゲインの速度制御器 42…Pゲインの速度制御器 43…加速度マイナー回路 44…PIゲインのトルク制御器 45…電流制御器(ACR制御器) 46…モータ 47…回転系 A: specimen M1: motor for controlling the speed of the specimen M2: motor for controlling the output torque of the specimen 1. speed controller (ASR controller) 2: torque controller (ATR controller) 11: P gain speed controller 12: Feedforward torque compensation circuit 15: PI gain torque controller 16: Current controller (ACR controller) 17: Motor M1 19: Rotating system 22: PI gain torque controller 23: Current controller (ACR controller) 41: PID gain speed controller 42: P gain speed controller 43: acceleration minor circuit 44: PI gain torque controller 45: current controller (ACR controller) 46: motor 47: rotating system

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月3日[Submission date] February 3, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】図2について、ASR制御部1は速度設定
値Nsetと回転系19の検出速度Nとの偏差信号
をP演算するPゲイン速度制御器11、この速度制御器
の出力△τと負荷トルク設定値τsetを加算する加
算器13と、この加算器の出力とモータ17(M1)の
トルクτとの偏差をPI演算するPIゲインのトルク
制御器15と、このトルク制御器からの電流指令に基づ
いてモータ17を制御する電流制御(ACR制御)器1
6で構成され、ASRループにATRマイナーループを
持っている。
Referring to FIG. 2, an ASR control unit 1 performs a P-gain operation on a deviation signal between a speed set value N 1 set and a detected speed N 1 of the rotating system 19 by a P-gain speed controller 11 , and an output Δτ of the speed controller. Adder 13 for adding the torque and load torque set value τ 2 set, a PI gain torque controller 15 for performing a PI calculation of a deviation between the output of the adder and the torque τ 1 of the motor 17 (M1), Control (ACR control) device 1 for controlling the motor 17 based on a current command from the heater
6 and has an ATR minor loop in the ASR loop.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】図4の(a)に示す従来のASR制御をP
制御で行った時にI(積分)出力となっているのは
負荷トルクに相当するτ分の指令になっていることに
着目する必要がある。従って、図2の負荷トルクτ
相当するτsetを加算器13でATRマイナールー
プに加算することにより積分機能であるI制御の役目を
果すことができる。また、PI速度制御の場合は速度偏
差とフィードバック制御応答によりI定数を決定する
が、この制御回路では、負荷トルク値は既値で分かって
いるので、直接応答遅れなしにPIトルク制御器15の
トルク設定ができる。
The conventional ASR control shown in FIG .
It is necessary to pay attention to the fact that the output of I (integral) when the ID control is performed is a command for τ 2 corresponding to the load torque. Therefore, by adding τ 2 set corresponding to the load torque τ 2 in FIG. 2 to the ATR minor loop by the adder 13, it is possible to fulfill the role of I control as an integration function. In the case of PI speed control, the I constant is determined based on the speed deviation and the feedback control response. However, in this control circuit, since the load torque value is already known, the PI torque controller 15 has no direct response delay. The torque can be set.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図 1】 [Fig. 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負荷を駆動する第1のモータ及び負荷に
負荷トルクを与える第2のモータと、第1のモータを制
御する速度制御部及び第2のモータを制御する負荷トル
ク制御部とからなり、 前記速度制御部は、 速度設定値と速度検出値との偏差信号が入力する比例ゲ
インの速度制御器と、 この速度制御器の出力と負荷トルク制御部の負荷トルク
設定値とを加算したトルク指令値と前記第1のモータの
トルク検出値との偏差信号が入力する比例積分ゲインの
トルク制御器と、 このトルク制御器からの電流指令により前記第1のモー
タを駆動する電流制御器と、を備えていることを特徴と
する速度制御装置。
A first motor that drives a load, a second motor that applies a load torque to the load, a speed controller that controls the first motor, and a load torque controller that controls the second motor. The speed control unit is configured to add a speed controller of a proportional gain to which a deviation signal between a speed set value and a detected speed value is input, and to add an output of the speed controller and a load torque set value of a load torque control unit. A torque controller having a proportional integral gain to which a deviation signal between a torque command value and a torque detection value of the first motor is input; a current controller driving the first motor in response to a current command from the torque controller; A speed control device comprising:
【請求項2】 請求項1において、 前記速度設定値が入力し前記トルク制御器の入力部に補
償トルク信号を出力する回転系の伝達関数を有するフィ
ードフォワード補償回路を設けたことを特徴とする速度
制御装置。
2. A feed-forward compensating circuit according to claim 1, wherein a feed-forward compensating circuit having a transfer function of a rotating system for inputting the speed set value and outputting a compensation torque signal to an input section of the torque controller is provided. Speed control device.
JP22806596A 1996-08-29 1996-08-29 Speed control device Expired - Fee Related JP3555351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22806596A JP3555351B2 (en) 1996-08-29 1996-08-29 Speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22806596A JP3555351B2 (en) 1996-08-29 1996-08-29 Speed control device

Publications (2)

Publication Number Publication Date
JPH1075592A true JPH1075592A (en) 1998-03-17
JP3555351B2 JP3555351B2 (en) 2004-08-18

Family

ID=16870651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22806596A Expired - Fee Related JP3555351B2 (en) 1996-08-29 1996-08-29 Speed control device

Country Status (1)

Country Link
JP (1) JP3555351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107109B1 (en) 2010-02-10 2012-01-31 한국기술교육대학교 산학협력단 Motor velocity control system and method using single loop

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107109B1 (en) 2010-02-10 2012-01-31 한국기술교육대학교 산학협력단 Motor velocity control system and method using single loop

Also Published As

Publication number Publication date
JP3555351B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US7546191B2 (en) Handwheel damping control of active steering system
JPH0683403A (en) Adaptive pi control system
JPH0542878A (en) Power steering
JPS63148314A (en) Controller for semiclosed loop servo control system
US5652491A (en) Position controller for an electric motor
JPS605306A (en) Servo-controlling device
JPH1075592A (en) Speed controller
WO1990016020A1 (en) Zeroing method using a disturbance estimating observer
JPS602084A (en) Control circuit for motor
JP2749500B2 (en) Servo motor warm-up drift compensation apparatus and method
JPH08286759A (en) Robot driving control method for compensating statical friction
JP3503343B2 (en) Friction compensation type control method and device
US6025684A (en) Servo-motor driving method
JPH08263143A (en) Control gain switching system using disturbance observer
JP2912965B2 (en) Electric inertia compensation control method for driving test machine
JPH11341885A (en) Motor controller
US6011370A (en) Servo-motor driving method
JPS6132120A (en) Positioning control system
JPH06253576A (en) Motor controller
JPH1082719A (en) Engine torque control device
JP2681969B2 (en) Coulomb friction compensation method by variable structure system
JP3339275B2 (en) Inverter device torque control device
JPH08147038A (en) Driving controller for motor
JPH08297512A (en) Method for positioning control by sliding mode control
JPH09158761A (en) Fuel control device for engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees