JPH1073327A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1073327A
JPH1073327A JP24697096A JP24697096A JPH1073327A JP H1073327 A JPH1073327 A JP H1073327A JP 24697096 A JP24697096 A JP 24697096A JP 24697096 A JP24697096 A JP 24697096A JP H1073327 A JPH1073327 A JP H1073327A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
refrigeration cycle
control device
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24697096A
Other languages
Japanese (ja)
Inventor
Atsuyumi Ishikawa
敦弓 石川
Masanori Akutsu
正徳 阿久津
Takashi Kawanabe
隆 川鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24697096A priority Critical patent/JPH1073327A/en
Publication of JPH1073327A publication Critical patent/JPH1073327A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Abstract

PROBLEM TO BE SOLVED: To obtain air an conditioner having an improved operation efficiency of refrigerating cycle by a system wherein the heat generated from electric components such as power supply components and components for control which constitute a control device for controlling the operation of the air conditioner is subjected to heat exchange with a refrigerating cycle system. SOLUTION: A heat exchange system 20 wherein a part of a refrigerant piping 8 of a refrigerating cycle is laid in a serpentine manner and passed by the side of fins for radiation so that it may exchange heat with circuit components 16a... constituting a control device 13 and a refrigerant is heated by the heat from the circuit components so that evaporation thereof be facilitated and thus thermal energy be enhanced, is constructed. Thereby air conditioning equipment which can display a required refrigerating capacity even with a compressor 1 of small capacity, of which the cost is low and which is economical and can be made small in size expectedly is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室内を冷房または
暖房をする空気調和装置に関し、特に該空気調和装置を
運転制御するための制御装置を構成する電源部品や制御
用部品などの電気部品から発生する熱を、冷凍サイクル
系と熱交換するシステムとし、冷凍サイクルの運転効率
を高めるように成した空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for cooling or heating the interior of a room, and more particularly, to an air conditioner for controlling the operation of the air conditioner, which includes a power supply component and a control component. The present invention relates to an air conditioner configured to increase the operation efficiency of a refrigeration cycle by using a system for exchanging generated heat with a refrigeration cycle system.

【0002】[0002]

【従来の技術】今日、空気調和装置は圧縮機、凝縮器、
アキュームレータなどを収容した室外機と、膨張装置や
蒸発器などを収容した室内機とに分離したタイプの空気
調和装置が主流となり、かつ圧縮機からの吐出冷媒を四
方弁により、圧縮機、凝縮器、膨張装置、蒸発器から成
る冷凍サイクルに可逆的を流せるように構成して、冷房
運転と暖房運転ができるようにしている。
2. Description of the Related Art Today, air conditioners include compressors, condensers,
The mainstream is an air conditioner of the type that separates an outdoor unit containing an accumulator, etc., and an indoor unit containing an expansion device, an evaporator, etc., and uses a four-way valve to distribute the refrigerant discharged from the compressor to the compressor and condenser. The refrigerating cycle including the expansion device and the evaporator is configured to be able to flow reversibly, so that the cooling operation and the heating operation can be performed.

【0003】そして、このような分離型空気調和装置の
運転方法も、単に設定温度に基づくON/OFF運転だ
けでなく、設定温度に短時間で到達させるように運転制
御するインバータ制御など、より快適な空気調和を行う
ことのできる高度な運転制御が実施されるようになって
来た。
[0003] The operation method of such a separation type air conditioner is not limited to ON / OFF operation based on a set temperature, but is also more comfortable such as inverter control for controlling operation to reach the set temperature in a short time. Advanced operation control capable of performing an excellent air conditioning has come to be implemented.

【0004】そのため、これら複雑で多岐に渡った高度
な制御を行うために必要とする制御装置も、自ずから多
数のまた多種類の制御用電気部品で構成されるものとな
っている。
[0004] Therefore, a control device required for performing these complicated and diverse advanced controls is naturally constituted by a large number and various kinds of control electric parts.

【0005】[0005]

【発明が解決しようとする課題】ところで、冷凍装置で
冷媒が圧縮→凝縮→膨張→蒸発の行程を繰り返す中で、
圧縮機は、蒸発した冷媒を吸込み、所定の高温、高圧の
冷媒とする仕事を行っているが、この仕事量が少なくし
て所定の圧縮能力を発揮できるほど、圧縮機の運転効率
は上がる。
By the way, as the refrigerant repeats the process of compression → condensation → expansion → evaporation in the refrigeration system,
The compressor sucks the evaporated refrigerant to perform a predetermined high-temperature, high-pressure refrigerant work. The operating efficiency of the compressor increases as the work amount is reduced and a predetermined compression capacity can be exhibited.

【0006】そこで、この仕事量と圧縮機の運転効率を
考える上で、冷凍サイクルと圧力(p)−熱エネルギ
(エンタルピーh)との関係を示す図4が参考になる。
In consideration of this work and the operating efficiency of the compressor, FIG. 4 showing the relationship between the refrigeration cycle and the pressure (p) -heat energy (enthalpy h) is useful.

【0007】図4は暖房運転時の場合を示し、同図で、
グラフAは冷媒の状態相図であって、頂点pを境にグラ
フAの外側における左側領域は冷媒が液相であり、右側
領域は冷媒が気相の状態にあることを示す。また、グラ
フAの内側領域は冷媒が液と気体で混合している二相領
域を示している。
FIG. 4 shows a case of the heating operation, and FIG.
Graph A is a state phase diagram of the refrigerant. The left region outside the graph A with the vertex p as a boundary indicates that the refrigerant is in a liquid phase, and the right region indicates that the refrigerant is in a gaseous state. The inner region of the graph A shows a two-phase region in which the refrigerant is mixed with a liquid and a gas.

【0008】そして、グラフMは、モリエール線図を示
し、同モリエール線図でa−bは蒸発行程、b−cは圧
縮行程、c−dは凝縮行程、d−aは膨張行程を示して
いる。
A graph M shows a Moliere diagram, wherein ab represents an evaporating process, bc represents a compression process, cd represents a condensing process, and da represents an expansion process. I have.

【0009】従って、圧縮機はモリエール線図で示す状
態b→状態cに冷媒を変化させる仕事を行っている。す
なわち、その状態変化のために、圧縮機は熱エネルギー
ΔX量分(エンタルピーh)の仕事を行うものとなって
いる。
Therefore, the compressor performs the work of changing the refrigerant from the state b to the state c shown in the Moliere diagram. That is, due to the state change, the compressor performs work for the amount of heat energy ΔX (enthalpy h).

【0010】ここで、ポイント(状態)bは、冷凍サイ
クルで蒸発し、アキュームレータからまさに圧縮機の冷
媒吸込口に吸い込まれようとする冷媒が持つ熱エネルギ
ーを表わすものともなっている。
Here, the point (state) b represents the thermal energy of the refrigerant which evaporates in the refrigeration cycle and is about to be drawn from the accumulator into the refrigerant suction port of the compressor.

【0011】従って、仮りにポイントbが更に右に移行
し、熱エネルギーをより高く維持した状況、例えばg状
態になっている冷媒が圧縮機に吸い込まれるならば、圧
縮機で吸い込んだ冷媒を高圧のc状態にするのに必要な
仕事量(熱エネルギー)はΔYと少なくすることが可能
である。
Therefore, if the point b shifts further to the right and the heat energy is kept higher, for example, if the refrigerant in the g state is sucked into the compressor, the refrigerant sucked by the compressor is changed to the high pressure. The amount of work (thermal energy) required to bring the c state into the above state can be reduced to ΔY.

【0012】そこで、この熱エネルギーをより高めた状
況で、圧縮機に冷媒を吸い込ませることを可能とさせる
ために、本発明では、制御装置を構成する発熱部品であ
る回路部品の熱を利用して、冷媒が冷凍サイクルを循環
する過程でこの回路部品との熱交換が行なわれるように
し、それによって熱回収を行って、熱エネルギーの高い
冷媒を圧縮機に送り、これにより圧縮機は少ない仕事量
で所要の圧縮能力を発揮できるようにして、冷凍装置の
運転能力および運転効率の向上した空気調和機を得るよ
うにしたものである。
Therefore, in order to make it possible for the compressor to suck the refrigerant in a situation where the heat energy is further increased, the present invention utilizes the heat of the circuit components which are the heat generating components constituting the control device. In the process of circulating the refrigerant through the refrigeration cycle, heat is exchanged with the circuit components, thereby recovering heat and sending the refrigerant having high heat energy to the compressor, whereby the compressor requires less work. It is an object of the present invention to obtain an air conditioner in which the required compression capacity can be exhibited by the amount and the operation capacity and the operation efficiency of the refrigeration system are improved.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、圧縮機と室外側熱交換器と膨張装置と室
内側熱交換器等を冷媒配管で環状に接続して冷凍サイク
ルを構成すると共に、この冷凍サイクルを運転制御する
ための制御装置を備える空気調和装置において、冷凍サ
イクルの冷媒配管の一部を、前記制御装置を構成する回
路部品と熱交換関係に配設し、回路部品から回収される
熱にて冷凍サイクルを循環中の冷媒を加熱し、冷媒の蒸
発を促進させるような熱交換システムを具備するように
したものである。
In order to achieve the above object, the present invention relates to a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion device, an indoor heat exchanger, and the like are connected in a ring through a refrigerant pipe. In the air conditioning apparatus including a control device for controlling the operation of the refrigeration cycle, a part of the refrigerant pipe of the refrigeration cycle is disposed in a heat exchange relationship with circuit components constituting the control device, A heat exchange system that heats the refrigerant circulating in the refrigeration cycle with heat recovered from the circuit components and promotes evaporation of the refrigerant is provided.

【0014】また、前記熱交換システムは、前記制御装
置の制御用基板の前記回路部品を取付けている面側と反
対側の面より一体に突出形成されている多数の放熱用フ
ィンと放熱用フィンとの間の溝部に、前記冷凍サイクル
の冷媒配管の一部を収設するようにした構造の蒸発促進
装置としたものである。
The heat exchange system may further comprise a plurality of radiating fins and a plurality of radiating fins integrally formed on a surface of the control board of the control device opposite to a surface on which the circuit components are mounted. And an evaporation promoting device having a structure in which a part of the refrigerant pipe of the refrigeration cycle is housed in a groove between them.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施態用を図面に
基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、冷凍サイクルの過程で、制御装置
を構成する電気部品の熱を循環する冷媒に回収するシス
テムを示す概念構成図である。
FIG. 1 is a conceptual configuration diagram showing a system for recovering heat of electric components constituting a control device to a circulating refrigerant in a refrigeration cycle.

【0017】同図に示すように、圧縮機1、四方弁2、
室外側熱交換器3、第1逆止弁4、キャピラリチューブ
(膨張装置)5、室内側熱交換器6およびアキュームレ
ータ7を冷媒配管8によって環状に接続して、冷凍サイ
クルを形成している。
As shown in FIG. 1, a compressor 1, a four-way valve 2,
The outdoor heat exchanger 3, the first check valve 4, the capillary tube (expansion device) 5, the indoor heat exchanger 6, and the accumulator 7 are annularly connected by a refrigerant pipe 8, thereby forming a refrigeration cycle.

【0018】また、前記第1逆止弁4にキャピラリチュ
ーブ11を並列に接続し、前記キャピラリチューブ(膨
張装置)5に第2逆止弁12を並列に接続して構成され
ている。
A capillary tube 11 is connected to the first check valve 4 in parallel, and a second check valve 12 is connected to the capillary tube (expansion device) 5 in parallel.

【0019】そして、この冷凍サイクルにおいて、四方
弁2の切換により、冷房運転の際は実線矢印に示す方向
に冷媒が循環し、暖房運転の際は破線矢印に示す方向に
冷媒が循環する。
In this refrigeration cycle, by switching the four-way valve 2, the refrigerant circulates in the direction indicated by the solid arrow during the cooling operation, and circulates in the direction indicated by the dashed arrow during the heating operation.

【0020】さて、ここで13は、冷凍サイクルの運転
制御を行うための運転制御装置を示し、圧縮機1のON
/OFF運転制御や室外側熱交換器3の冷却用ファン1
4Fおよび室内側熱交換器6の冷却用ファン15Fの回
転制御などを行う制御部となっている。
Here, reference numeral 13 denotes an operation control device for controlling the operation of the refrigeration cycle.
/ OFF operation control and cooling fan 1 for outdoor heat exchanger 3
The control unit controls the rotation of the cooling fan 15F of the 4F and the indoor heat exchanger 6.

【0021】前記運転制御装置13は、ICや、パワー
トランジスタ、ダイオード、リアクターなど、多数、多
種類の回路部品16a、16b、16c…から構成され
ている。
The operation control device 13 is composed of many and various types of circuit components 16a, 16b, 16c, etc., such as ICs, power transistors, diodes, and reactors.

【0022】そして、これら回路部品16a、16b、
16c…は発熱するので、部品が高熱状態となって制御
装置13による制御動作の信頼性が失われないように、
制御装置13は図2に示すように、制御基板17の前記
回路部品16a、16b、16c…を取付けている面と
反対側の面に、多数の放熱用フィン18を一体に突設形
成して、放熱を十分とさせ高温とならないようにしてい
る。
The circuit components 16a, 16b,
16c generate heat, so that the components do not enter a high heat state and the reliability of the control operation by the control device 13 is not lost.
As shown in FIG. 2, the control device 13 integrally forms a large number of heat dissipating fins 18 on the surface of the control board 17 opposite to the surface on which the circuit components 16a, 16b, 16c. In addition, the heat dissipation is sufficient to prevent the temperature from becoming high.

【0023】本発明は、この冷凍サイクルの冷媒配管の
一部を、この制御装置を構成する回路部品と熱交換が行
われるようにその傍を通させるように構成している。こ
れにより回路部品から発する熱を回収して、冷凍サイク
ルを循環中の冷媒を加熱し、冷媒の蒸発を促進させるよ
うな働きを担わせている。
According to the present invention, a part of the refrigerant pipe of the refrigeration cycle is made to pass therethrough so as to exchange heat with the circuit components constituting the control device. Thereby, the heat generated from the circuit components is recovered, the refrigerant circulating through the refrigeration cycle is heated, and the refrigerant is evaporated.

【0024】具体的には、図2及び図3に示すように、
制御基板17に設けた放熱用フィン18と放熱用フィン
18との間に形成される溝部19に冷媒配管8を通す。
そして、例えば、制御基板17を上から下へと通った冷
媒配管8は、下端でU状に曲がり左方に延在する隣の放
熱用フィン18と放熱用フィン18との間に形成される
溝部19を通って上へと戻るというように蛇行状に配管
される。
Specifically, as shown in FIGS. 2 and 3,
The refrigerant pipe 8 is passed through a groove 19 formed between the heat dissipating fins 18 provided on the control board 17.
And, for example, the refrigerant pipe 8 that passes through the control board 17 from the top to the bottom is formed between the adjacent heat dissipating fins 18 that bend in a U shape at the lower end and extend to the left. The pipe is arranged in a meandering manner so as to return upward through the groove 19.

【0025】このように冷媒配配管8を制御基板17に
蛇行状に配設することにより、制御基板17の前記冷媒
配管8を取り付けている面と反対側の面に取り付けてい
る種々の回路部品16a、16b、16c…から伝わり
放熱フィン18から放熱される熱を、冷媒配管8に伝達
し、冷媒配管8中を通流している冷媒を加熱させるよう
に熱交換させて、熱回収をさせることのできる熱交換シ
ステム(装置)20を形成している。
By arranging the refrigerant distribution pipes 8 in a meandering manner on the control board 17 in this manner, various circuit components mounted on the surface of the control board 17 opposite to the side on which the refrigerant pipes 8 are mounted are provided. The heat transmitted from 16a, 16b, 16c,... And radiated from the radiation fins 18 is transmitted to the refrigerant pipe 8, and heat exchange is performed so as to heat the refrigerant flowing in the refrigerant pipe 8, thereby recovering heat. A heat exchange system (apparatus) 20 is formed.

【0026】次に、こうした熱交換システム20による
熱交換の様相を現象的に追及してみる。
Next, the aspect of the heat exchange by the heat exchange system 20 will be phenomenally pursued.

【0027】すなわち、例えば図1で、冷媒が点線矢印
方向に流れる暖房運転の場合、上述した熱交換システム
20を冷凍サイクルの途中に設けることで、室外側熱交
換器2による蒸発能力に加えて、制御装置17の回路部
品16a、16b、16c…から発する熱による蒸発が
作用するため、アキュームレータ7を介して圧縮機1に
流入する冷媒は蒸発度がより高まった状況にある。すな
わち熱エネルギーが高い冷媒となって吸い込まれること
になる。
That is, for example, in FIG. 1, in the case of the heating operation in which the refrigerant flows in the direction of the dotted line arrow, by providing the above-described heat exchange system 20 in the middle of the refrigeration cycle, in addition to the evaporation capacity of the outdoor heat exchanger 2, , The heat generated from the circuit components 16a, 16b, 16c,... Of the control device 17 acts, so that the refrigerant flowing into the compressor 1 via the accumulator 7 has a higher evaporation degree. That is, it becomes a refrigerant having high heat energy and is sucked.

【0028】一方、冷凍サイクル全体を見ると、前述の
図4を参照すれば理解されるように、圧縮機1で冷媒を
b状態からc状態にと圧縮動作が成されて圧力が高めら
れ、次いで室内側熱交換器6で、c状態からd状態にと
定圧で凝縮し、次にキャピラリチューブ11でd状態か
らa状態にと膨張して低圧の液冷媒となり、そして室外
側熱交換器3でa状態からb状態にと蒸発し、再びb状
態からc状態の圧縮行程にと戻るa→b→c→dなる冷
凍サイクルが繰り返されている。
On the other hand, looking at the entire refrigeration cycle, as can be understood with reference to FIG. 4 described above, the compressor 1 compresses the refrigerant from the state b to the state c to increase the pressure, Next, in the indoor heat exchanger 6, the condensed water is condensed from the c state to the d state at a constant pressure, and then expanded from the d state to the a state in the capillary tube 11 to become a low-pressure liquid refrigerant. Thus, the refrigeration cycle of a → b → c → d, which evaporates from the state a to the state b and returns to the compression stroke from the state b to the state c again, is repeated.

【0029】ここで、暖房運転時の運転効率(CoP
H)は、圧縮機の暖房能力(凝縮能力)/圧縮機への入
力(仕事量).で求められる。
Here, the operating efficiency during heating operation (CoP
H) is the heating capacity (condensing capacity) of the compressor / input to the compressor (work load). Is required.

【0030】従って、本発明のような電気部品との熱交
換器システム20が備わっていない通常の冷凍サイクル
では、ΔZの暖房能力(単位エンタルピー)を得るの
に、圧縮機はΔXの仕事(単位エンタルピー)をするこ
とになり、よって、この場合の運転効率(CoPH)は
下式で算出される。
Therefore, in a normal refrigeration cycle without the heat exchanger system 20 with electric components as in the present invention, the compressor needs ΔX work (unit) to obtain ΔZ heating capacity (unit enthalpy). (Enthalpy), and the operating efficiency (CoPH) in this case is calculated by the following equation.

【0031】 現状の運転効率(CoPH1) =ΔZ(44.0)/ΔX(155.8−149.0) =6.47 …(1) となる。The current operation efficiency (CoPH 1) = ΔZ (44.0) / ΔX (155.8-149.0) = 6.47 (1)

【0032】これに対して、図1に示す本発明のような
電気部品との熱交換器システム20が備わっている冷凍
サイクルであると、室外側熱交換器3によるΔW(3
7.2)の蒸発能力(単位エンタルピーh)に、制御装
置13の電気部品16a、16b、16c…の熱による
蒸発能力ΔV(149.6−149.0=0.6エンタ
ルピーh)が追加される結果、冷凍装置の蒸発能力は実
質的に増加し、b状態(149.0エンタルピー)から
g状態(149.6エンタルピー)へと熱エネルギーが
増えた冷媒の状態で、圧縮機1に吸い込まれる。
On the other hand, in the refrigeration cycle provided with the heat exchanger system 20 for electric parts as shown in FIG. 1 according to the present invention, ΔW (3
The evaporation ability ΔV (149.6-149.0 = 0.6 enthalpy h) due to the heat of the electric components 16a, 16b, 16c... Of the control device 13 is added to the evaporation ability (unit enthalpy h) of 7.2). As a result, the evaporating capacity of the refrigeration system substantially increases, and the refrigerant is sucked into the compressor 1 in a state where the heat energy has increased from the b state (149.0 enthalpy) to the g state (149.6 enthalpy). .

【0033】よって、この場合の運転効率(CoPH
2)は下式で算出されるものとなる。
Therefore, the operating efficiency (CoPH
2) is calculated by the following equation.

【0034】 改善運転効率(CoPH2) =ΔZ(155.8−111.8=44.0) /ΔY(155.8−149.6)×0.045/0.046(定数) =6.94 …(2) となる。Improved operating efficiency (CoPH 2) = ΔZ (155.8-111.8 = 44.0) / ΔY (155.8-149.6) × 0.045 / 0.046 (constant) = 6.94 ... (2)

【0035】また、この時の回収熱量QHは、下式で求
められる。
The recovered heat quantity QH at this time is obtained by the following equation.

【0036】 回収熱量QH=0.6×{3500×0.86/44} =41Kccl/H =47W …(3) となる。The amount of recovered heat QH = 0.6 × {3500 × 0.86 / 44} = 41 Kccl / H = 47 W (3)

【0037】従って、上記(1)式と上記(2)式か
ら、運転効率が従来の6.47から6.94と本発明に
よって向上し、双方の比率を計算すると、運転効率6.
47/6.94=1.00/1.07と運転効率の改善
が確認された。
Therefore, from the above equations (1) and (2), the operating efficiency is improved by 6.94 from the conventional 6.47 to 6.94, and the ratio of both is calculated.
47 / 6.94 = 1.00 / 1.07, indicating an improvement in operating efficiency.

【0038】なお、本発明の制御用電気部品と冷媒とが
熱交換する熱交換システム20によって、冷媒がこの熱
交換システムに流入する前と流出した後の時点で、実測
した冷媒の温度や熱エネルギー値を、図6に表として示
した。
The heat exchange system 20 for exchanging heat between the control electric component and the refrigerant according to the present invention uses the measured temperature and heat of the refrigerant before and after the refrigerant flows into the heat exchange system. The energy values are tabulated in FIG.

【0039】同図の表より、理解されるように、電気部
品の熱が冷媒に回収される結果、冷媒の温度は、熱交換
システムに流入する前は2℃であるが、流出した後では
5℃に上がり、また電気部品の熱が冷媒に回収される結
果、冷媒の熱エネルギーも149.0Kcal/Kgか
ら149.6Kcal/Kgに増加していることが判
る。
As can be understood from the table in the figure, as a result of the heat of the electrical components being recovered by the refrigerant, the temperature of the refrigerant is 2 ° C. before flowing into the heat exchange system, but is 2 ° C. after flowing out. As a result of the temperature rising to 5 ° C. and the heat of the electric components being recovered by the refrigerant, it can be seen that the heat energy of the refrigerant also increased from 149.0 Kcal / Kg to 149.6 Kcal / Kg.

【0040】また、上記(2)式の定数に係る数値は、
この表からの数値を引用したものである。
The numerical value related to the constant of the above equation (2) is
The figures from this table are quoted.

【0041】また、同様に冷房運転の場合にも、制御用
回路部品の熱を回収することによって、圧縮機の運転効
率が改善されることが、図7に表として示すように確認
された。
Similarly, in the case of the cooling operation, it was confirmed as shown in the table of FIG. 7 that the operating efficiency of the compressor was improved by recovering the heat of the control circuit parts.

【0042】すなわち、従来では、図5に示している、
冷凍サイクルと圧力(p)−熱エネルギ(エンタルピー
h)との関係を参照すると理解されるように、圧縮機で
ΔM量の仕事をして、冷却能力(蒸発能力)ΔNを得て
いる。
That is, conventionally, as shown in FIG.
As can be understood by referring to the relationship between the refrigeration cycle and the pressure (p) -heat energy (enthalpy h), a cooling capacity (evaporation capacity) ΔN is obtained by performing a work of ΔM amount in the compressor.

【0043】これに対し、本発明では、圧縮機はΔM量
より少ないΔPの仕事をして、冷却能力(蒸発能力)Δ
Nを得られるようになり、運転効率が改善される。
On the other hand, in the present invention, the compressor performs a work of ΔP smaller than the amount of ΔM, and the cooling capacity (evaporation capacity) Δ
N can be obtained, and the operating efficiency is improved.

【0044】以下に上記の事柄を数値で実証する。In the following, the above matters will be verified by numerical values.

【0045】 現状の運転効率(CoPC1) =ΔN(149.8−111.3=38.5) /ΔM(157.0−149.8) =5.37 …(4) となる。The current operating efficiency (CoPC1) = ΔN (149.8−111.3 = 38.5) / ΔM (157.0−149.8) = 5.37 (4)

【0046】これに対して、図1に示す本発明のような
電気部品との熱交換器システム20が備わっている冷凍
サイクルであると、室内側熱交換器3によるΔN(3
8.5)の蒸発能力(単位エンタルピーh)に、制御装
置13の電気部品16a、16b、16c…の熱による
蒸発能力ΔS(150.25−149.8)=0.45
エンタルピーh)が追加される結果、冷凍装置の蒸発能
力は実質的に増加し、b状態(149.8エンタルピ
ー)からk状態(150.25エンタルピー)へと熱交
換器エネルギーが増えた冷媒の状態で、圧縮機1に吸い
込まれる。
On the other hand, in the refrigeration cycle provided with the heat exchanger system 20 for electric parts as shown in FIG. 1 according to the present invention, ΔN (3
8.5), the evaporation capability ΔS (150.25-149.8) of the electric components 16a, 16b, 16c,... Of the control device 13 due to heat is added to the evaporation capability (unit enthalpy h) of 0.45.
As a result of the addition of the enthalpy h), the evaporating capacity of the refrigeration system substantially increases, and the state of the refrigerant with the heat exchanger energy increased from the b state (149.8 enthalpy) to the k state (150.25 enthalpy) Then, it is sucked into the compressor 1.

【0047】よって、 改善運転効率(CoPC2) =ΔN(38.5)/ΔP(157.0−150.25) ×0.0329/0.0337(定数) =5.57 …(5) となる。Therefore, the improved operation efficiency (CoPC2) = ΔN (38.5) / ΔP (157.0−150.25) × 0.0329 / 0.0337 (constant) = 5.57 (5) .

【0048】また、この時の回収熱量Qcは、下式で求
められる。 回収熱量Qc=0.45×{245.0×0.86/38.5} =24.7Kcal/H =29W …(6) となる。
The recovered heat Qc at this time is obtained by the following equation. The amount of recovered heat Qc = 0.45 × {245.0 × 0.86 / 38.5} = 24.7 Kcal / H = 29 W (6)

【0049】従って、上記(4)式と上記(5)式か
ら、運転効率が従来の5.37から5.57と本発明に
よって向上し、双方の比率を計算すると、運転効率5.
37/6.57=1.00/1.04と運転効率の改善
が確認された。
Therefore, from the above equations (4) and (5), the operation efficiency is improved by 5.57 from the conventional 5.37 to 5.57 according to the present invention.
37 / 6.57 = 1.00 / 1.04, indicating an improvement in operating efficiency.

【0050】また暖房運転の場合と同様に、本発明の制
御用電気部品で構成された熱交換装置によって、冷媒が
この熱交換装置に流入する前と流出した後の時点で、実
測した冷媒の温度や熱エネルギー値を、図7に表化して
示した。
Similarly to the case of the heating operation, the heat exchange device constituted by the control electric parts of the present invention allows the refrigerant measured before and after the refrigerant to flow into and out of the heat exchange device. The temperature and heat energy values are tabulated in FIG.

【0051】同図の表より、理解されるように、電気部
品の熱が冷媒に回収される結果、冷媒の温度は12℃か
ら14℃に上がり、また冷媒の熱エネルギーも149.
8Kcal/Kgから150.25Kcal/Kgに増
加していることが判る。
As can be understood from the table in the figure, as a result of the heat of the electric components being recovered by the refrigerant, the temperature of the refrigerant increases from 12 ° C. to 14 ° C., and the heat energy of the refrigerant also increases to 149.
It can be seen that it increased from 8 Kcal / Kg to 150.25 Kcal / Kg.

【0052】また、上記(5)式の定数に係る数値も、
この表からの数値を引用したものである。
The numerical value related to the constant of the above equation (5) is also:
The figures from this table are quoted.

【0053】[0053]

【発明の効果】以上のように本発明によれば、冷凍サイ
クルの冷媒配管の一部を、この冷凍サイクルを制御する
制御装置を構成する回路部品と熱交換関係に配置して、
圧縮機で吐出された冷媒が循環の途中で、回路部品から
の熱を受けて蒸発が更に進み熱エネルギーを高められる
という蒸発促進手段を冷凍サイクルに付加した格好の空
気調和装置としたので、圧縮機が所要の冷凍能力を得る
ために必要な仕事量の一部を前記蒸発促進手段で賄うこ
とができ、よって能力の小さい圧縮機が使用できるよう
になり、空気調和装置全体のコストおよび運転コストを
低減できるようになる。
As described above, according to the present invention, a part of the refrigerant pipe of the refrigeration cycle is arranged in a heat exchange relationship with the circuit components constituting the control device for controlling the refrigeration cycle.
In the middle of circulation, the refrigerant discharged from the compressor receives heat from the circuit components, and the evaporation is further advanced to increase the heat energy. A part of the work required for the compressor to obtain the required refrigeration capacity can be covered by the evaporation promoting means, so that a compressor having a small capacity can be used, and the cost and operating cost of the entire air conditioner can be increased. Can be reduced.

【0054】また、制御装置から発する熱エネルギーを
有効的に放熱させて、制御装置自体の冷却も十分に行え
るので、信頼性の高い制御を行えるようになると共に、
制御装置を冷却するための冷却手段も簡易で、コンパク
トな構造のものが使用できるメリットが生まれる。
Further, since the heat energy generated from the control device is effectively radiated and the control device itself can be sufficiently cooled, highly reliable control can be performed.
Cooling means for cooling the control device is also simple, and there is an advantage that a compact structure can be used.

【0055】そして、蒸発促進手段は、冷媒配管を制御
装置の制御基板に設けられている多数の放熱フィンと放
熱フィンとの間の溝部に挿通させるという構造を採るこ
とで、簡単に達成できるものとなり、既存の冷凍サイク
ルを大幅に変更したり、格別に複雑な構造にせずとも、
冷媒と冷凍サイクル系との熱交換率の良い熱交換器シス
テムを構築できる。
The evaporation promoting means can be easily achieved by adopting a structure in which the refrigerant pipe is inserted into a groove between a plurality of radiating fins provided on the control board of the control device. And without having to drastically change the existing refrigeration cycle or make it particularly complex
A heat exchanger system having a good heat exchange rate between the refrigerant and the refrigeration cycle system can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】制御装置の熱で冷媒の蒸発を促進させ、運転効
率を高めるようにする熱交換システムを有する本発明の
冷凍サイクルの回路図。
FIG. 1 is a circuit diagram of a refrigeration cycle of the present invention having a heat exchange system that promotes the evaporation of a refrigerant by the heat of a control device to increase the operation efficiency.

【図2】冷媒配管の一部を制御装置の制御基板に放熱用
フィンと放熱用フィンとの間に挿通して構成した上記熱
交換システムを示す具体的平面構造図。
FIG. 2 is a specific plan structural view showing the heat exchange system in which a part of a refrigerant pipe is inserted between a heat dissipating fin and a heat dissipating fin on a control board of a control device.

【図3】図2に示す熱交換システムの部分的構造斜視
図。
FIG. 3 is a partial structural perspective view of the heat exchange system shown in FIG. 2;

【図4】本発明により運転効率が改善されることを説明
するために引用した暖房運転時の場合の冷凍サイクルと
圧力(p)−熱エネルギ(エンタルピーh)との関係
図。
FIG. 4 is a diagram showing a relationship between a refrigeration cycle and pressure (p) -heat energy (enthalpy h) in a heating operation cited for explaining that the operation efficiency is improved by the present invention.

【図5】本発明により運転効率が改善されることを説明
するために引用した冷房運転時の場合の冷凍サイクルと
圧力(p)−熱エネルギ(エンタルピーh)との関係
図。
FIG. 5 is a relationship diagram between a refrigeration cycle and pressure (p) -heat energy (enthalpy h) in a cooling operation cited for explaining that the operation efficiency is improved by the present invention.

【図6】暖房運転時の場合に、本発明の熱交換システム
にて確認される冷媒温度の上昇及び回収熱量を測定した
データ値の図表。
FIG. 6 is a chart of data values obtained by measuring a rise in refrigerant temperature and a recovered heat amount, which are confirmed by the heat exchange system of the present invention during a heating operation.

【図7】冷房運転時の場合に、本発明の熱交換システム
にて確認される冷媒温度の上昇及び回収熱量を測定した
データ値の図表。
FIG. 7 is a chart of data values obtained by measuring a rise in the refrigerant temperature and a recovered heat amount confirmed by the heat exchange system of the present invention during the cooling operation.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外側熱交換器 5 膨張装置 6 室内側熱交換器 7 アキュームレータ 8 冷媒配管 13 制御装置 16a、16b、16c… 回路部品 17 制御基板 18 放熱用フィン 20 熱交換システム DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 5 Expansion device 6 Indoor heat exchanger 7 Accumulator 8 Refrigerant piping 13 Control device 16a, 16b, 16c ... Circuit components 17 Control board 18 Radiation fin 20 Heat exchange system

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と室外側熱交換器と膨張装置と室
内側熱交換器等を冷媒配管で環状に接続して冷凍サイク
ルを構成すると共に、この冷凍サイクルを運転制御する
ための制御装置を備える空気調和装置において、 冷凍サイクルの冷媒配管の一部を、前記制御装置を構成
する回路部品と熱交換関係に配設し、回路部品から回収
される熱にて冷凍サイクルを循環中の冷媒を加熱し、冷
媒の蒸発を促進させるような熱交換システムを具備する
ことを特徴とする空気調和装置。
A refrigeration cycle is formed by connecting a compressor, an outdoor heat exchanger, an expansion device, an indoor heat exchanger, and the like in an annular manner with a refrigerant pipe, and a control device for controlling the operation of the refrigeration cycle. In the air conditioner comprising: a part of the refrigerant pipe of the refrigeration cycle is disposed in a heat exchange relationship with a circuit component constituting the control device, and the refrigerant circulating in the refrigeration cycle with heat recovered from the circuit component. An air conditioner, comprising: a heat exchange system that heats air and promotes evaporation of a refrigerant.
【請求項2】 前記熱交換システムは、前記制御装置の
制御用基板の前記回路部品を取付けている面側と反対側
の面より一体に突出形成されている多数の放熱用フィン
と放熱用フィンとの間の溝部に、前記冷凍サイクルの冷
媒配管の一部を収設するようにした構造の蒸発促進装置
であることを特徴とする前記特許請求の範囲第1項記載
の空気調和装置。
2. The heat exchanging system according to claim 1, wherein the heat exchange system includes a plurality of heat dissipating fins and a plurality of heat dissipating fins integrally formed from a surface of the control board of the control device opposite to a surface on which the circuit component is mounted. 2. The air conditioner according to claim 1, wherein the evaporating device has a structure in which a part of a refrigerant pipe of the refrigeration cycle is housed in a groove between the two.
JP24697096A 1996-08-30 1996-08-30 Air conditioner Pending JPH1073327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24697096A JPH1073327A (en) 1996-08-30 1996-08-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697096A JPH1073327A (en) 1996-08-30 1996-08-30 Air conditioner

Publications (1)

Publication Number Publication Date
JPH1073327A true JPH1073327A (en) 1998-03-17

Family

ID=17156443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697096A Pending JPH1073327A (en) 1996-08-30 1996-08-30 Air conditioner

Country Status (1)

Country Link
JP (1) JPH1073327A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044818A (en) * 2002-07-05 2004-02-12 Hitachi Home & Life Solutions Inc Air conditioner
EP1835243A1 (en) * 2006-03-17 2007-09-19 Delphi Technologies, Inc. Evaporator with electronic circuit printed on a first side plate
WO2008059803A1 (en) * 2006-11-13 2008-05-22 Daikin Industries, Ltd. Heat exchanging system
JP2009085526A (en) * 2007-10-01 2009-04-23 Daikin Ind Ltd Air conditioner
JP2013164248A (en) * 2012-02-13 2013-08-22 Daikin Industries Ltd Heat source unit of refrigerating device and method of manufacturing the same
CN105928094A (en) * 2016-05-27 2016-09-07 珠海格力电器股份有限公司 Air conditioner device with module heat exchange component and control method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044818A (en) * 2002-07-05 2004-02-12 Hitachi Home & Life Solutions Inc Air conditioner
EP1835243A1 (en) * 2006-03-17 2007-09-19 Delphi Technologies, Inc. Evaporator with electronic circuit printed on a first side plate
WO2008059803A1 (en) * 2006-11-13 2008-05-22 Daikin Industries, Ltd. Heat exchanging system
JP2008121985A (en) * 2006-11-13 2008-05-29 Daikin Ind Ltd Heat exchange system
US10267541B2 (en) 2006-11-13 2019-04-23 Daikin Industries, Ltd. Heat exchange system with fixed and variable expansion devices in series
JP2009085526A (en) * 2007-10-01 2009-04-23 Daikin Ind Ltd Air conditioner
JP2013164248A (en) * 2012-02-13 2013-08-22 Daikin Industries Ltd Heat source unit of refrigerating device and method of manufacturing the same
CN105928094A (en) * 2016-05-27 2016-09-07 珠海格力电器股份有限公司 Air conditioner device with module heat exchange component and control method thereof

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
US7908881B2 (en) HVAC system with powered subcooler
US4569207A (en) Heat pump heating and cooling system
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
JP2001147050A (en) Refrigerating system for refrigerator equipped with two evaporators
JP2009133624A (en) Refrigerating/air-conditioning device
JPH1073327A (en) Air conditioner
KR20030045175A (en) Phase-change Heat Transfer Coupling For Aqua-ammonia Absorption Systems
JP2001227840A (en) Hybrid type heat pump device
WO2002025179A1 (en) Refrigeration cycle
WO2007043952A1 (en) Heat exchanger device
JP6978242B2 (en) Refrigerant circuit equipment
KR100613502B1 (en) Heat pump type air conditioner
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
CN220669584U (en) Air conditioner
CN215765883U (en) Heating, ventilating, air conditioning and/or refrigeration system and cooler system
WO2022215108A1 (en) Refrigeration cycle device
JP2004044818A (en) Air conditioner
JPH07269971A (en) Air conditioner
CN220582593U (en) Air-cooled energy storage refrigeration equipment
JPS581345B2 (en) Air conditioning/heating/hot water equipment
JPH02161263A (en) Air conditioner
US20230324073A1 (en) Electrical enclosure for hvac system
JP3785737B2 (en) Refrigeration equipment
JP2007155174A (en) Heat pump system, air conditioner or refrigerating machine system using zeotropic refrigerant mixture